首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
An efficient introduction of vinyl group into poly (ethylene‐co‐styrene) or poly(ethylene‐co?1‐hexene) has been achieved by the incorporation of 3,3′‐divinylbiphenyl (DVBP) in terpolymerization of ethylene, styrene, or 1‐hexene with DVBP using aryloxo‐modified half‐titanocenes, Cp′TiCl2(O?2,6‐iPr2C6H3) [Cp′ = Cp*, tBuC5H4, 1,2,4‐Me3C5H2], in the presence of MAO cocatalyst, affording high‐molecular‐weight polymers with unimodal distributions. Efficient comonomer incorporations have been achieved by these catalysts, and the content of each comonomer could be varied by its initial concentration charged. The postpolymerization of styrene was initiated from the vinyl group remained in the side chain by treatment with n‐BuLi. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2581–2587  相似文献   

2.
A series of Me4Cp–amido complexes {[η51‐(Me4C5)SiMe2NR]TiCl2; R = t‐Bu, 1 ; C6H5, 2 ; C6F5, 3 ; SO2Ph, 4 ; or SO2Me, 5 } were prepared and investigated for olefin polymerization in the presence of methylaluminoxane (MAO). X‐ray crystallography of complexes 3 and 4 revealed very long Ti N bonds relative to the bonds of 1 . These complexes were employed for ethylene–styrene copolymerizations, styrene homopolymerizations, and propylene homopolymerizations in the presence of MAO. The productivities of the catalysts derived from 3 – 5 were much lower than the productivity of the catalyst derived from 1 for the propylene polymerizations and ethylene–styrene copolymerizations, whereas the styrene polymerization activities were much higher for the catalysts derived from 3 – 5 than for the catalyst derived from 1 . The polymerization behavior of the catalysts derived from the metallocenes 3 – 5 were more reminiscent of monocyclopentadienyl titanocene Cp′TiX3/MAO catalysts than of CpATiX2/MAO catalysts such as 1 containing alkylamido ligands. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4649–4660, 2000  相似文献   

3.
Olefin polymerizations catalyzed by Cp′TiCl2(O‐2,6‐iPr2C6H3) ( 1 – 5 ; Cp′ = cyclopentadienyl group), RuCl2(ethylene)(pybox) { 7 ; pybox = 2,6‐bis[(4S)‐4‐isopropyl‐2‐oxazolin‐2‐yl]pyridine}, and FeCl2(pybox) ( 8 ) were investigated in the presence of a cocatalyst. The Cp*TiCl2(O‐2,6‐iPr2C6H3) ( 5 )–methylaluminoxane (MAO) catalyst exhibited remarkable catalytic activity for both ethylene and 1‐hexene polymerizations, and the effect of the substituents on the cyclopentadienyl group was an important factor for the catalytic activity. A high level of 1‐hexene incorporation and a lower rE · rH value with 5 than with [Me2Si(C5Me4)(NtBu)]TiCl2 ( 6 ) were obtained, despite the rather wide bond angle of Cp Ti O (120.5°) of 5 compared with the bond angle of Cp Ti N of 6 (107.6°). The 7 –MAO catalyst exhibited moderate catalytic activity for ethylene homopolymerization and ethylene/1‐hexene copolymerization, and the resultant copolymer incorporated 1‐hexene. The 8 –MAO catalyst also exhibited activity for ethylene polymerization, and an attempted ethylene/1‐hexene copolymerization gave linear polyethylene. The efficient polymerization of a norbornene macromonomer bearing a ring‐opened poly(norbornene) substituent was accomplished by ringopening metathesis polymerization with the well‐defined Mo(CHCMe2Ph)(N‐2,6‐iPr2C6H3)[OCMe(CF3)2]2 ( 10 ). The key step for the macromonomer synthesis was the exclusive end‐capping of the ring‐opened poly(norbornene) with p‐Me3SiOC6H4CHO, and the use of 10 was effective for this polymerization proceeding with complete conversion. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4613–4626, 2000  相似文献   

4.
A series of monocyclopentadienyl titanium complexes containing a pendant amine donor on a Cp group ( A = CpTiCl3, B = CpNTiCl3, C = CpNTiCl2TEMPO, for Cp = C5H5, CpN = C5H4CH2CH2N(CH3)2, and TEMPO = 2,2,6,6‐tetramethylpiperidine‐N‐oxyl) are investigated for styrene homopolymerization and ethylene–styrene (ES) copolymerization. When activated by methylaluminoxane at 70 °C, complexes with the amine group ( B and C ) are active for styrene homopolymerization and afford syndiotactic polystyrene (sPS). The copolymerizations of ethylene and styrene with B and C yield high‐molecular weight ES copolymer, whereas complex A yields mixtures of sPS and polyethylene, revealing the critical role that the pendant amine has on the polymerization behavior of the complexes. Fractionation, NMR, and DSC analyses of the ES copolymers generated from B and C suggest that they contain sPS. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1579–1585, 2010  相似文献   

5.
An efficient introduction of aromatic vinyl group into syndiotactic polystyrene has been achieved by incorporation of 3,3′‐divinylbiphenyl, p‐divinylbenzene (DVB) in syndiospecific styrene polymerization using aryloxo‐modified half‐titanocenes, Cp′TiCl2(O‐2,6‐iPr2C6H3) (Cp′ = tBuC5H4, 1,2,4‐Me3C5H2), in the presence of MAO. The resultant polymers possessed high molecular weights with uniform molecular weight distributions, and the DVB contents could be varied by the initial feed molar ratios (6–23 mol %) without decrease in the Mn values. The syndiotactic stereo‐regularity and presence of the vinyl groups were confirmed by NMR spectra. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1902–1907  相似文献   

6.
Aryloxo‐modified half‐titanocenes, Cp′TiCl2(O‐2,6‐iPr2C6H3) [Cp′ = Cp* ( 1 ), tBuC5H4 ( 2 )], catalyze terpolymerization of ethylene and styrene with α‐olefin (1‐hexene and 1‐decene) efficiently in the presence of cocatalyst, affording high‐molecular‐weight polymers with unimodal distributions (compositions). Efficient comonomer incorporations have been achieved by these catalysts. The content of each comonomer (α‐olefin, styrene, etc.) could be controlled by varying the comonomer concentration charged, and resonances ascribed to styrene and α‐olefin repeated insertion were negligible. The terpolymerization with p‐methylstyrene (p‐MS) in place of styrene also proceeded in the presence of [PhN(H)Me2][B(C6F5)4] and AliBu3 cocatalyst, and p‐MS was incorporated in an efficient matter, affording high‐molecular‐weight polymers with uniform molecular weight distributions. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2565–2574  相似文献   

7.
Ethylene copolymerizations with norbornene (NBE) using half‐titanocenes containing imidazolin‐2‐iminato ligands, Cp′TiCl2[1,3‐R2(CHN)2C?N] [Cp′ = Cp ( 1 ), tBuC5H4 ( 2 ); R = tBu ( a ), 2,6‐iPr2C6H3 ( b )], have been explored in the presence of methylaluminoxane (MAO) cocatalyst. Complex 1a exhibited remarkable catalytic activity with better NBE incorporation, affording high‐molecular‐weight copolymers with uniform molecular weight distributions, whereas the tert‐BuC5H4 analog ( 2a ) showed low activity, and the resultant polymer prepared by the Cp‐2,6‐diisopropylphenyl analog ( 1b ) possessed broad molecular weight distribution. The microstructure analysis of the poly(ethylene‐co‐NBE)s prepared by 1a suggests the formation of random copolymers including two and three NBE repeating units. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2575–2580  相似文献   

8.
Factors affecting the product distributions in ethylene/styrene copolymerizations catalyzed by Cp*TiCl2(O‐2,6‐iPr2C6H3) are explored in the presence of various cocatalysts at high styrene/ethylene feed ratios (at 40 and 55 °C). Ethylene/styrene copolymers were the sole product when the reactions were conducted in the presence of [PhN(H)Me2][B(C6F5)4] and AliBu3/Al(octyl)3 even at 55 and 70 °C, whereas syndiotactic polystyrene was by‐produced when the polymerizations were performed at >40 °C in the presence of MAO; the ratios of the copolymer/SPS were affected by the reaction temperature as well as Al cocatalyst employed.

  相似文献   


9.
Insertion and Substitution Reaction of Methyl Formate with [Cp′2ZrCl(PHTipp)] – Molecular Structure of meso‐trans ‐[Cp′2ZrCl{OCH(PHTipp)2}] (Cp′ = η5‐C5MeH4, Tipp = 2,4,6‐Pri3C6H2) [Cp′2ZrCl(PHTipp)] ( 1 ) (Cp′ = η5‐C5MeH4, Tipp = 2,4,6‐Pri3C6H2) reacts with methyl formate with insertion and substitution to give [Cp′2ZrCl{OCH(PHTipp)2}] ( 2 ). 2 was characterized spectroscopically (1H, 31P NMR, IR, MS) and by X‐ray structure determination. Only the meso‐trans isomer is present in the solid state.  相似文献   

10.
王晨  黄吉玲 《中国化学》2006,24(10):1397-1401
Two new complexes[η~5-C_5H_4CMe_2-(p-fluorophenyl)]TiCl_3(1)and[μ~5-C_5H_4C(cyclo-C_5H_(10))-(p-fluoro-phenyl)]TiCl_3(2)were synthesized and characterized.Their activities and selectivities for trimerization of ethylenewere investigated.The introduction of fluorine atom greatly weakened the arene coordination,but this disadvanta-geous factor can be eliminated by introduction of a bulky substituent,such as cyclo-C_5H_(10),to the bridging carbonlinked to the Cp ring.The combinative effect of the fluorine substitute and the bridging unit can make complex 2 asa highly active and selective catalyst for ethylene trimerization.Its productivity and selectivity for 1-hexene canreach 1024.0 kg·mol~(-1)·h(-1) and 99.3% respectively.  相似文献   

11.
The copolymerization of styrene and 1,3‐butadiene (Bd) or isoprene (Ip) was carried out with half‐sandwich titanium(IV) Cp′TiCl3 catalysts (where Cp′ is cyclopentadienyl 1 , indenyl 2 , or pentamethylcyclopentadienyl 3 ) with methylaluminoxane as a cocatalyst. For the copolymerization with Bd, catalyst 3 gave the copolymers containing the highest amount of Bd among the catalysts used. The resulting copolymers were composed of a styrene–Bd multiblock sequence. High melting points were observed in the copolymers prepared with catalyst 1 . The structures of hydrogenated poly(styrene‐co‐Bd) were studied by 13C NMR spectroscopy, and the long styrene sequence length was detected in the copolymers prepared with catalyst 1 . For styrene/Ip copolymerization, random copolymers were obtained. Among the used catalysts, catalyst 1 gave the copolymers containing the highest amount of Ip. The copolymers prepared with catalyst 1 showed a steep melting point depression with increasing Ip content because of the high ratio of 1,4‐inserted Ip units and/or the low molecular weights of the copolymers. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 939–946, 2003  相似文献   

12.
《中国化学》2017,35(11):1731-1738
The copolymerization of ethylene and styrene can be efficiently carried out by using Cp*TiCl2 (N = Ct Bu2)/MAO (Cp*=η 5‐C5Me5 ) system, yielding the poly(ethylene‐co ‐styrene)s with isolated styrene units. In order to investigate the reasons for formation of the structure, the mechanism of copolymerization, especially the selective insertion of ethylene and styrene, is studied in detail by density functional theory (DFT ) method. At the initiation stage, insertion of ethylene is kinetically more favorable than insertion of styrene, and insertion of styrene kinetically and thermodynamically prefers 2,1‐insertion. That is different from the conventional half‐titanocene system, in which the 1,2‐insertion is favorable. At chain propagation stage, the computational results suggest that the continuous insertion of styrene is hard to occur at room temperature due to the high free energy barriers (28.90 and 35.04 kcal/mol for 1,2‐insertion, and 29.15 and 34.00 kcal/mol for 2,1‐insertion) and thermodynamically unfavorable factors in two different conditions. That is mainly attributed to the steric hindrance between the coming styrene and chain‐end styrene or ketimide ligand. The computational results are in good agreement with the experimental data.  相似文献   

13.
Summary: A tandem catalytic system, composed of (η5‐C5H4CMe2C6H5)TiCl3 ( 1 )/MMAO (modified methyl aluminoxane) and [(η5‐C5Me4)SiMe2(tBuN)]TiCl2 ( 2 )/MMAO, was applied for the synthesis of ethylene–hex‐1‐ene copolymers with ethylene as the only monomer stock. During the reaction, 1 /MMAO trimerized ethylene to hex‐1‐ene, while 2 /MMAO copolymerized ethylene with the in situ produced hex‐1‐ene to poly(ethylene–hex‐1‐ene). By changing the catalyst ratio and reaction conditions, a series of copolymer grades with different hex‐1‐ene fractions at high purity were effectively produced.

The overall strategy of the tandem 1 / 2 /MMAO catalytic system.  相似文献   


14.
Tandem catalysis offers a promising synthetic route to the production of linear low‐density polyethylene. This article reports the use of homogeneous tandem catalytic systems for the synthesis of ethylene/1‐hexene copolymers from ethylene stock as the sole monomer. The reported catalytic systems employ the tandem action between an ethylene trimerization catalyst, (η5‐C5H4CMe2C6H5)TiCl3 ( 1 )/modified methylaluminoxane (MMAO), and a copolymerization metallocene catalyst, [(η5‐C5Me4)SiMe2(tBuN)]TiCl2 ( 2 )/MMAO or rac‐Me2Si(2‐MeBenz[e]Ind)2ZrCl2 ( 3 )/MMAO. During the reaction, 1 /MMAO in situ generates 1‐hexene with high activity and high selectivity, and simultaneously 2 /MMAO or 3 /MMAO copolymerizes ethylene with the produced 1‐hexene to generate butyl‐branched polyethylene. We have demonstrated that, by the simple manipulation of the catalyst molar ratio and polymerization conditions, a series of branched polyethylenes with melting temperatures of 60–128 °C, crystallinities of 5.4–53%, and hexene percentages of 0.3–14.2 can be efficiently produced. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4327–4336, 2004  相似文献   

15.
Remarkable effects of SiMe3 and SiEt3 para-substituents in the phenoxide-modified half-titanocenes, Cp*TiCl2(O-2,6-iPr2-4-R-C6H2) [R=SiMe3 ( 6 ), SiEt3 ( 7 )], toward the catalytic activities in ethylene copolymerizations with 2-methyl-1-pentene, 1-decene, 1-dodecene and with 9-decen-1-ol (DC-OH) have been demonstrated. The activities by 6 , 7 at 50 °C showed higher than those conducted at 25 °C in all cases in the presence of MAO cocatalyst. Efficient synthesis of high-molecular-weight (HMW) ethylene copolymers incorporating DC-OH (or 5-hexen-1-ol, HX-OH) has been attained in the copolymerization by 7 , which showed better DC-OH (HX-OH) incorporation at 50 °C to afford the HMW copolymers, poly(ethylene-co-DC-OH)s, with high activities (activity 1.21–3.81×105 kg-polymer mol−1-Ti h, Mn=6.55–10.0×104, DC-OH 2.3–3.6 mol %).  相似文献   

16.
The polymerization of 2‐butene and its copolymerization with ethylene have been investigated using four kinds of dichlorobis(β‐diketonato)titanium complexes, [ArN(CH2)3NAr]TiCl2 (Ar = 2,6‐iPr2C6H3) and typical metallocene catalysts. The obtained copolymers display lower melting points than those produced of homopolyethylene under the same polymerization conditions. 13C NMR analysis indicates that 9.3 mol‐% of 2‐butene units were incorporated into the polymer chains with Ti(BFA)2Cl2‐MAO as the catalyst system. With the trans‐2‐butene a higher copolymerization rate was observed than with cis‐2‐butene. A highly regioselective catalyst system for propene polymerization, [ArN(CH2)3NAr]TiCl2 complex using a mixture of triisobutylaluminium and Ph3CB(C6F5)4 as cocatalyst, was found to copolymerize a mixture of 1‐butene and trans‐2‐butene with ethylene up to 3.1 mol‐%. Monomer isomerization‐polymerization proceeds with typical metallocene catalysts to produce copolymers consisting of ethylene and 1‐butene.  相似文献   

17.
Complexes of Titanium — Synthesis, Structure, and Fluxional Behaviour of CpTi{η6‐C5H4=C(p‐Tol)2}Cl (Cp′ = Cp*, Cp) The reaction of Cp′TiCl3 (C′ = Cp* or Cp) with magnesium and 6, 6‐di‐para‐tolylpentafulvene generates good yields of pentafulvene complexes Cp*Ti{η6‐C5H4=C(p‐Tol)2}Cl ( 4 ) and CpTi{η6‐C5H4=C(p‐Tol)2}Cl ( 5 ), respectively. The crystal and molecular structure of 4 have been determined from X‐ray data and exhibits compared to known η6‐pentafulvene complexes an unusual large Ti—C(p‐Tol)2 (Fv)‐distance (2.535(5)Å) evoked by the bulky substituents at the exocyclic carbon. Dynamic 1H‐NMR and spin saturation transfer experiments point out a rotation of the fulvene ligand around the Ti—Ct2 axis (Ct2 = centroid of the fulvene ring carbon atoms) with an activation barrier ΔGC = 60.6 ± 0.5 kJ mol−1 (TC = 314 ± 2 K). For 5 this barrier is significantly larger. Analogous dynamic behaviour is well known for diene complexes, but to our knowledge, it is here first‐time described for a pentafulvene complex.  相似文献   

18.
Styrene was copolymerized with ethylene using the geometry constrained Me2Si(Me4Cp)(N‐tert‐butyl)TiCl2 Dow catalyst activated with methylaluminoxane. Increasing the styrene/ethylene ratio in the reactor feed had the effects of reducing both the activity of the catalyst and the molecular weight of the copolymers produced. However, the higher the styrene/ethylene ratio used, the greater the amount of styrene that became incorporated in the copolymer. We discuss these experimental findings within the framework of a computational analysis of ethylene/styrene copolymerization performed through hybrid density functional theory (B3LYP). In general, there was good agreement between the experimental and theoretical results. Our findings point to the suitability of combining experimental and theoretical data for clarifying the copolymerization mechanisms that take place in α‐olefin‐organometallic systems. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 711–725, 2005  相似文献   

19.
��־ǿ 《高分子科学》2013,31(1):110-121
A supported TiCl4/MgCl2 catalyst without internal electron donor (O-cat) was prepared firstly. Then it was modified by 2,6-diisopropylphenol to make a novel modified catalyst (M-cat). These two catalysts were used to catalyze ethylene/1-hexene copolymerization and 1-hexene homopolymerization. The influence of cocatalyst and hydrogen on the catalytic behavior of these two catalysts was investigated. In ethylene/1-hexene copolymerization, the introduction of 2,6-iPr2C6H3O-groups did not deactivate the supported TiCl4/MgCl2 catalyst. Although the 1-hexene incorporation in ethylene/1-hexene copolymer prepared by M-cat was lower than that prepared by O-cat, the composition distribution of the former was narrower than that of the latter. Methylaluminoxane (MAO) was a more effective activator for M-cat than triisobutyl-aluminium (TIBA). MAO led to higher yield and more uniform chain structure. In 1-hexene homopolymerization, the presence of 2,6-iPr2C6H3O-groups lowered the propagation rate constants. Two types of active centers with a chemically bonded 2,6-iPr2C6H3O-group were proposed to explain the observed phenomena in M-cat.  相似文献   

20.
2-Pentene and 2-hexene were found to undergo monomer-isomerization copolymerizations with 2-butene by Al(C2H5)3–VCl3 and Al(C2H5)3–TiCl3 catalysts in the presence of nickel dimethylglyoxime or transition metal acetylacetonates to yield copolymers consisting of the respective 1-olefin units. For comparison, the copolymerizations of 1-pentene with 1-butene and 1-hexene with 1-butene by Al(C2H5)3–VCl3 catalyst were also attempted. The compositions of the copolymers obtained from these copolymerizations were determined by using the calibration curves between the compositions of the respective homopolymer mixtures and the values of D766/D1380 in the infrared spectra. The monomer reactivity ratios for the monomer-isomerization copolymerizations of 2-butene (M1) with 2-pentene and 2-hexene, in which the concentrations of both 1-olefins calculated from the observed isomer distribution were used as those in the monomer feed mixture, and for the ordinary copolymerizations of 1-butene (M1) with 1-pentene and 1-hexene by Al(C2H5)3-VCl3 catalyst were determined as follows: 2-butene (M1)/2-pentene (M2): r1 = 0.14, r2 = 0.99; 1-butene (M1)/1-pentene (M2): r1 = 0.30, r2 = 0.74; 2-butene (M1)/2-hexene (M2): r1 = 0.11, r2 = 0.62; 1-butene (M1)/1-hexene (M2): r1 = 0.13, r2 = 0.90.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号