首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Four different xanthates containing either phosphonate or bisphosphonate moieties were synthesized with high degree of purity. These xanthates were used as chain transfer agents (CTA) in the RAFT/MADIX polymerization of vinyl acetate (VAc) to prepare end‐capped poly(VAc). The rate of VAc polymerization in the presence of these new CTAs was shown to be similar to that obtained with conventional xanthate, that is, (methyl ethoxycarbonothioyl) sulfanyl acetate. Good control of VAc polymerization was also obtained since the molecular weight increased linearly with monomer conversion for each phosphonate‐containing xanthate. Low‐PDI values were obtained, ascribed to efficient exchange during RAFT/MADIX polymerization. Cex value was therefore calculated to about 25, based on RAFT/MADIX of VAc in the presence of rhodixan A1/VAc adduct. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

2.
Macromolecular design by interchange of xanthates/reversible addition fragmentation chain transfer polymerization (MADIX/RAFT) of diallyldimethylammonium chloride (DADMAC) using the hydrophobic O‐ethyl‐S‐(1‐methoxycarbonyl) ethyl dithiocarbonate MADIX/RAFT mediating agent, Rhodixan A1, was investigated. Attempts to obtain an efficient control of DADMAC polymerization in a water/ethanol mixture failed because of significant chain transfer to ethanol. The use of a water‐soluble Rhodixan A1‐terminated acrylamide oligomer as the MADIX/RAFT agent enabled the controlled polymerization of DADMAC in water at 50 °C using the cationic azo initiator V‐50. An excellent agreement was found between experimental and theoretical Mn values throughout polymerization and over a broad range of initial concentration of xanthate. Polydispersity indexes (PDIs) at the end of the polymerization were abnormally high for a process showing a linear increase of Mn with monomer conversion (1.8 < PDI < 2.0). This feature was explained by the measurement of a high transfer constant to xanthate (Cx = 18.8 ± 1.6) but a low interchange transfer constant (Cex = 1.5). Nevertheless, poly(acrylamide)–poly(DADMAC) double hydrophilic block copolymers (DHBCs) of controlled Mn and composition could be successfully synthesized for the first time. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

3.
Controlled radical polymerization of N‐vinylcaprolactam (NVCL) via reversible addition‐fragmentation chain transfer (RAFT) polymerization or macromolecular design via the interchange of xanthate (MADIX) was described, employing 2‐diphenylthiocarbamoylsulfanyl‐2‐methyl‐propionic acid (CTA1), ((O‐ethylxanthyl)methyl)benzene (CTA2) and (1‐(O‐ethylxanthyl)ethyl)benzene (CTA3) as chain transfer agents (CTA). It was found that all the CTAs led to controlled radical polymerization of NVCL, with the molecular weight increased along with the conversion of monomer and a relatively narrow molecular weight distribution could be obtained, as determined with matrix‐assisted laser desorption and ionization time‐of‐flight (MALDI‐TOF) and gel permeation chromatography (GPC), the polydispersity indices, as determined by MALDI‐TOF, were typically on the order of 1.24, but the polymerization did not proceed in a strictly living manner. The chain transfer ability of these CTAs was in the following order: CTA1 ≈ CTA2 < CTA3. MALTI‐TOF measurement showed that the major population of polymer retained the chain‐end functional group, but minor population deactivated by radical coupling. In preparation of the block copolymer of NVCL and vinyl acetate (VAc) by sequential polymerization, the sequence of monomer addition was important. Using VAc as the first monomer could lead to a block copolymer presenting a unimodal GPC trace and a narrow PDI index, and if NVCL was used as the first monomer, the polymerization was less well controlled. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3756–3765, 2008  相似文献   

4.
The bulk free‐radical polymerization of 2‐[(N,N‐dialkylamino)methyl]‐1,3‐butadiene with methyl, ethyl, and n‐propyl substituents was studied. The monomers were synthesized via substitution reactions of 2‐bromomethyl‐1,3‐butadiene with the corresponding dialkylamines. For each monomer the effects of the polymerization initiator, initiator concentration, and reaction temperature on the final polymer structure, molecular weight, and glass‐transition temperature (Tg) were examined. Using 2,2′‐azobisisobutyronitrile as the initiator at 75 °C, the resulting polymers displayed a majority of 1,4 microstructures. As the temperature was increased to 100 and 125 °C using t‐butylperacetate and t‐butylhydroperoxide, the percentage of the 3,4 microstructure increased. Differential scanning calorimetry indicated that all of the Tg values were lower than room temperature. The Tg values were higher when the majority of the polymer structure was 1,4 and decreased as the percentage of the 3,4 microstructure increased. The Diels–Alder side products found in the polymer samples were characterized using NMR and gas chromatography‐mass spectrometry methods. The polymerization temperature and initiator concentration were identified as the key factors that influenced the Diels–Alder dimer yield. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4070–4080, 2000  相似文献   

5.
In this work, high molecular weight polyvinyl acetate (PVAc) (Mn,GPC = 123,000 g/mol, Mw/Mn = 1.28) was synthesized by reversible addition‐fragmentation chain transfer polymerization (RAFT) under high pressure (5 kbar), using benzoyl peroxide and N,N‐dimethylaniline as initiator mediated by (S)‐2‐(ethyl propionate)‐(O‐ethyl xanthate) (X1) at 35 °C. Polymerization kinetic study with RAFT agent showed pseudo‐first order kinetics. Additionally, the polymerization rate of VAc under high pressure increased greatly than that under atmospheric pressure. The “living” feature of the resultant PVAc was confirmed by 1H NMR spectroscopy and chain extension experiments. Well‐defined PVAc with high molecular weight and narrow molecular weight distribution can be obtained relatively fast by using RAFT polymerization at 5 kbar. © 2015 Wiley Periodicals, Inc. J. Polym. Sci. Part A: Polym. Chem. 2015 , 53, 1430–1436  相似文献   

6.
The cyclometalated complex [RuII(o‐C6H4‐py)(MeCN)4]PF6 ( 1 ) with a σ‐Ru? C bond and four substitutionally labile acetonitrile ligands mediates radical polymerization of different vinyl monomers, viz. n‐butyl acrylate, methyl methacrylate, and styrene, initiated by three alkyl bromides: ethyl 2‐bromoisobutyrate, methyl 2‐bromopropionate, and 1‐phenylethyl bromide. The polymerization requires the presence of Al(OiPr)3 and occurs uncontrollably as a conventional radical process. The variation of the molar ratio of the components of the reaction mixture, such as initiator, Al(OiPr)3 and catalyst, affected the polymerization rates and the molecular weights but did not improve the control. A certain level of control has been achieved by adding 0.5 eq of SnCl2 as a reducing agent. Tin(II) chloride decreased the rate of polymerization and simultaneously the molecular weights became conversion‐dependent and the polydispersities were also narrowed. Remarkably, the level of control was radically improved in the presence of excess of the poorly soluble catalyst ( 1 ), when the added amount of ( 1 ) was not soluble any more, i.e., under heterogeneous conditions, the system became adjustable and the living polymerization of all three monomers was finally achieved. Possible mechanisms of the ( 1 )‐catalyzed polymerization are discussed. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4193–4204, 2008  相似文献   

7.
Propagation rate coefficients, kp, of methyl methacrylate (MMA) and glycidyl methacrylate (GMA) homopolymerizations were measured at ambient pressure in four ionic liquids (ILs): 1‐ethyl‐3‐methylimidazolium ([emim]) ethyl sulfate and [emim] hexyl sulfate as well as butyl‐3‐methylimidazolium ([bmim]) hexafluorophosphate and [bmim] tetrafluoroborate via the pulsed‐laser polymerization size‐exclusion chromatography technique. In passing from bulk polymerization at 40 °C polymerization in IL solution containing 20 vol % monomer, kp is enhanced by up to a factor of 4 with MMA and by a factor of 2 with GMA. This enhancement of kp primarily results from a lowering of activation energy upon partial replacement of monomer by ionic liquid species. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1460–1469, 2008  相似文献   

8.
Acidic bismuth salts, such as BiCl3, BiBr3, BiJ3, and Bi‐triflate catalyzed the ring‐opening polymerization of 2‐methoxazoline (MOZ) in bulk at 100 °C, whereas less acidic salts such as Bi2O3 or Bi(III)acetate did not. Bi‐triflate‐catalyzed polymerizations of 2‐ethyloxazoline (EtOZ) were performed with variation of the monomer–catalyst ratio (M/C). It was found that the molecular weights were independent of the M/C ratio. The formation of cationic chain ends and the absence of cycles was proven by reactions of virgin polymerization products with N,N‐dimethyl‐4‐aminopyridine or triphenylphosphine. The resulting polymers having modified cationic chain ends were characterized by 1H NMR spectroscopy and MALDI‐TOF mass spectrometry. The polymerization mechanism including chain‐transfer reactions is discussed. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4777–4784, 2008  相似文献   

9.
A series of well‐defined ferrocene‐based amphiphilic graft copolymers, consisting of poly(N‐isopropylacrylamide)‐b‐poly(ethyl acrylate) (PNIPAM‐b‐PEA) backbone and poly(2‐acryloyloxyethyl ferrocenecarboxylate) (PAEFC) side chains, were synthesized by the combination of single‐electron‐transfer living radical polymerization (SET‐LRP) and atom transfer radical polymerization (ATRP). A new ferrocene‐based monomer, 2‐(acryloyloxy)ethyl ferrocenecarboxylate (AEFC), was prepared first and it can be polymerized via ATRP in a controlled way using methyl 2‐bromopropionate as initiator and CuBr/PMDETA as catalytic system in DMF at 40 °C. PNIPAM‐b‐PEA backbone was synthesized by sequential SET‐LRP of NIPAM and HEA at 25 °C using CuCl/Me6TREN as catalytic system followed by the transformation into the macroinitiator by treating the pendant hydroxyls with α‐bromoisobutyryl bromide. The targeted well‐defined graft copolymers with narrow molecular weight distributions (Mw/Mn < 1.20) were synthesized via ATRP of AEFC initiated by the macroinitiator. The electro‐chemical behaviors of PAEFC homopolymer and PNIPAM‐b‐(PEA‐g‐PAEFC) graft copolymer were studied by cyclic voltammetry. Micellar properties of PNIPAM‐b‐(PEA‐g‐PAEFC) were investigated by transmission electron microscopy and dynamic light scattering. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4346–4357, 2009  相似文献   

10.
The combination of atom transfer radical polymerization (ATRP) and click chemistry has created unprecedented opportunities for controlled syntheses of functional polymers. ATRP of azido‐bearing methacrylate monomers (e.g., 2‐(2‐(2‐azidoethyoxy)ethoxy)ethyl methacrylate, AzTEGMA), however, proceeded with poor control at commonly adopted temperature of 50 °C, resulting in significant side reactions. By lowering reaction temperature and monomer concentrations, well‐defined pAzTEGMA with significantly reduced polydispersity were prepared within a reasonable timeframe. Upon subsequent functionalization of the side chains of pAzTEGMA via Cu(I)‐catalyzed azide‐alkyne cycloaddition (CuAAC) click chemistry, functional polymers with number‐average molecular weights (Mn) up to 22 kDa with narrow polydispersity (PDI < 1.30) were obtained. Applying the optimized polymerization condition, we also grafted pAzTEGMA brushes from Ti6Al4 substrates by surface‐initiated ATRP (SI‐ATRP), and effectively functionalized the azide‐terminated side chains with hydrophobic and hydrophilic alkynes by CuAAC. The well‐controlled ATRP of azido‐bearing methacrylates and subsequent facile high‐density functionalization of the side chains of the polymethacrylates via CuAAC offers a useful tool for engineering functional polymers or surfaces for diverse applications. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1268–1277  相似文献   

11.
Amphiphilic diblock copolymers of polystyrene (PS) and poly(N‐vinylpyrrolidone) (PNVP) were prepared by a combination of ATRP and MADIX. Well‐defined PS with bromine end group was synthesized by ATRP in bulk at 110 °C using (1‐bromoethyl) benzene as an initiator. The Br‐ end group was then converted to xanthate as verified by 1H NMR spectroscopy, elemental analysis, and UV‐spectroscopy. PS‐b‐PNVP copolymers were produced by MADIX of NVP in bulk at 60 °C using PS‐xanthate as a macro‐chain transfer agent and the kinetics of polymerization were investigated. The structures of PS‐b‐PNVP were characterized using GPC and 1H NMR. Amphiphilic PS‐b‐PNVP could form spherical micelles with PS cores and PNVP shells in aqueous solution as confirmed by 1H NMR and laser light scattering (LLS). The values of critical micelle concentration of PS‐b‐PNVP and the average aggregation number of PS‐b‐PNVP in the micelles were measured using pyrene as a probe and static LLS, respectively. The aggregation number increases concomitantly with temperature (10–50 °C), but the hydrodynamic radius of the micelles remains almost constant over the same temperature range, which may indicate shell dehydration at a higher temperature. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5604–5615, 2008  相似文献   

12.
A well‐defined amphiphilic copolymer brush with poly(ethylene oxide) as the main chain and polystyrene as the side chain was successfully prepared by a combination of anionic polymerization and atom transfer radical polymerization (ATRP). The glycidol was first protected by ethyl vinyl ether to form 2,3‐epoxypropyl‐1‐ethoxyethyl ether and then copolymerized with ethylene oxide by the initiation of a mixture of diphenylmethylpotassium and triethylene glycol to give the well‐defined polymer poly(ethylene oxide‐co‐2,3‐epoxypropyl‐1‐ethoxyethyl ether); the latter was hydrolyzed under acidic conditions, and then the recovered copolymer of ethylene oxide and glycidol {poly(ethylene oxide‐co‐glycidol) [poly(EO‐co‐Gly)]} with multiple pending hydroxymethyl groups was esterified with 2‐bromoisobutyryl bromide to produce the macro‐ATRP initiator [poly(EO‐co‐Gly)(ATRP). The latter was used to initiate the polymerization of styrene to form the amphiphilic copolymer brushes. The object products and intermediates were characterized with 1H NMR, matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry, Fourier transform infrared, and size exclusion chromatography in detail. In all cases, the molecular weight distribution of the copolymer brushes was rather narrow (weight‐average molecular weight/number‐average molecular weight < 1.2), and the linear dependence of ln[M0]/[M] (where [M0] is the initial monomer concentration and [M] is the monomer concentration at a certain time) on time demonstrated that the styrene polymerization was well controlled. This method has universal significance for the preparation of copolymer brushes with hydrophilic poly(ethylene oxide) as the main chain. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4361–4371, 2006  相似文献   

13.
The aim of this work is to the study the influence of the isomer structures of butyl acrylate monomer on the single‐electron transfer/degenerative chain transfer mediated living radical polymerization (SET‐DTLRP). The kinetic of isobutyl acrylate is determined for the first time by SET‐DTLRP in water catalyzed by sodium dithionite. The plots of number‐average molecular weight versus conversion and ln([M]0/[M]) versus time are linear, demonstrating a controlled polymerization. The influence of the isomer t‐butyl, i‐butyl, and n‐butyl on the kinetics, properties, and stereochemistry of the reactions was assessed. To the best of our knowledge, there is no previous report dealing with the synthesis of PiBA by any LRP approach in aqueous medium. The results presented in this work suggest that the stability provided by the acrylate side group has an important influence in the polymerization process. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6542–6551, 2008  相似文献   

14.
The synthesis of poly(tert‐butyl acrylate‐block‐vinyl acetate) copolymers using a combination of two living radical polymerization techniques, atom transfer radical polymerization (ATRP) and reversible addition‐fragmentation chain transfer (RAFT) polymerization, is reported. The use of two methods is due to the disparity in reactivity of the two monomers, viz. vinyl acetate is difficult to polymerize via ATRP, and a suitable RAFT agent that can control the polymerization of vinyl acetate is typically unable to control the polymerization of tert‐butyl acrylate. Thus, ATRP was performed to make poly(tert‐butyl acrylate) containing a bromine end group. This end group was subsequently substituted with a xanthate moiety. Various spectroscopic methods were used to confirm the substitution. The poly(tert‐butyl acrylate) macro‐RAFT agent was then used to produce (tert‐butyl acrylate‐block‐vinyl acetate). © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7200–7206, 2008  相似文献   

15.
A series of well‐defined double hydrophilic graft copolymers containing poly[poly(ethylene glycol) methyl ether acrylate] (PPEGMEA) backbone and poly[poly(ethylene glycol) ethyl ether methacrylate] (PPEGEEMA) side chains were synthesized by the combination of single electron transfer‐living radical polymerization (SET‐LRP) and atom transfer radical polymerization (ATRP). The backbone was first prepared by SET‐LRP of poly(ethylene glycol) methyl ether acrylate macromonomer using CuBr/tris(2‐(dimethylamino)ethyl)amine as catalytic system. The obtained comb copolymer was treated with lithium diisopropylamide and 2‐bromoisobutyryl bromide to give PPEGMEA‐Br macroinitiator. Finally, PPEGMEA‐g‐PPEGEEMA graft copolymers were synthesized by ATRP of poly(ethylene glycol) ethyl ether methacrylate macromonomer using PPEGMEA‐Br macroinitiator via the grafting‐from route. The molecular weights of both the backbone and the side chains were controllable and the molecular weight distributions kept narrow (Mw/Mn ≤ 1.20). This kind of double hydrophilic copolymer was found to be stimuli‐responsive to both temperature and ion (0.3 M Cl? and SO). © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 647–655, 2010  相似文献   

16.
The reversible addition‐fragmentation chain transfer (RAFT) polymerization of N‐vinylcarbazole (NVK) mediated by macromolecular xanthates was used to prepare three types of block copolymers containing poly(N‐vinylcarbazole) (PVK). Using a poly(ethylene glycol) monomethyl ether based xanthate ( PEG‐X ), the RAFT polymerization of NVK proceeded in a controlled way to afford a series of PEG‐b‐PVK with different PVK chain lengths. Successive RAFT polymerization of NVK and vinyl acetate (VAc) with a small molecule xanthate ( X1 ) as the chain transfer agent was tested to prepare PVK‐b‐PVAc. Though both monomers can be homopolymerized in a controlled manner with this xanthate, only by polymerizing NVK first could give well‐defined block copolymers. The xanthate groups in the end of PVK could be removed by radical‐induced reduction using tributylstannane, and PVK‐b‐PVA was obtained by further hydrolysis of PVK‐b‐PVAc under basic conditions. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

17.
Statistical copolymers of N‐vinylpyrrolidone (NVP) with 2‐(dimethylamino)ethyl methacrylate (DMAEMA) were prepared by Reversible Addition‐Fragmentation chain Transfer Polymerization (RAFT), employing three different RAFT agents: [(O‐ethylxanthyl)methyl]benzene, [1‐(O‐ethylxanthyl)ethyl]benzene, and O‐ethyl S‐(phthalimidylmethyl) xanthate. The reactivity ratios were estimated using the Fineman‐Ross, inverted Fineman‐Ross, Kelen‐Tüdos, and extended Kelen‐Tüdos graphical methods, along with the computer program COPOINT. Structural parameters of the copolymers were obtained by calculating the dyad sequence fractions and the mean sequence length. All the methods indicate that the DMAEMA reactivity ratio is much greater than the one of NVP, thus, the statistical copolymers are in fact pseudo‐diblocks. The glass‐transition temperature (Tg) values of the copolymers were measured by Differential Scanning Calorimetry. Furthermore, a systematic and detailed investigation has been done, on the thermal degradation of the copolymers compared with the respective homopolymers, by Thermogravimetric Analysis, within the framework of the Ozawa‐Flynn‐Wall and Kissinger methodologies. Apparently, the thermal stability of the copolymers is influenced by both monomers and by the structure of the thiocarbonylthio end groups due to the RAFT agents. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3776–3787  相似文献   

18.
Novel xanthate RAFT agents, RAFT1‐5, designed for the preparation of a range of novel N‐vinyl pyrrolidone‐based polymeric materials with linear and star architectures via RAFT polymerization are reported. Ethyl pyrrolidone moiety was included in the structures of the xanthates as a part of R (RAFT1‐3) or Z group (RAFT4) to evaluate their effect on the polymerization and to impart homogeneity in the resulting products. The xanthates were designed to fragment to give primary (RAFT1), secondary (RAFT2 and 4), and tertiary radicals (RAFT 3) allowing evaluation of their effect on polymerization. RAFT5 was designed to produce polymeric materials with four‐arm architectures. RAFT1 showed comparable characteristics as conventional radical polymerization. RAFT2 and RAFT4 exhibited living/controlled polymerizations, owing to the combination of stable secondary radical species and incorporation of ethyl pyrrolidone moiety as the R and Z group, respectively. RAFT2 and RAFT5 gave first examples of random copolymers of NVP and VAc with linear and four‐arm star architectures, all exhibiting monomodal distributions and narrow dispersity. The four‐arm PVAc star was used as a macroCTA to synthesize amphiphilic four‐arm star PVAc‐block‐PNVP. The TEM investigation showed the formation of spherical micelles with an average diameter of about 60 nm. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 775–786  相似文献   

19.
An asymmetric difunctional initiator 2‐phenyl‐2‐[(2,2,6,6 tetramethylpiperidino)oxy] ethyl 2‐bromo propanoate ( 1 ) was used for the synthesis of ABC‐type methyl methacrylate (MMA)‐tert‐butylacrylate (tBA)‐styrene (St) triblock copolymers via a combination of atom transfer radical polymerization (ATRP) and stable free‐radical polymerization (SFRP). The ATRP‐ATRP‐SFRP or SFRP‐ATRP‐ATRP route led to ABC‐type triblock copolymers with controlled molecular weight and moderate polydispersity (Mw/Mn < 1.35). The block copolymers were characterized by gel permeation chromatography and 1H NMR. The retaining chain‐end functionality and the applying halide exchange afforded high blocking efficiency as well as maintained control over entire routes. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2025–2032, 2002  相似文献   

20.
The monomer concentration for the cationic ring‐opening polymerization of 2‐ethyl‐2‐oxazoline in N,N‐dimethylacetamide was optimized utilizing high‐throughput experimentation methods. Detailed 1H‐NMR spectroscopic investigations were performed to understand the mechanistic aspects of the observed concentration effects. Finally, the improved polymerization concentration was applied for the synthesis of higher molecular weight (> 10,000 Da) poly(2‐ethyl‐2‐oxazoline)s. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1487–1497, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号