首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The substitution of hypervalently bonded fluorine atoms in C6F5IF4 was performed with C6F5BF2 and resulted in the new salt [(C6F5)2IF2][BF4]. The iodonium(V) salt was characterized by multi‐NMR and Raman spectroscopy and X‐ray crystal structure analysis. The fluorinating ability of the new electrophilic cation [(C6F5)2IF2]+ was exemplified in reactions with monovalent iodine compounds (C6F5I, p‐FC6H4I, and I2) and with electron‐poor tri(organyl)pnictanes ER3 (E = P, As, Sb, Bi; R = C6F5). In a heterogeneous reaction with CsF in MeCN the [(C6F5)2IF2]+ cation forms the dinuclear [{(C6F5)2IF2}2F]+ cation.  相似文献   

2.
Pentafluorophenyliodine(III) Compounds. 3 Pentafluorophenyliodinedifluoride: Alternative Preparations, Molecular Structure, and Properties The formation of C6F5IF2 ( 1 ) by oxidative fluorination of C6F5I ( 2 ) using ClF, CF3OCl, BrF5, C6F5BrF2, and C6F5BrF4 is described. Highest purity and yield of 1 was achieved by a modified low temperature fluorination with F2. Thermolysis of 1 delivered perfluoroiodocyclohexadiene‐1,4 and perfluoroiodocyclohexene besides 2 . X‐ray structural analysis of 1 exhibits the fluoride donor and acceptor ability. 1 is spectroscopically characterized by NMR (19F, 13C), IR and Ra. The influence of the change in the oxidation number of iodine in 2 , 1 and C6F5IF4 ( 3 ) on spectroscopic and structural results will be discussed. Minimum energy geometries and charge distributions are calculated (RHF, LANL2DZ) for 1 , 2 and related compounds.  相似文献   

3.
Pentafluorophenyliodine(III) Compounds. 4 [1] Aryl(pentafluorophenyl)iodoniumtetrafluoroborates: General Method of Synthesis, Typical Properties, and Structural Features Aryl(pentafluorophenyl)iodoniumtetrafluoroborates [Ar′Ar″I][BF4] (Ar′ = C6F5, Ar″ = C6H5, o‐C6H4F, m‐C6H4F, p‐C6H4F, 2,6‐C6H3F2, 3,5‐C6H3F2, 2,4,6‐C6H2F3, 3,4,5‐C6H2F3, C6F5) are prepared in good yields and high purity by the reaction of C6F5IF2 with Ar″BF2 in CH2Cl2. This convenient method can be applied generally to many iodonium compounds. Thermal and spectroscopic properties (1H, 13C, 19F NMR, IR, Raman) are reported and discussed. The solid state structures of six iodonium compounds show significant cation‐anion interactions which result in two different arrangements: a dimer with a 8‐membered ring or polymers with infinite zigzag chains. Ab initio calculations on prototypes of aryliodonium cations show relations between the kind of the aryl group (C6H5 vs. C6F5) and structural parameters as well as charges. By means of 19F NMR the σI‐ and σR‐constants of the [C6F5I]+‐substituent are determined.  相似文献   

4.
New Syntheses and Crystal Structures of Bis(fluorophenyl) Mercury, Hg(Rf)2 (Rf = C6F5, 2, 3, 4, 6‐F4C6H, 2, 3, 5, 6‐F4C6H, 2, 4, 6‐F3C6H2, 2, 6‐F2C6H3) Bis(fluorophenyl) mercury compounds, Hg(Rf)2 (Rf = C6F5, C6HF4, C6H2F3, C6H3F2), are prepared in good yields by the reactions of HgF2 with Me3SiRf. The crystal structures of Hg(2, 3, 4, 6‐F4C6H)2 (monoclinic, P21/n), Hg(2, 3, 5, 6‐F4C6H)2 (monoclinic, C2/m), Hg(2, 4, 6‐F3C6H2)2 (monoclinic, P21/c) and Hg(2, 6‐F2C6H3)2 (triclinic, P1) are described.  相似文献   

5.
The 1:3 reactions of the alkoxy arenes 1,4‐(MeO)2C6H4 and 1,4‐F2‐2,5‐(MeO)2C6H2 with TaF5 in chloroform at 40–50 °C resulted in formation in about 35 % yield of the long‐lived radical cation salts [1,4‐(MeO)2C6H4][Ta2F11] ( 2 a ) and [1,4‐F2‐2,5‐(MeO)2C6H2][Ta2F11] ( 2 b ), respectively. The non‐alkoxy‐substituted [arene][M2X11] [M=Ta, X=F: arene=C6H5Me ( 2 c ), 1,4‐C6H4Me2 ( 2 d ), C6H5F ( 2 e ), C6H5NO2 ( 2 f ); M=Nb, X=F: arene=C6H5Me ( 4 a ), 1,4‐C6H4Me2 ( 4 b ), C6H5F ( 4 c ), C6H5NO2 ( 4 d ); M=Ta, X=Cl: arene=1,4‐C6H4Me2 ( 5 )] were obtained from the 3:1 reactions of MX5 with the appropriate arene in chloroform at temperatures in the range 40–90 °C. Compounds 2 – 5 were detected by EPR spectroscopy (in CHCl3) at room temperature, and their gas‐phase structures were optimized by DFT calculations. Formation of the MIV species [MX4(NCMe)2] [M=Ta, X=F ( 3 a ); M=Nb, X=F ( 3 b ); M=Ta, X=Cl ( 3 c )] was ascertained by EPR spectroscopy on solutions obtained by treatment of the reaction mixtures with acetonitrile. Non‐selective reactions occurred upon combination of 1,4‐F2‐2,5‐(MeO)2C6H2 with AgNbF6 (in CH2Cl2) and 1,4‐(MeO)2C6H4 with SbF5.  相似文献   

6.
Two routes to RFIF6 compounds were investigated: (a) the substitution of F by RF in IF7 and (b) the fluorine addition to iodine in RFIF4 precursors. For route (a) the reagents C6F5SiMe3, C6F5SiF3, [NMe4][C6F5SiF4], C6F5BF2, and 1,4-C6F4(BF2)2 were tested. C6F5IF4 and CF3CH2IF4 were used in route (b) and treated with the fluoro-oxidizers IF7, [O2][SbF6]/KF, and K2[NiF6]/KF. The observed sidestep reactions in case of routes (a) and (b) are discussed. Interaction of C6F5SiX3 (X = Me, F), C6F5BF2, 1,4-C6F4(BF2)2 with IF7 gave exclusively the corresponding ring fluorination products, perfluorinated cyclohexadiene and cyclohexene derivatives, whereas [NMe4][C6F5SiF4] and IF7 formed mixtures of C6FnIF4 and C6FnH compounds (n = 7 and 9). CF3CH2IF4 was not reactive towards the fluoro-oxidizer IF7, whereas C6F5IF4 formed C6FnIF4 compounds (n = 7 and 9). C6F5IF4 and CF3CH2IF4 were inert towards [O2][SbF6] in anhydrous HF. CF3CH2IF4 underwent C-H fluorination and C-I bond cleavage when treated with K2[NiF6]/KF in HF. The fluorine addition property of IF7 was independently demonstrated in case of perfluorohexenes. C4F9CFCF2 and IF7 underwent oxidative fluorine addition at −30 °C, and the isomers (CF3)2CFCFCFCF3 (cis and trans) formed very slowly perfluoroisohexanes even at 25 °C. The compatibility of IF7 and selected organic solvents was investigated. The polyfluoroalkanes CF3CH2CHF2 (PFP), CF3CH2CF2CH3 (PFB), and C4F9Br are inert towards iodine heptafluoride at 25 °C while CF3CH2Br was slowly converted to CF3CH2F. Especially PFP and PFB are new suitable organic solvents for IF7.  相似文献   

7.
Halide Ions as Catalyst: Metalcentered C–C Bond Formation Proceeded from Acetonitril AlMe3 reacts at 20 ?C in acetonitrile to the complex [Me3Al(NCMe)] ( 1 ). By addition of cesium halides (X = F, Cl, Br) a trimerisation to the heterocycle [Me2Al{HNC(Me)}2C(CN)] ( 2 ) has been observed. The reaction might be carried out under catalytic conditions (1–2 mol% CsX). The gallium complex [Me2Ga{HNC(Me)}2 · C(CN)] ( 3 ), generated under similar reaction conditions, can be converted to the silylated compound [Me2Ga{Me3SiNC(Me)}2C(CN)] ( 4 ) by successive treatment with two equivalents n‐butyllithium and Me3SiCl. 3 reacts under hydrolysis conditions (1 M hydrochloric acid) to the iminium salt [{H2NC(Me)}2C(CN)]Cl ( 5 ). A mixture of H2O, Ph2PCl and 3 in THF/toluene leads in a unusual conversion to the diphospane derivative [Ph2P–P(O)(Me2GaCl)] ( 6 ). 1 , 2 , 4 , 5 and 6 have been characterized by NMR, IR and MS techniques. X‐ray structure analyses were performed with 1 , 2 , 4 and 6 · 0.5 toluene. According this 1 possesses an almost linear axis AlNCC [Al1–N1–C3: 179,5(2)?; N1–C3–C4: 179,7(4)?]. 2 is an AlN2C3 six‐membered heterocycle with two iminium fuctions. One N–H group is responsible for a intermolecular chain‐formation through hydrogen bridges to an adjacent nitrile group along the direction [010]. The basic structural motif of the heterocycle 3 has been maintained after silylation to 4 . In 6 · 0.5 toluene an unit Me2GaCl, originated from 3 , is coordinated to the oxygen atom of the diphosphane oxide Ph2P–P(O)Ph2.  相似文献   

8.
A series of rare‐earth‐metal–hydrocarbyl complexes bearing N‐type functionalized cyclopentadienyl (Cp) and fluorenyl (Flu) ligands were facilely synthesized. Treatment of [Y(CH2SiMe3)3(thf)2] with equimolar amount of the electron‐donating aminophenyl‐Cp ligand C5Me4H‐C6H4o‐NMe2 afforded the corresponding binuclear monoalkyl complex [({C5Me4‐C6H4o‐NMe(μ‐CH2)}Y{CH2SiMe3})2] ( 1 a ) via alkyl abstraction and C? H activation of the NMe2 group. The lutetium bis(allyl) complex [(C5Me4‐C6H4o‐NMe2)Lu(η3‐C3H5)2] ( 2 b ), which contained an electron‐donating aminophenyl‐Cp ligand, was isolated from the sequential metathesis reactions of LuCl3 with (C5Me4‐C6H4o‐NMe2)Li (1 equiv) and C3H5MgCl (2 equiv). Following a similar procedure, the yttrium‐ and scandium–bis(allyl) complexes, [(C5Me4‐C5H4N)Ln(η3‐C3H5)2] (Ln=Y ( 3 a ), Sc ( 3 b )), which also contained electron‐withdrawing pyridyl‐Cp ligands, were also obtained selectively. Deprotonation of the bulky pyridyl‐Flu ligand (C13H9‐C5H4N) by [Ln(CH2SiMe3)3(thf)2] generated the rare‐earth‐metal–dialkyl complexes, [(η3‐C13H8‐C5H4N)Ln(CH2SiMe3)2(thf)] (Ln=Y ( 4 a ), Sc ( 4 b ), Lu ( 4 c )), in which an unusual asymmetric η3‐allyl bonding mode of Flu moiety was observed. Switching to the bidentate yttrium–trisalkyl complex [Y(CH2C6H4o‐NMe2)3], the same reaction conditions afforded the corresponding yttrium bis(aminobenzyl) complex [(η3‐C13H8‐C5H4N)Y(CH2C6H4o‐NMe2)2] ( 5 ). Complexes 1 – 5 were fully characterized by 1H and 13C NMR and X‐ray spectroscopy, and by elemental analysis. In the presence of both [Ph3C][B(C6F5)4] and AliBu3, the electron‐donating aminophenyl‐Cp‐based complexes 1 and 2 did not show any activity towards styrene polymerization. In striking contrast, upon activation with [Ph3C][B(C6F5)4] only, the electron‐withdrawing pyridyl‐Cp‐based complexes 3 , in particular scandium complex 3 b , exhibited outstanding activitiy to give perfectly syndiotactic (rrrr >99 %) polystyrene, whereas their bulky pyridyl‐Flu analogues ( 4 and 5 ) in combination with [Ph3C][B(C6F5)4] and AliBu3 displayed much‐lower activity to afford syndiotactic‐enriched polystyrene.  相似文献   

9.
Trimethylsilyldimethylarsane Me3SiAsMe2 was used as a reagent for the substitution of fluorine in polyfluoroarenes C6F5X (X = F, H, Cl) and C5NF5 by the Me2As group. The reactions occur between 50 — 180 °C, either in benzene or without solvent, to give as a rule 4‐X‐1‐(dimethylarsano)tetrafluorobenzenes XC6F4AsMe2, ( 1—3 ) and 4‐dimethylarsano‐tetrafluoropyridine C5NF4AsMe2 ( 4 ), respectively, in yields between 43 and 94 %. In the case of C6F6, also double substitution is observed affording 1, 4‐bis(dimethylarsano)tetrafluorobenzene 5 in addition to the monosubstituted derivative. The time and temperature dependencies of the reactions increase in the sequence: C6F6< C6F5H < C6F5Cl < C5NF5. The arsanes 1 and 4 were transformed to the potentially valuable bidentate ligands 1‐(dimethylarsano)‐4‐(dimethylphosphano)tetrafluorobenzene 6 and 4‐(dimethylarsano)‐2‐(dimethylphosphano)trifluoropyridine 8 by reaction with trimethylsilyl‐dimethylphosphane Me3SiPMe2. 6 reacts with oxygen to yield the corresponding phosphane oxide 7 . Trimethylsilyl‐dimethylamine Me3SiNMe2 also was successfully tested as a reagent for the dimethylamination of polyfluoroarenes C6F5X [X = F, H, Cl, CF3, P(S)Me2], 1‐P(S)Me2‐4‐H‐C6F4 and 4‐X‐C5NF4 [X = F, PMe2, P(S)Me2]. Sulfuration of the new Me2P derivatives 8 and 20 leads to the corresponding thiophosphanes 9 and 21 (Schemes 2 and 3). Furthermore, the recently reported very efficient one‐pot synthesis of Me2P substituted polyfluoroarenes (e.g. XC6F4PMe2 with X = F, Me2PC6F4) was extended to the preparation of Me2As and MeS derivatives of pentafluoropyridine using a mixture of Me3SnH, As2Me4 (or S2Me2) and C5NF5 as precursors for the one‐pot reaction. The expected products 4‐(dimethylarsano)tetrafluoropyridine 4 and 4‐(methylthio)tetrafluoropyridine 22 , respectively, were obtained in 84 and 82 % isolated yields. The novel compounds were characterized by spectroscopic (NMR, MS) and analytical data. Compounds 5 , 7 , 9 and 21 could be isolated in form of single crystals and their structures have been studied by X‐ray diffraction.  相似文献   

10.
A promising approach to the unknown type of [Ar′(Ar)IF2]X salts is offered. x-FC6H4IF4 (x=2, 3, 4) reacts with C6F5BF2 in CH2Cl2 and forms [x-FC6H4(C6F5)IF2][BF4] salts in good yields. For [4-FC6H4(C6F5)IF2][BF4] the fluoro-oxidizer property is shown in reactions with weakly reducing agents like E(C6F5)3 (E=P, As, Sb, Bi) and ArI (Ar=4-FC6H4, C6F5). The fluorine/aryl substitution method is also applied to the synthesis of [(4-FC6H4)2IF2][BF4], an example with two identical aryl groups in the difluoroiodonium(V) moiety.  相似文献   

11.
The Reactions of M[BF4] (M = Li, K) and (C2H5)2O·BF3 with (CH3)3SiCN. Formation of M[BFx(CN)4—x] (M = Li, K; x = 1, 2) and (CH3)3SiNCBFx(CN)3—x, (x = 0, 1) The reaction of M[BF4] (M = Li, K) with (CH3)3SiCN leads selectively, depending on the reaction time and temperature, to the mixed cyanofluoroborates M[BFx(CN)4—x] (x = 1, 2; M = Li, K). By using (C2H5)2O·BF3 the synthesis yields the compounds (CH3)3SiNCBFx(CN)3—x x = 0, 1. The products are characterized by vibrational and NMR‐spectroscopy, as well as by X‐ray diffraction of single‐crystals: Li[BF2(CN)2]·2Me3SiCN Cmc21, a = 24.0851(5), b = 12.8829(3), c = 18.9139(5) Å V = 5868.7(2) Å3, Z = 12, R1 = 4.7%; K[BF2(CN)2] P41212, a = 13.1596(3), c = 38.4183(8) Å, V = 6653.1(3) Å3, Z = 48, R1 = 2.5%; K[BF(CN)3] P1¯, a = 6.519(1), b = 7.319(1), c = 7.633(2) Å, α = 68.02(3), β = 74.70(3), γ = 89.09(3)°, V = 324.3(1) Å3, Z = 2, R1 = 3.6%; Me3SiNCBF(CN)2 Pbca, a = 9.1838(6), b = 13.3094(8), c = 16.840(1) Å, V = 2058.4(2) Å3, Z = 8, R1 = 4.4%  相似文献   

12.
Syntheses and NMR Spectroscopic Ivestigations of Salts containing the Novel Anions [PtXn(CF3)6‐n]2— (n = 0 ‐ 5, X = F, OH, Cl, CN) and Crystal Structure of K2[(CF3)2F2Pt(μ‐OH)2PtF2(CF3)2]·2H2O The first syntheses of trifluoromethyl‐complexes of platinum through fluorination of cyanoplatinates are reported. The fluorination of tetracyanoplatinates(II), K2[Pt(CN)4], and hexacyanoplatinates(IV), K2[Pt(CN)6], with ClF in anhydrous HF leads after working up of the products to K2[(CF3)2F2Pt(μ‐OH)2PtF2(CF3)2]·2H2O. The structure of the salt is determined by a X‐ray structure analysis, P21/c (Nr. 14), a = 11.391(2), b = 11.565(2), c = 13.391(3)Å, β = 90.32(3)°, Z = 4, R1 = 0.0326 (I > 2σ(I)). The reaction of [Bu4N]2[Pt(CN)4] with ClF in CH2Cl2 generates mainly cis‐[Bu4N]2[PtCl2(CF3)4] and fac‐[Bu4N]2[PtCl3(CF3)3], but in contrast that of [Bu4N]2[Pt(CN)6] with ClF in CH2Cl2 results cis‐[Bu4N]2[PtX2(CF3)4], [Bu4N]2[PtX(CF3)5] (X = F, Cl) and [Bu4N]2[Pt(CF3)6]. In the products [Bu4N]2[PtXn(CF3)6‐n] (X = F, Cl, n = 0—3) it is possibel to exchange the fluoro‐ligands into chloro‐ and cyano‐ligands by treatment with (CH3)3SiCl und (CH3)3SiCN at 50 °C. With continuing warming the trifluoromethyl‐ligands are exchanged by chloro‐ and cyano‐ligands, while as intermediates CF2Cl and CF2CN ligands are formed. The identity of the new trifluoromethyl‐platinates is proved by 195Pt‐ and 19F‐NMR‐spectroscopy.  相似文献   

13.
Using [Ga(C6H5F)2]+[Al(ORF)4]?( 1 ) (RF=C(CF3)3) as starting material, we isolated bis‐ and tris‐η6‐coordinated gallium(I) arene complex salts of p‐xylene (1,4‐Me2C6H4), hexamethylbenzene (C6Me6), diphenylethane (PhC2H4Ph), and m‐terphenyl (1,3‐Ph2C6H4): [Ga(1,4‐Me2C6H4)2.5]+ ( 2+ ), [Ga(C6Me6)2]+ ( 3+ ), [Ga(PhC2H4Ph)]+ ( 4+ ) and [(C6H5F)Ga(μ‐1,3‐Ph2C6H4)2Ga(C6H5F)]2+ ( 52+ ). 4+ is the first structurally characterized ansa‐like bent sandwich chelate of univalent gallium and 52+ the first binuclear gallium(I) complex without a Ga?Ga bond. Beyond confirming the structural findings by multinuclear NMR spectroscopic investigations and density functional calculations (RI‐BP86/SV(P) level), [Ga(PhC2H4Ph)]+[Al(ORF)4]?( 4 ) and [(C6H5F)Ga(μ‐1,3‐Ph2C6H4)2Ga(C6H5F)]2+{[Al(ORF)4] ?}2 ( 5 ), featuring ansa‐arene ligands, were tested as catalysts for the synthesis of highly reactive polyisobutylene (HR‐PIB). In comparison to the recently published 1 and the [Ga(1,3,5‐Me3C6H3)2]+[Al(ORF)4]? salt ( 6 ) (1,3,5‐Me3C6H3=mesitylene), 4 and 5 gave slightly reduced reactivities. This allowed for favorably increased polymerization temperatures of up to +15 °C, while yielding HR‐PIB with high contents of terminal olefinic double bonds (α‐contents=84–93 %), low molecular weights (Mn=1000–3000 g mol?1) and good monomer conversions (up to 83 % in two hours). While the chelate complexes delivered more favorable results than 1 and 6 , the reaction kinetics resembled and thus concurred with the recently proposed coordinative polymerization mechanism.  相似文献   

14.
A series of new cyclopentadienyl molybdenum compounds bearing substituted phenanthroline ligands [(η5‐C5H4CH2C6H4X‐4)Mo(CO)2(N,NL)][BF4] (X = F, Cl, Br; N,NL = phen, 5‐NH2‐phen, 4,7‐Ph2‐phen) was prepared and characterized using infrared and NMR spectroscopies. Crystal structures of [(η5‐C5H4CH2C6H4F‐4)Mo(CO)2(NCMe)2][BF4], [(η5‐C5H4CH2C6H4X‐4)Mo(CO)2(phen)][BF4] (X = F, Cl, Br) and [(η5‐C5H4CH2C6H4Cl‐4)Mo(CO)2(4,7‐Ph2‐phen)][BF4]⋅(4,7‐Ph2‐phen)⋅HBF4 were determined using X‐ray diffraction analysis. Biological studies revealed a strong cytotoxic effect of the chelating ligands. Although the cytostatic effect of the halogen in the side chain of the cyclopentadienyl ring is negligible, it could be used for future post‐modification of these types of cytotoxic active molybdenum‐based compounds.  相似文献   

15.
Using silyl protected organic hydroxo compounds substitution of fluorine in IF5 is successful.Reacting IF5 with Si(OCH3)4 in CH3CN or SO2 using different molar ratios it was shown that in the series IF5?n(OCH3)n only the first member IF4(OCH3) (n=1) is stable enough to be isolated. The product in solution with n=2 bismutates to products with n=1 and n=3 if isolated as solids. The last one decomposes to the new oxo compound IF2O(OCH3) under elimination of CH3OCH3. With n=4,5 only redox reaction products could be isolated.IF2O(OCH3) can also be obtained by treating IF4(OCH3) with (CH3)6Si2O. Similarly reaction of IF5 with the disiloxane represents a new method to win IOF3. Excess of the oxygen transfer reagent leads to formation of IO2F and I2O5. An other oxo compound, IO(CH3COO)3, can be prepared by disolving IF5, IOF3 or IO2F in acetic acid anhydride.Reactions of IF5 with trimethylsilyl protected fluorinated benzoic acids RfCOOSi(CH3)3 (Rf = C6F5, 4HC6F4) appeared to be independent of the educts molar ratios because the only products are IF(RfCOO)4.In order to stabilize iodine (V) derivates with bifunctional chelating oxo ligands we applicated bis(trimethylsilyl) pinacolate, and in smooth reactions we yielded IF3[OC(CH3)2C(CH3)2O] and IF[OC(CH3)2  C(CH3)2O]2, in which iodine is part of five membered heterocyclic rings. The 19F-nmr-spectra are consistent with the diolate occupying the axiale and equatorial positions.An extension of the silyl method is the new synthesis of C6F5IF4 which could be obtained in the smooth reaction of IF5 with stochiometric amounts of Si(C6F5)4.  相似文献   

16.
Acid‐base reaction of Sc(CH2C6H4NMe2o)3 with 1 equiv. of pyrrolyl‐substituted cyclopentadienyl ligand C4H2Me2NSiMe2C5Me4H in toluene gave the half‐sandwich scandium bis(aminobenzyl) complex (C4H2Me2NSiMe2C5Me4)Sc(CH2C6H4NMe2o)2 ( 2 ). Amine elimination between Sc[N(SiHMe2)2]3(THF) and one equivalent of C4H2Me2NSiMe2C5Me4H afforded the scandium bis(silylamide) complex (C4Me2H2NSiMe2C5Me4)Sc[(NSiHMe2)2SiMe2](THF) ( 3 ). Both scandium complexes 2 and 3 were characterized by elemental analysis, NMR spectroscopy, and single‐crystal X‐ray diffraction. 2 and 3 could serve as highly active precursors for styrene polymerization to give syndio‐tactic polystyrene (rrrrrr > 99 %).  相似文献   

17.
In(C6F5)3 · CH3CN and In(C6F5)3 · glyme were synthesized from InCl3 and Cd(C6F5)2 in CH3CN or glyme in 43% and 35% yield, respectively. Replacement of CH3CN or (C2H5)2O by DMAP yielded the corresponding 1 : 1-adduct. [PNP][In(C6F5)4] was best prepared from the corresponding cesium salt which was best synthesized from the reaction of stoichiometric amounts of In(C6F5)3 · CH3CN, (CH3)3 SiC6F5 and CsF in good yield. [PNP][In(C6F5)4] crystallizes in the triclinic space group P 1, a = 1104.9(4) pm, b = 1442.4(6) pm, c = 1833.8(8) pm, α = 110.87(2)°, β = 92.04(3)°, γ = 96.55(3)°, Z = 2.  相似文献   

18.
Reactions of 2‐(N‐arylimino)pyrroles (HNC4H3C(H)?N‐Ar) with triphenylboron (BPh3) in boiling toluene afford the respective highly emissive N,N′‐boron chelate complexes, [BPh22N,N′‐NC4H3C(H)?N‐Ar}] (Ar=C6H5 ( 12 ), 2,6‐Me2‐C6H3 ( 13 ), 2,6‐iPr2‐C6H3 ( 14 ), 4‐OMe‐C6H4 ( 15 ), 3,4‐Me2‐C6H3 ( 16 ), 4‐F‐C6H4 ( 17 ), 4‐NO2‐C6H4 ( 18 ), 4‐CN‐C6H4 ( 19 ), 3,4,5‐F3‐C6H2 ( 20 ), and C6F5 ( 21 )) in moderate to high yields. The photophysical properties of these new boron complexes largely depend on the substituents present on the aryl rings of their N‐arylimino moieties. The complexes bearing electron‐withdrawing aniline substituents 17 – 20 show more intense (e.g., ?f=0.71 for Ar=4‐CN‐C6H4 ( 19 ) in THF), higher‐energy (blue) fluorescent emission compared to those bearing electron‐donating substituents, for which the emission is redshifted at the expense of lower quantum yields (?f=0.13 and 0.14 for Ar=4‐OMe‐C6H4 ( 15 ) and 3,4‐Me2‐C6H3 ( 16 ), respectively, in THF). The presence of substituents bulkier than a hydrogen atom at the 2,6‐positions of the aryl groups strongly restricts rotation of this moiety towards coplanarity with the iminopyrrolyl ligand framework, inducing a shift in the emission to the violet region (λmax=410–465 nm) and a significant decrease in quantum yield (?f=0.005, 0.023, and 0.20 for Ar=2,6‐Me2‐C6H3 ( 13 ), 2,6‐iPr2‐C6H3 ( 14 ), and C6F5 ( 21 ), respectively, in THF), even when electron‐withdrawing groups are also present. Density functional theory (DFT) and time‐dependent DFT (TD‐DFT) calculations have indicated that the excited singlet state has a planar aryliminopyrrolyl ligand, except when prevented by steric hindrance (ortho substituents). Calculated absorption maxima reproduce the experimental values, but the error is higher for the emission wavelengths. Organic light‐emitting diodes (OLEDs) have been fabricated with the new boron complexes, with luminances of the order of 3000 cd m?2 being achieved for a green‐emitting device.  相似文献   

19.
The synthesis and single‐crystal X‐ray structures of the novel molybdenum imido alkylidene N‐heterocyclic carbene complexes [Mo(N‐2,6‐Me2C6H3)(IMesH2)(CHCMe2Ph)(OTf)2] ( 3 ), [Mo(N‐2,6‐Me2C6H3)(IMes)(CHCMe2Ph)(OTf)2] ( 4 ), [Mo(N‐2,6‐Me2C6H3)(IMesH2)(CHCMe2Ph)(OTf){OCH(CF3)2}] ( 5 ), [Mo(N‐2,6‐Me2C6H3)(CH3CN)(IMesH2)(CHCMe2Ph)(OTf)]+ BArF? ( 6 ), [Mo(N‐2,6‐Cl2C6H3)(IMesH2)(CHCMe3)(OTf)2] ( 7 ) and [Mo(N‐2,6‐Cl2C6H3)(IMes)(CHCMe3)(OTf)2] ( 8 ) are reported (IMesH2=1,3‐dimesitylimidazolidin‐2‐ylidene, IMes=1,3‐dimesitylimidazolin‐2‐ylidene, BArF?=tetrakis‐[3,5‐bis(trifluoromethyl)phenyl] borate, OTf=CF3SO3?). Also, silica‐immobilized versions I1 and I2 were prepared. Catalysts 3 – 8 , I1 and I2 were used in homo‐, cross‐, and ring‐closing metathesis (RCM) reactions and in the cyclopolymerization of α,ω‐diynes. In the RCM of α,ω‐dienes, in the homometathesis of 1‐alkenes, and in the ethenolysis of cyclooctene, turnover numbers (TONs) up to 100 000, 210 000 and 30 000, respectively, were achieved. With I1 and I2 , virtually Mo‐free products were obtained (<3 ppm Mo). With 1,6‐hepta‐ and 1,7‐octadiynes, catalysts 3 , 4 , and 5 allowed for the regioselective cyclopolymerization of 4,4‐bis(ethoxycarbonyl)‐1,6‐heptadiyne, 4,4‐bis(hydroxymethyl)‐1,6‐heptadiyne, 4,4‐bis[(3,5‐diethoxybenzoyloxy)methyl]‐1,6‐heptadiyne, 4,4,5,5‐tetrakis(ethoxycarbonyl)‐1,7‐octadiyne, and 1,6‐heptadiyne‐4‐carboxylic acid, underlining the high functional‐group tolerance of these novel Group 6 metal alkylidenes.  相似文献   

20.
Syntheses and Properties of Bis(perfluoroalkyl)zinc Compounds The conditions for the syntheses of bis(perfluoroalkyl)zinc compounds Zn(Rf)2 · 2 D (Rf = C2F5, n‐C3F7, i‐C3F7, n‐C4F9, n‐C6F13, n‐C7F15, and n‐C8F17; D = CH3CN, tetrahydrofurane, dimethylsulfoxide) are described. Mass spectra, thermal decompositions, 19F‐ and 13C‐NMR spectra are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号