首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 730 毫秒
1.
The effect of crosslinks introduced by ion irradiation with 11.7 MeV proton and 30 MeV helium ions on the reactivity of poly(ether‐ether‐ketone) (PEEK) to sulfonation have been investigated following the kinetics of the reaction at room temperature. Concentrated sulfuric acid was used as a swelling and sulfonating agent and the reaction was followed by changes in the FTIR spectrum. The rate of reaction decreased with the degree of crosslinking and the progress with time was consistent with diffusion control of the sulfuric acid into the crosslinked matrix. The results were consistent with the efficiency of the ions in crosslinking PEEK and in particular with the differences in their linear energy transfer (LET). © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 775–783, 2009  相似文献   

2.
We have established time–temperature transformation and continuous-heating transformation diagrams for poly(ether–ether–ketone) (PEEK) and PEEK/poly(ether–imide) (PEI) blends, in order to analyze the effects of relaxation control on crystallization. Similar diagrams are widely used in the field of thermosetting resins. Upon crystallization, the glass transition temperature (Tg) of PEEK and PEEK/PEI blends is found to increase significantly. In the case of PEEK, the shift of the α-relaxation is due to the progressive constraining of amorphous regions by nearby crystals. This phenomenon results in the isothermal vitrification of PEEK during its latest crystallization stages for crystallization temperatures near the initial Tg of PEEK. However, vitrification/devitrification effects are found to be of minor importance for anisothermal crystallization, above 0.1°C/min heating rate. In the case of PEEK/PEI blends, amorphous regions are progressively enriched in PEI upon PEEK crystallization. This promotes a shift of the α-relaxation of these regions to higher temperatures, with a consequent vitrification of the material when crystallized below the Tg of PEI. The data obtained for the blends in anisothermal regimes allow one to detect a region in the (temperature/heating rate) plane where crystallization proceeds in the continuously close proximity of the glass transition (dynamic vitrification). These experimental findings are in agreement with simple simulations based on a modified Avrami model coupled with the Fox equation. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 919–930, 1998  相似文献   

3.
Segmented poly(ether‐block‐amide) copolymers are typically known as polyamide‐based thermoplastic elastomers consisting of hard, crystallizable polyamide block and flexible, amorphous polyether block. The melting characteristics of a poly(ether‐block‐amide) copolymer melt‐crystallized under various quiescent, isothermal conditions were calorimetrically investigated using differential scanning calorimetry (DSC). For such crystallized copolymer samples, their crystalline structures under ambient condition and the structural evolutions upon heating from ambient to complete melting were characterized using ambient and variable‐temperature wide‐angle X‐ray diffractometry (WAXD), respectively. It was observed that dependent of specific crystallization conditions, the copolymer samples exhibited one, two, or three melting endotherms. The ambient WAXD results indicated that all melt‐crystallized copolymer samples only exhibited γ‐form crystals associated with the hexagonal habits of the polyamide homopolymer, whereas variable‐temperature WAXD data suggested that upon heating from ambient, a melt‐crystallized copolymer might exhibit so‐called Brill transition before complete melting. Based on various DSC and variable‐temperature WAXD experimental results obtained in this study, the applicability of different melting mechanisms that might be responsible for multiple melting characteristics of various crystallized PEBA copolymer samples were discussed. It was postulated that the low (T m1) endotherm was primarily because of the disruption of less thermally stable, short‐range ordered structure of amorphous polyamide segments of the copolymer, which was only formed after the completion of primary crystallization via so‐called annealing effects. The intermediate (Tm2) and high (Tm3) endotherms were attributed to the melting of primary crystals within polyamide crystalline microdomains of the copolymer. The appearance of these two melting endotherms might be somehow complicated by thermally induced Brill transition. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2035–2046, 2008  相似文献   

4.
tert‐Butyl‐substituted poly(ether ether ketone) (tBuPEEK), which does not undergo crystallization with thermal annealing, crystallizes readily when treated with compressed CO2. The dissolved CO2 causes a reduction in the glass‐transition temperature of the polymer–gas system and enhances the chain mobility of the macromolecules, thereby bringing about crystallization. In the presence of CO2, crystallization is increasingly favored with increasing CO2 pressure and treatment temperature. The melting point of tBuPEEK crystals increases linearly with the CO2 pressure applied in the treatment, indicating an increase in the order and/or size of the crystals. The extent of crystallinity increases when small amounts of methanol or dichloromethane are used as a cosolute with CO2. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1505–1512, 2001  相似文献   

5.
Several composites of a metallocene syndiotactic polypropylene with an organophilic silicate have been prepared and analyzed to investigate the effects of the nanoparticles on the crystallization of syndiotactic polypropylene. Moreover, the influence of an electron‐irradiation dose of 166 kGy on the different materials has been studied. Although the melting temperatures are practically unchanged, irradiation leads to a considerably slower crystallization rate of the syndiotactic polypropylene homopolymer in such a way that an important cold crystallization has been observed in the second melting along with a much higher value of the isothermal crystallization half‐time. On the contrary, the nanocomposites are much less sensitive to irradiation because only a small shift of the crystallization temperature has been observed, and the isothermal crystallization half‐time remains practically unaffected. However, irradiation leads to important changes in the low‐angle region of X‐ray diffractograms. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1068–1076, 2007  相似文献   

6.
The effect of irradiating amorphous poly (ether ether ketone), PEEK, with ions, 11 MeV proton (H+), and 25.6 MeV helium (He2+), has been investigated focusing on the changes in thermal properties. The extent of chain scission and crosslinking was evaluated using the Charlesby‐Pinner equation. Crosslinking increased the glass transition temperature (Tg) in line with the DiBenedetto equation from which the crosslinking constant for each ion was calculated. The effect of irradiation on the thermal degradation kinetics was studied in an argon atmosphere at a constant heating rate by mean of the Chang and the second Kissinger methods. Irradiation significantly reduced the thermal stability of the polymer and its service lifetime. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2212–2221, 2008  相似文献   

7.
The effect of shear on the crystallization behavior of the poly(ether ether ketone) (PEEK) has been investigated by means of ex situ wide‐angle X‐ray diffraction (WAXD), small‐angle X‐ray scattering, and differential scanning calorimetry (DSC). The changes of the intensity of WAXD patterns along shear direction of the PEEK induced by short‐term shear were observed when the samples crystallized at 330 °C. The results showed that the dimensions of the crystallites perpendicular to the (110) and (111) planes reduced with the increase of shear rate, whereas the dimensions of the crystallites perpendicular to (200) plane increased with the increase of shear rate. Moreover, increasing shear rate can lead to the increase of the crystallinity as well as the average thickness of the crystalline layers. Correspondingly, a new melting peak at higher temperature was found during the subsequent DSC scanning when the shear rate was increased to 30 s?1. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 220–225, 2010  相似文献   

8.
A series of low‐ether‐content polyether–polyester block copolymers with amide linkages were synthesized. Their crystallization kinetics and mechanisms were investigated. The crystallization kinetics were analyzed via Avrami treatment; an average value of 1.8 for the Avrami index was thus obtained. Athermal nucleation was evidenced by observations of a linear boundary between impinged spherulites under polarized light microscopy and transmission electron microscopy. The development of spherulitic morphology with a hedgehog texture was attributed to the mechanism of lamellar branching. On the basis of the morphological observations and Avrami analysis, a crystallization mechanism through a heterogeneous nucleation process with homogeneous lamellar branching was proposed. No regime transition was found for polyether–polyesters in the examined temperature ranges, and the crystallization was identified as regime I kinetics on the basis of a Lauritzen Z test. The copolymerization of poly(ether amide)s with polyesters led to a significant suppression of the crystallization rate of polyester crystals. The suppression was explained as the result of a dilution effect in nucleation combined with an increasing nucleation barrier. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2469–2480, 2001  相似文献   

9.
Rhythmic growth of ring‐banded spherulites in blends of liquid crystalline methoxy‐poly(aryl ether ketone) (M‐PAEK) and poly(aryl ether ether ketone) (PEEK) has been investigated by means of differential scanning calorimetry (DSC), polarized light microscopy (PLM), and scanning electron microscopy (SEM) techniques. The measurements reveal that the formation of the rhythmically grown ring‐banded spherulites in the M‐PAEK/PEEK blends is strongly dependent on the blend composition. In the M‐PAEK‐rich blends, upon cooling, an unusual ring‐banded spherulite is formed, which is ascribed to structural discontinuity caused by a rhythmic radial growth. For the 50:50 M‐PAEK/PEEK blend, ring‐banded spherulites and individual PEEK spherulites coexist in the system. In the blends with PEEK as the predominant component, M‐PAEK is rejected into the boundary of PEEK spherulites. The cooling rate and crystallization temperature have great effect on the phase behavior, especially the ring‐banded spherulite formation in the blends. In addition, the effects of M‐PAEK phase transition rate and phase separation rate on banded spherulite formation is discussed. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 3011–3024, 2007  相似文献   

10.
We prepared blends of poly(butylene‐2,6‐naphthalate) (PBN) and poly(ether imide) (PEI) by solution‐casting from dichloroacetic acid solutions. The miscibility, crystallization, and melting behavior of the blends were investigated with differential scanning calorimetry (DSC) and dynamic mechanical analysis. PBN was miscible with PEI over the entire range of compositions, as shown by the existence of single composition‐dependent glass‐transition temperatures. In addition, a negative polymer–polymer interaction parameter was calculated, with the Nishi–Wang equation, based on the melting depression of PBN. In nonisothermal crystallization investigations, the depression of the crystallization temperature of PBN depended on the composition of the blend and the cooling rate; the presence of PEI reduced the number of PBN segments migrating to the crystallite/melt interface. Melting, recrystallization, and remelting processes occurring during the DSC heating scan caused the occurrence of multiple melting endotherms for PBN. We explored the effects of various experimental conditions on the melting behavior of PBN/PEI blends. The extent of recrystallization of the PBN component during DSC heating scans decreased as the PEI content, the heating rate, the crystallization temperature, and the crystallization time increased. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1694–1704, 2004  相似文献   

11.
To predict long‐term polymer behavior during a nuclear waste storage time, radiation effects on a segmented aromatic poly(ether‐urethane) induced by high‐energy radiation under oxygen atmosphere were investigated. To obtain a predictive model of polymer radio‐oxidation during several centuries, the first step consists to elaborate the elementary degradation mechanisms. Thus, electron paramagnetic resonance (EPR), Fourier transform infra‐red spectroscopy (FT‐IR), electrospray ionisation‐mass spectrometry (ESI‐MS), and gas mass spectrometry were carried out to identify radicals, chemical modifications, and gases to reach the radio‐oxidative mechanism at doses inferior than 1000 kGy. Degradation mainly occurs at urethane bonds and in polyether soft segments that produces stable oxidative products as formates, alcohols, carboxylic acids and H2, CO2 and CO gases. Predominant degradation occurred at polyether soft segments and crosslinking is in competition with scission. On the basis of the results, a mechanism of degradation for aromatic poly(ether‐urethane) is proposed. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 861–878, 2008  相似文献   

12.
Differential scanning calorimetry was used to investigate the isothermal crystallization, subsequent melting behavior, and nonisothermal crystallization of syndiotactic 1,2‐polybutadiene (st‐1,2‐PB) produced with an iron‐based catalyst system. The isothermal crystallization of two fractions was analyzed according to the Avrami equation. The morphology of the crystallite was observed with polarized optical microscopy. Double melting peaks were observed for the samples isothermally crystallized at 125–155 °C. The low‐temperature melting peak, which appeared approximately 5 °C above the crystallization temperature, was attributed to the melting of imperfect crystals formed by the less stereoregular fraction. The high‐temperature melting peak was associated with the melting of perfect crystals formed by the stereoregular fraction. With the Hoffman–Weeks approach, the value of the equilibrium melting temperature was derived. During the nonisothermal crystallization, the Ozawa method was limited in obtaining the kinetic parameters of st‐1,2‐PB. A new method that combined the Ozawa method and the Avrami method was employed to analyze the nonisothermal crystallization of st‐1,2‐PB. The activation energies of crystallization under nonisothermal conditions were calculated. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 553–561, 2005  相似文献   

13.
The influence of thermal history on morphology, melting, and crystallization behavior of bacterial poly(3‐hydroxybutyrate) (PHB) has been investigated using temperature‐modulated DSC (TMDSC), wide‐angle X‐ray diffraction (WAXRD) and polarized optical microscopy (POM). Various thermal histories were imparted by crystallization with continuous and different modulated cooling programs that involved isoscan and cool–heat segments. The subsequent melting behavior revealed that PHB experienced secondary crystallization during heating and the extent of secondary crystallization varied with the cooling treatment. PHB crystallized under slow, continuous, and moderate cooling rates were found to exhibit double melting behavior due to melting of TMDSC scan‐induced secondary crystals. PHB underwent considerable secondary crystallization/annealing that took place under modulated cooling conditions. The overall melting behavior was interpreted in terms of recrystallization and/or annealing of crystals. Interestingly, the PHB analyzed by temperature modulation programs showed a broad exotherm before the melting peak in the nonreversing heat capacity curve and a multiple melting reversing curve, verifying that the melting–recrystallization and remelting process was operative. WAXRD and POM studies supported the correlations from DSC and TMDSC results. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 70–78, 2006  相似文献   

14.
The multimodal differential scanning calorimetry melting endotherms observed for commercial linear low‐density polyethylenes are due to broad and multimodal short‐chain‐branching distributions. Multiple peaks, observed in melting endotherms of isothermally melt‐crystallized and compositionally homogeneous polyethylene copolymers are due to intrachain heterogeneity. This intrachain heterogeneity is quantified by the distribution of ethylene sequence lengths within the chains. These compositionally homogeneous copolymers undergo a primary crystallization, which produces a population of thicker lamellae, creating a network that places severe restrictions on segment transport in subsequent secondary crystallization, which produces a population of thinner crystals. The restrictions on segment transport imposed by the initial network created by the primary crystallization of thicker lamellae severely limits the total crystallinity achieved in the random copolymers studied. The solution crystallization of such copolymers produces a continuous distribution due to more facile segment transport in a dilute solution, in contradistinction to the multimodal distribution produced in the melt crystallization. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2800–2818, 2001  相似文献   

15.
Binary blends using metallocene ethylene‐1‐octene copolymer as matrix were prepared and subjected to electron beam (EB) irradiation (50, 100, and 200 kGy). Gel content and melt flow index values indicated that the blends were crosslinking. Fourier transform infrared‐ATR spectroscopy was used to study the crosslinking and oxidative degradation of the blends via tertiary carbon and carboxyl group formation, respectively. Thermal and mechanical properties were studied showing that the crystallinity of both matrix and dispersed phase decreased with irradiation dose, and that the thermoplastic elastomers with good mechanical properties may be obtained by EB irradiation. Chain branching and scission were also detected at all irradiation doses, although at the highest doses (200 kGy) a crosslinking reaction was the most predominantly observed effect. The successive self‐nucleation annealing technique was used to determine the EB irradiation effects on crystallization of some blends in which crosslinking and chain branching take place, modifying the chain's structure and therefore crystalline regions in the matrix and the dispersed phase. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2432–2440, 2007  相似文献   

16.
The effect of X‐ray irradiation on crystallization of the blend of poly(N‐methyldodecano‐12‐lactam) (PMDL) with 29.5% of statistical copolymer poly(styrene‐stat‐acrylic acid) (PSAA) was studied using DSC, WAXD, and solid‐state 13C NMR methods. Significant acceleration of crystallization was found in the as‐prepared X‐ray irradiated (XI), that is, WAXD‐measured, samples compared with the nonirradiated (NI) ones. In the XI blend, the incubation period was shortened and crystallization proceeded at significantly higher rate. In the asymptote, after 100–120 days, both NI and XI samples reached the same final crystallinity of about 18%. The second DSC runs indicated that the stimulating effect of X‐ray irradiation was eliminated by heating the sample during the first run. The 13C NMR studies have shown that PMDL chains crystallize exclusively in cis conformation on the C? N bond. Both in neat PMDL and in the blend with PSAA, the XI samples contained a significantly higher proportion of cis conformers in amorphous phase than the NI samples. It is suggested that energy absorbed by the sample during the standard WAXD measurement helps overcome the barrier of the trans/cis transition in the PMDL molecules. This opens the way to the formation of a higher number of critical equilibrium nuclei and, finally, results in accelerated crystallization of the XI samples. No irreversible changes were found in the XI samples. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 311–321, 2008  相似文献   

17.
The complex thermal behavior of poly(l ‐lactic acid) films crystallized from the melt, either isothermally or nonisothermally, was studied by differential scanning calorimetry (DSC), wide angle X‐ray diffraction, and small angle X‐ray scattering. The variation of the thermal behavior with crystallization temperature, time, and cooling rate was documented and analyzed. After nonisothermal crystallization at low cooling rates that develop high crystallinity, an obvious double melting peak appears at modest heating rates (e.g., 10 °C/min). At higher heating rates, these samples exhibit only single melting. However, an unusual form of double melting occurs under the majority of the conditions studied under either isothermal or nonisothermal conditions. In this case, double melting is marked by the appearance of a recrystallization exotherm just prior to the final melting that obscures the observation of the melting of the crystals formed during the initial crystallization process. The occurrence of double melting in melt‐crystallized samples was concluded to be the result of a melt‐recrystallization process occurring during the subsequent DSC heating scan; it is a function of crystalline perfection, not the initial crystallinity, nor whether or not the crystallization reached completion at the crystallization temperature. Many other very interesting observations are also discussed. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3378–3391, 2006  相似文献   

18.
The deformation behavior of homogeneous ethylene‐1‐octene copolymers was investigated as a function of the crystallinity and the crystal size and perfection, respectively, by wide‐ and small‐angle X‐ray scattering using synchrotron radiation. The crystallinity and the crystal size and perfection, respectively, are controlled by the copolymer composition and the condition of melt crystallization. The deformation includes rotation of crystals, followed by plastic deformation and complete melting of the initial crystal population, and final formation of microfibrils. The process of rotation, plastic deformation, and melting of crystals of the initial structure is completed at lower strain if the size and perfection of the crystals, respectively, decrease, that is, if crystals thermally melt at lower temperature. The kinetics of the fibrillation of the initial structure seems independent of the crystal symmetry, that is, rotation and melting of pseudohexagonal and orthorhombic polyethylene crystals (as evident in low‐crystalline specimens) are similar. The structure of the microfibrils, before and after stress release, is almost independent of the condition of prior melt crystallization, which supports the notion of complete melting of the initial crystal population. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1919–1930, 2002  相似文献   

19.
This study examined the oxygen‐transport properties of poly(ethylene terephthalate‐co‐bibenzoate) (PETBB55) crystallized from the melt (melt crystallization) or quenched to glass and subsequently isothermally crystallized by heating above the glass‐transition temperature (cold crystallization). The gauche–trans conformation of the glycol linkage was determined by infrared analysis, and the crystalline morphology was examined by atomic force microscopy. Oxygen solubility decreased linearly with volume fraction crystallinity. For melt‐crystallized PETBB55, extrapolation to zero solubility corresponded to an impermeable crystal with 100% trans glycol conformations, a density of 1.396 g cm?3, and a heat of melting of 83 J g?1. From the melt, PETBB55 crystallized as space‐filling spherulites with loosely organized lamellae and pronounced secondary crystallization. The morphological observations provided a structural model for permeability consisting of impermeable platelets randomly dispersed in a permeable matrix. In contrast, cold‐crystallized PETBB55 retained the granular texture of the quenched polymer despite the high level of crystallinity, as measured by the density and heat of melting. Oxygen solubility decreased linearly with volume fraction crystallinity, but zero solubility corresponded to an impermeable defective crystal with a trans fraction of 0.83 and a density of 1.381 g cm?3. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2489–2503, 2002  相似文献   

20.
Miscibility and crystallization behavior of solution-blended poly(ether ether ketone)/polyimide (PEEK/PI) blends were investigated by using DSC, optical microscopy and SAXS methods. Two kinds of PIs, YS-30 and PEI-E, which consist of the same diamine but different dianhydrides, were used in this work. The experimental results show that blends of PEEK/YS-30 are miscible over the entire composition range, as all the blends of different compositions exhibit a single glass transition temperature. The crystallization of PEEK was hindered by YS-30 in PEEK/YS-30 blends, of which the dominant morphology is interlamellar. On the other hand, blends of PEEK/PEI-E are immiscible, and the effect of PEI-E on the crystallization behavior of PEEK is weak. The crystallinity of PEEK in the isothermally crystallized PEEK/YS-30 blend specimens decreases with the increase in PI content. But the crystallinity of PEEK in the annealed samples almost keeps unchanged and reaches its maximum value, which is more than 50%. The spherulitic texture of the blends depends on both the blend composition and the molecular structure of the PIs used. The more PI added, the more imperfect the crystalline structure of PEEK. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. B Polym. Phys. 36: 2267–2274, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号