首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Well‐defined azobenzene‐containing side‐chain liquid crystalline diblock copolymers composed of poly[6‐(4‐methoxy‐azobenzene‐4′‐oxy) hexyl methacrylate] (PMMAZO) and poly(γ‐benzyl‐L ‐glutamate) (PBLG) were synthesized by click reaction from alkyne‐ and azide‐functionalized homopolymers. The alkyne‐terminated PMMAZO homopolymers were synthesized by copper‐mediated atom transfer radical polymerization with a bromine‐containing alkyne bifunctional initiator, and the azido‐terminated PBLG homopolymers were synthesized by ring‐opening polymerization of γ‐benzyl‐L ‐glutamate‐N‐carboxyanhydride in DMF at room temperature using an amine‐containing azide initiator. The thermotropic phase behavior of PMMAZO‐b‐PBLG diblock copolymers in bulk were investigated using differential scanning calorimetry and polarized light microscopy. The PMMAZO‐b‐PBLG diblock copolymers exhibited a smectic phase and a nematic phase when the weight fraction of PMMAZO block was more than 50%. Photoisomerization behavior of PMMAZO‐b‐PBLG diblock copolymers and the corresponding PMMAZO homopolymers in solid film and in solution were investigated using UV–vis. In solution, trans–cis isomerization of diblock copolymers was slower than that of the corresponding PMMAZO homopolymers. These results may provide guidelines for the design of effective photoresponsive anisotropic materials. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

2.
A series of novel side‐chain liquid crystalline ABC triblock copolymers composed of poly(ethylene oxide) (PEO), polystyrene (PS), and poly[6‐(4‐methoxy‐4′‐oxy‐azobenzene) hexyl methacrylate] (PMMAZO) were synthesized by atom transfer radical polymerization (ATRP) using CuBr/1,1,4,7,7‐pentamethyldiethylenetriamine (PMDETA) as a catalyst system. First, the bromine‐terminated diblock copolymer poly(ethylene oxide)‐block‐polystyrene (PEO‐PS‐Br) was prepared by the ATRP of styrene initiated with the macro‐initiator PEO‐Br, which was obtained from the esterification of PEO and 2‐bromo‐2‐methylpropionyl bromide. An azobenzene‐containing block of PMMAZO with different molecular weights was then introduced into the diblock copolymer by a second ATRP to synthesize the novel side‐chain liquid crystalline ABC triblock copolymer poly(ethylene oxide)‐block‐polystyrene‐block‐poly[6‐(4‐methoxy‐4′‐oxy‐azobenzene) hexyl methacrylate] (PEO‐PS‐PMMAZO). These block copolymers were characterized using proton nuclear magnetic resonance (1H NMR) and gel permeation chromatograph (GPC). Their thermotropic phase behaviors were investigated using differential scanning calorimetry (DSC) and polarized optical microscope (POM). These triblock copolymers exhibited a smectic phase and a nematic phase over a relatively wide temperature range. At the same time, the photoresponsive properties of these triblock copolymers in chloroform solution were preliminarily studied. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4442–4450, 2008  相似文献   

3.
A series of side‐chain liquid‐crystalline (LC) homopolymers of poly[6‐(4‐methoxy‐4′‐oxy‐azobenzene) hexyl methacrylate] with different degrees of polymerization were synthesized by atom transfer radical polymerization (ATRP), which were prepared with a wide range of number‐average molecular weights from 5.1 × 103 to 20.6 × 103 with narrow polydispersities of around 1.17. Thermal investigation showed that the homopolymers exhibit two mesophases, a smectic phase, and a nematic phase, and the phase‐transition temperatures of the homopolymers increase clearly with increasing molecular weights. A series of novel LC coil triblock copolymers with narrow polydispersities was synthesized by ATRP, and their thermotropic phase behavior was investigated with differential scanning calorimetry and polarized optical microscopy. The LC coil triblocks were designed to have an LC conformation of poly[6‐(4‐methoxy‐4′‐oxy‐azobenzene) hexyl methacrylate] with a wide range of molecular weights from 3.5 × 103 to 1.7 × 104 and the coil conformation of poly(ethylene glycol) (PEG) (number‐average molecular weight: 6000 or 12,000) segment. Their characterization was investigated with 1H NMR, Fourier transform infrared spectra, and gel permeation chromatography. Triblock copolymers exhibited a crystalline phase, a smectic phase, and a nematic phase. The phase‐transition temperatures from the smectic to nematic phase and from the nematic to isotropic phase increased, and the crystallization of PEG depressed with increasing molecular weight of the LC block. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2854–2864, 2003  相似文献   

4.
Summary: The one step synthesis of a series of branched azobenzene side‐chain liquid‐crystalline copolymers by the self‐condensing vinyl copolymerization (SCVCP) of a methyl acrylic AB* inimer, 2‐(2‐bromoisobutyryloxy)ethyl methacrylate (BIEM), with the monomer 6‐(4‐methoxy‐azobenzene‐4′‐oxy)hexyl methacrylate (M), by atom transfer radical polymerization (ATRP) in the presence of CuBr/N,N,N′,N′,N″‐pentamethyldiethylenetriamine as a catalyst system, and in chlorobenzene solvent, is reported. The degree of branching (DB), and the molecular weights and polydispersities of the resultant polymers were determined by NMR spectroscopy and size exclusion chromatography, respectively. The phase behaviors of the branched copolymers were characterized by differential scanning calorimetry (DSC) and thermal polarized optical microscopy (POM). The degree of branching of the branched copolymers could be controlled by the comonomer ratio in the feed and influenced their liquid‐crystal properties. Liquid‐crystal properties were not exhibited when the comonomer ratio was low. Comonomer ratios greater than 8 gave polymers with a lower number of branches, which exhibited both a smectic and a nematic phase.

A polarized optical micrograph of the smectic phase texture of a polymer synthesized here with a higher comonomer feed ratio (magnification × 400).  相似文献   


5.
This article reports on studies regarding the photoisomerization kinetics and self‐assembly behaviors of two photoresponsive diblock copolymers, poly(4‐acetoxystyrene)‐block‐poly[6‐(4‐methoxy‐azobenzene‐4′‐oxy) hexyl acrylate] (poly(StO54b‐Cazo9) and poly(StO54b‐Cazo5)), which dissolved in a THF/H2O solution through two‐step reverse addition‐fragmentation transfer polymerization. We examined the effect of heating methods (i.e., conventional and microwave heating) on the polymerization kinetics of a 4‐acetoxystyrene‐based macrochain transfer agent (StO macro‐CTA). The kinetics studies on the homopolymerization of StO by using microwave heating demonstrated controllable characteristics with relatively narrow polydispersities at ~1.14. The diblock copolymers exhibited moderate thermal stability, with thermal decomposition temperatures greater than 343.3 °C, suggesting that the enhancement of the thermal stability was due to the incorporation of azobenzene segments into block copolymers. Poly(StO54b‐Cazo9) showed lower photoisomerization rate constants (kt = 0.039 s?1) compared with Cazo monomer (kt = 0.097 s?1). Micellar aggregates with a mean diameter of approximately 238.3 nm were formed by gradually adding water to the THF solution (water content = 10 vol %), and are shown in SEM and TEM images of the diblock copolymer. The results of this study contribute to the literature regarding the development of photoresponsive polymer materials. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3107–3117  相似文献   

6.
A novel series of hard‐soft‐hard triblock azo‐copolymers (TBCs) composed of poly(2‐[2‐(4‐cyano‐azobenzene‐4‐oxy)ethylene‐oxy]ethyl methacrylate) (PCEAMA), poly(methyl methacrylate) (PMMA) and poly(p‐dodecylphenyl‐N‐acrylamide) (PDOPAM) were synthesized by employing reversible addition‐fragmentation chain transfer polymerization. Chemical structures and molecular weights were characterized by 1H nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC). Thermal behavior, mesophase, photochemistry and morphology were investigated using differential scanning calorimetry (DSC), optical polarizing microscopy (OPM), ultraviolet–visible spectrophotometry (UV–vis), atomic force microscopy (AFM) and grazing‐incidence small‐angle X‐ray scattering (GISAXS). Kinetic studies confirmed characteristic of controlled/living radical polymerization with low polydispersities (≤1.40). TBCs manifested both endothermic and exothermic transition peaks assigned to smectic to nematic, nematic to smectic, and smectic‐A to smectic‐C phases. TBCs having hight azo fractions of 39 and 34 wt % revealed textures of smectic phase whereas TBC possessing 30 wt % of azo content exhibited poor texture, suggesting nematic phase. Regarding TBC with low azo ratio (25 wt %), neither mesophase texture was found. All TBCs showed photoresponsive behavior under UV–vis irradiation or thermal relaxation. TBC‐1 with PCAEMA (39 wt %), PMMA (40 wt %) and PDOPAM (21 wt %) generated a mixture of cylinder and lamellar nanostructures compared to TBC‐2 and TBC‐3 which formed lamellae. However, TBC‐4 having the highest PDOPAM fraction (50 wt %) produced hexagonal cylindrical nanostructure. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1617–1629  相似文献   

7.
The well‐defined azobenzene‐containing homopolymers, poly{6‐(4‐phenylazophenoxy)hexyl methacrylate (AHMA)} (PAHMA), were synthesized via reversible addition fragmentation chain transfer polymerization (RAFT) in anisole solution using 2‐cyanoprop‐2‐yl 1‐dithionaphthalate (CPDN) as the RAFT agent and 2,2′‐azobisisobutyronitrile (AIBN) as the initiator. The first‐order kinetic plot of the polymerization and the linear dependence of molecular weights of the homopolymers with the relatively low polydispersity index values (PDIs ≤ 1.25) on the monomer conversions were observed. Furthermore, the amphiphilic diblock copolymer, poly{6‐(4‐phenylazophenoxy)hexyl methacrylate (AHMA)}‐b‐poly{2‐(dimethylamino)ethyl methacrylate (DMAEMA)} (PAHMA‐b‐PDMAEMA), was prepared with the obtained PAHMA as the macro‐RAFT agent. The structures and properties of the polymers were characterized by 1H NMR and GPC, respectively. Interestingly, the amphiphilic diblock copolymers in chloroform (CHCl3) solution (PAHMA23b‐PDMAEMA97 (4 × 10?5 M, Mn(GPC) = 18,400 g/mol, PDI = 1.48) and PAHMA28b‐PDMAEMA117 (6 × 10?5 M, Mn(GPC) = 19,300 g/mol, PDI = 1.51) exhibited the intense fluorescence emission at ambient temperature. Moreover, the fluorescent intensity of PAHMA‐b‐PDMAEMA in CHCl3 was sensitive to the ultraviolet irradiation at 365 nm, which increased within the first 10 min and later decreased when irradiation time was prolonged to 30 min or longer. The well distributed, self‐assembled micelles composed of azobenzene‐containing amphiphilic diblock copolymers, (PAHMA‐b‐QPDMAEMA)s (QPDMAEMA is quaternized PDMAEMA), in the mixed N,N‐dimethyl formamide (DMF)/H2O solutions were prepared. Their fluorescent intensities decreased with the increasing amount of water. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5652–5662, 2008  相似文献   

8.
Directed self‐assembly of block copolymers (BCPs) is a promising candidate for next generation nanolithography. In order to validate a given pattern, the lateral and in‐depth distributions of the blocks should be well characterized; for the latter, time‐of‐flight (ToF) SIMS is a particularly well‐adapted technique. Here, we use an ION‐TOF ToF‐SIMS V in negative mode to provide qualitative information on the in‐depth organization of polystyrene‐b‐polymethylmethacrylate (PS‐b‐PMMA) BCP thin films. Using low‐energy Cs+ sputtering and Bi3+ as the analysis ions, PS and PMMA homopolymer films are first analyzed in order to identify the characteristic secondary ions for each block. PS‐b‐PMMA BCPs are then characterized showing that self‐assembled nanodomains are clearly observed after annealing. We also demonstrate that the ToF‐SIMS technique is able to distinguish between the different morphologies of BCP investigated in this work (lamellae, spheres or cylinders). ToF‐SIMS characterization on BCP is in good agreement with XPS analysis performed on the same samples. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Disulfide‐centered star‐shaped poly(ε‐benzyloxycarbonyl‐l ‐lysine)‐b‐poly(ethylene oxide) block copolymers (i.e., A2B4 type Cy‐PZlys‐b‐PEO) were synthesized by the combination of ring‐opening polymerization and thiol‐yne chemistry. Their molecular structures and physical properties were characterized in detail by FTIR, 1H NMR, gel permeation chromatography, differential scanning calorimetry, wide‐angle X‐ray diffraction, and polarized optical microscope. Despite mainly exhibiting an α‐helix conformation, the inner PZlys blocks within copolymers greatly prohibited the crystallinity of the outer PEO blocks and presented a liquid crystal phase transition behavior in solid state. These block copolymers Cy‐PZlys‐b‐PEO self‐assembled into nearly spherical micelles in aqueous solution, which had a hydrophobic disulfide‐centered PZlys core surrounded by a hydrophilic PEO corona. As monitored by means of DLS and TEM, these micelles were progressively reduced to smaller micelles in 10 mM 1,4‐dithiothreitol at 37 °C and finally became ones with a half size, demonstrating a reduction‐sensitivity. Despite a good drug‐loading property, the DOX‐loaded micelles of Cy‐PZlys‐b‐PEO exhibited a reduction‐triggered drug release profile with an improved burst‐release behavior compared with the linear counterpart. Importantly, this work provides a versatile strategy for the synthesis of the disulfide‐centered star‐shaped polypeptide block copolymers potential for intracellular glutathione‐triggered drug delivery systems. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2000–2010  相似文献   

10.
The block copolymer poly(ethylene oxide)‐b‐poly(4‐vinylpyridine) was synthesized by a combination of living anionic ring‐opening polymerization and a controllable radical mechanism. The poly(ethylene oxide) prepolymer with the 2,2,6,6‐tetramethylpiperidinyl‐1‐oxy end group (PEOT) was first obtained by anionic ring‐opening polymerization of ethylene oxide with sodium 4‐oxy‐2,2,6,6‐tetramethylpiperidinyl‐1‐oxy as the initiator in a homogeneous process. In the polymerization UV and electron spin resonance spectroscopy determined the 2,2,6,6‐tetramethylpiperidinyl‐1‐oxy moiety was left intact. The copolymers were then obtained by radical polymerization of 4‐vinylpyridine in the presence of PEOT. The polymerization showed a controllable radical mechanism. The desired block copolymers were characterized by gel permeation chromatography, Fourier transform infrared, and NMR spectroscopy in detail. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4404–4409, 2002  相似文献   

11.
4‐Arm star side‐chain liquid crystalline (LC) polymers containing azobenzene with different terminal substituents were synthesized by atom transfer radical polymerization (ATRP). Tetrafunctional initiator prepared by the esterification between pentaerythritol and 2‐bromoisobutyryl bromide was utilized to initiate the polymerization of 6‐[4‐(4‐methoxyphenylazo)phenoxy]hexyl methacrylate (MMAzo) and 6‐[4‐(4‐ethoxyphenylazo)phenoxy]hexyl methacrylate (EMAzo), respectively. The 4‐arm star side‐chain LC polymer with p‐methoxyazobenzene moieties exhibits a smectic and a nematic phase, while that with p‐ethoxyazobenzene moieties shows only a nematic phase, which derives of different terminal substituents. The star polymers have similar LC behavior to the corresponding linear homopolymers, whereas transition temperatures decrease slightly. Both star polymers show photoresponsive isomerization under the irradiation with UV–vis light. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3342–3348, 2007  相似文献   

12.
Well‐defined tertiary amine‐based pH‐responsive homopolymers and block copolymers were synthesized via reversible addition‐fragmentation chain transfer (RAFT) polymerization using 4‐cyanopentanoic acid dithiobenzoate (CPAD) as the RAFT agent for homopolymers and a poly(ethylene glycol) (PEG) macro‐RAFT agent for the block copolymers. 1H NMR and gel permeation chromatography results confirmed the successful synthesis of these homopolymers and block copolymers. Kinetics studies indicated that the formation of both the homopolymers and the block copolymers were well defined. The pKa titration experiments suggested that the homopolymers and the related block copolymers have a similar pKa. The dynamic light scattering investigation showed that all of the block copolymers underwent a sharp transition from unimers to micelles around their pKa and the hydrodynamic diameter (Dh) was not only dependent on the molecular weight but also on the composition of the block copolymers. The polymer solution of PEG‐b‐PPPDEMA formed the largest micelle compare to the PEG‐b‐PDPAEMA and PEG‐b‐PDBAEMA with a similar molecular weight. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1010–1022  相似文献   

13.
3‐Arm star‐block copolymers, (polystyrene‐b‐poly(methyl methacrylate))3, (PS‐b‐PMMA)3, and (polystyrene‐b‐poly(ethylene glycol))3, (PS‐b‐PEG)3, are prepared using double‐click reactions: Huisgen and Diels–Alder, with a one‐pot technique. PS and PMMA blocks with α‐anthracene‐ω‐azide‐ and α‐maleimide‐end‐groups, respectively, are achieved using suitable initiators in ATRP of styrene and MMA, respectively. However, PEG obtained from a commercial source is reacted with 3‐acetyl‐N‐(2‐hydroxyethyl)‐7‐oxabicyclo[2.2.1]hept‐5‐ene‐2‐carboxamide (7) to give furan‐protected maleimide‐end‐functionalized PEG. Finally, PS/PMMA and PS/PEG blocks are linked efficiently with trialkyne functional linking agent 1,1,1‐tris[4‐(2‐propynyloxy)phenyl]‐ethane 2 in the presence of CuBr/N,N,N′,N″,N″‐pentamethyldiethylenetriamine (PMDETA) at 120 °C for 48 h to give two samples of 3‐arm star‐block copolymers. The results of the peak splitting using a Gaussian deconvolution of the obtained GPC traces for (PS‐b‐PMMA)3 and (PS‐b‐PEG)3 displayed that the yields of target 3‐arm star‐block copolymers were found to be 88 and 82%, respectively. © Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7091–7100, 2008  相似文献   

14.
The ability of 2‐vinyl‐4,4‐dimethyl‐5‐oxazolone (VDM), a highly reactive functional monomer, to produce block copolymers by reversible addition fragmentation chain transfer (RAFT) sequential polymerization with methyl acrylate (MA), styrene (S), and methyl methacrylate (MMA) was investigated using cumyl dithiobenzoate (CDB) and 2‐cyanoisopropyl dithiobenzoate (CPDB) as chain transfer agents. The results show that PS‐b‐PVDM and PMA‐b‐PVDM well‐defined block copolymers can be prepared either by polymerization of VDM from PS‐ and PMA‐macroCTAs, respectively, or polymerization of S and MA from a PVDM‐macroCTA. In contrast, PMMA‐b‐PVDM block copolymers with controlled molecular weight and low polydispersity can only be obtained by using PMMA as the macroCTA. Ab initio calculations confirm the experimental studies. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

15.
We report an efficient way, sequential double click reactions, for the preparation of brush copolymers with AB block‐brush architectures containing polyoxanorbornene (poly (ONB)) backbone and poly(ε‐caprolactone) (PCL), poly(methyl methacrylate) (PMMA) or poly(tert‐butyl acrylate) (PtBA) side chains: poly(ONB‐g‐PMMA)‐b‐poly(ONB‐g‐PCL) and poly(ONB‐g‐PtBA)‐b‐poly(ONB‐g‐PCL). The living ROMP of ONB affords the synthesis of well‐defined poly(ONB‐anthracene)20b‐poly (ONB‐azide)5 block copolymer with anthryl and azide pendant groups. Subsequently, well‐defined linear alkyne end‐functionalized PCL (PCL‐alkyne), maleimide end‐functionalized PMMA (PMMA‐MI) and PtBA‐MI were introduced onto the block copolymer via sequential azide‐alkyne and Diels‐Alder click reactions, thus yielding block‐brush copolymers. The molecular weight of block‐brush copolymers was measured via triple detection GPC (TD‐GPC) introducing the experimentally calculated dn/dc values to the software. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

16.
Conjugated block copolymers consisting of poly(3‐hexyl thiophene) (P3HT) and a thermoresponsive polymer poly(N‐isopropyl acrylamide) (PNIPAM) with varying composition have been synthesized by facile click reaction between alkyne terminated P3HT and azide terminated PNIPAM. The composition‐dependent solubility, thermoresponsive property in water, phase behavior, electrochemical, optical, and electronic properties of the block copolymers were systematically investigated. The block copolymers with higher volume fraction of PNIPAM form thermoresponsive spherical micelles with P3HT‐rich crystalline cores and PNIPAM coronas. Both X‐ray and atomic force microscopic studies indicated that the blocks copolymers showed well‐defined microphase separated nanostructures and the structure depended on the composition of the blocks. The electrochemical study of the block copolymers clearly demonstrated that the extent of charge transport through the block copolymer thin film was similar to P3HT homopolymer without any significant change in the band gap. The block copolymers showed improved or similar charge carrier mobility compared with the pure P3HT depending on the composition of the block copolymer. These P3HT‐b‐PNIPAM copolymers were interesting for fabrication of optoelectronic devices capable of thermal and moisture sensing as well as for studying the thermoresponsive colloidal structures of semiconductor amphiphilic systems. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1785–1794  相似文献   

17.
A well‐defined amphiphilic coil‐rod block copolymer, poly(2‐vinyl pyridine)‐b‐poly(n‐hexyl isocyanate) (P2VP‐b‐PHIC), was synthesized with quantitative yields by anionic polymerization. A low reactive one‐directional initiator, potassium diphenyl methane (DPM‐K), was very effective in polymerizing 2‐vinyl pyridine (2VP) without side reactions, leading to perfect control over molecular weight and molecular weight distribution over a broad range of initiator and monomer concentration. Copolymerization of 2VP with n‐hexyl isocyanate (HIC) was carried out in the presence of sodium tetraphenyl borate (NaBPh4) to prevent backbiting reactions during isocyanate polymerization. Terminating the living end with a suitable end‐capping agent resulted in a P2VP‐b‐PHIC coil‐rod block copolymer with controlled molecular weight and narrow molecular weight distribution. Cast film from a chloroform solution of P2VP‐b‐PHIC displayed microphase separation, characteristic of coil‐rod block copolymers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 607–615, 2005  相似文献   

18.
Polyethylene‐block‐poly(methyl methacrylate) (PE‐b‐PMMA) was successfully synthesized through the combination of metallocene catalysis with living radical polymerization. Terminally hydroxylated polyethylene, prepared by ethylene/allyl alcohol copolymerization with a specific zirconium metallocene/methylaluminoxane/triethylaluminum catalyst system, was treated with 2‐bromoisobutyryl bromide to produce terminally esterified polyethylene (PE‐Br). With the resulting PE‐Br as an initiator for transition‐metal‐mediated living radical polymerization, methyl methacrylate polymerization was subsequently performed with CuBr or RuCl2(PPh3)3 as a catalyst. Then, PE‐b‐PMMA block copolymers of different poly(methyl methacrylate) (PMMA) contents were prepared. Transmission electron microscopy of the obtained block copolymers revealed unique morphological features that depended on the content of the PMMA segment. The block copolymer possessing 75 wt % PMMA contained 50–100‐nm spherical polyethylene lamellae uniformly dispersed in the PMMA matrix. Moreover, the PE‐b‐PMMA block copolymers effectively compatibilized homopolyethylene and homo‐PMMA at a nanometer level. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3965–3973, 2003  相似文献   

19.
A combination of anionic and nitroxide‐mediated radical polymerizations (dual initiator) was employed for the synthesis of poly(n‐hexyl isocyanate‐bN‐vinylpyrrolidone) (PHIC‐b‐PNVP) block copolymers. The samples were characterized with a size exclusion chromatograph equipped with refractive‐index and light scattering detectors as well as 1H NMR spectroscopy. Relatively good control over the molecular weights was achieved. However, rather broad molecular weight distributions were obtained. The micellar properties of the PHIC‐b‐PNVP block copolymers were studied in water, which is a selective solvent for the poly(N‐vinylpyrrolidone) blocks. Static and dynamic light scattering revealed the presence of equilibrium between the micelles and clusters. The clusters partially deaggregated with increasing temperature. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5719–5728, 2006  相似文献   

20.
The effect of the terminal substituent of azobenzene on the properties of ABA triblock copolymers was investigated. For this study, three kinds of azobenzene‐containing monomers with different terminal substituents—6‐[4‐(4‐methoxyphenylazo)phenoxy] hexyl methacrylate, 6‐[4‐(4‐ethoxyphenylazo)phenoxy]hexyl methacrylate, and 6‐[4‐(4‐nitrophenylazo)phenoxy]hexyl methacrylate—were used to synthesize ABA triblock copolymers PMMAzo25–PEG13–PMMAzo25/PMMAzo12–PEG13–PMMAzo12, PEMAzo14–PEG13–PEMAzo14, and PNMAzo14–PEG13–PNMAzo14, respectively, by atom transfer radical polymerization (PMMAzo is poly{6‐[4‐(4‐methoxyphenylazo)phenoxy]hexyl methacrylate}, PEMAzo is poly{6‐[4‐(4‐ethoxyphenylazo)phenoxy]hexyl methacrylate}, and PNMAzo is poly{6‐[4‐(4‐nitrophenylazo)phenoxy]hexyl methacrylate}). These copolymers were characterized with 1H NMR spectroscopy and gel permeation chromatography and exhibited controlled molecular weights and narrow molecular weight distributions. Differential scanning calorimetry and polarizing optical microscopy showed that these copolymers had mesophases. PMMAzo25–PEG13–PMMAzo25 and PMMAzo12–PEG13–PMMAzo12 had a smectic mesophase and a nematic mesophase, whereas both PEMAzo14–PEG13–PEMAzo14 and PNMAzo14–PEG13–PNMAzo14 had a nematic mesophase. This demonstrated that the liquid‐crystalline properties of these copolymers highly depended on the terminal substituent of azobenzene. The photoresponsive behavior of these copolymers was also investigated in tetrahydrofuran solutions, and the influence of the terminal substituents attached to azobenzene was studied. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5190–5198, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号