首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Novel AB2‐type azide monomers such as 3,5‐bis(4‐methylolphenoxy)carbonyl azide (monomer 1) , 3,5‐bis(methylol)phenyl carbonyl azide (monomer 2) , 4‐(methylol phenoxy) isopthaloyl azide (monomer 3) , and 5‐(methylol) isopthaloyl azide (monomer 4) were synthesized. Melt and solution polymerization of these monomers yielded hydroxyl‐ and amine‐terminated hyperbranched polyurethanes with and without flexible ether groups. The structures of theses polymers were established using FT‐IR and NMR spectroscopy. The molecular weights (Mw) of the polymers were found to vary from 3.2 × 103 to 5.5 × 104 g/mol depending on the experimental conditions used. The thermal properties of the polymers were evaluated using TGA and DSC: the polymer obtained from monomer ( 1 ) exhibited lowest Tg and highest thermal stability and the polymer obtained from monomer ( 2 ) registered the highest Tg and lowest thermal stability. All the polymers displayed fluorescence maxima in the 425–525 nm range with relatively narrow peak widths indicating that they had pure and intense fluorescence. Also, the polymers formed charge transfer (CT) complexes with electron acceptor molecules such as 7,7,8,8‐tetracyano‐quino‐dimethane (TCNQ) and 1,1,2,2‐tetracyanoethane (TCNE) as evidenced by UV‐visible spectra. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3337–3351, 2009  相似文献   

2.
3,5‐bis(4‐aminophenoxy)phenyl phenylcarbamate—a novel AB2‐type blocked isocyanate monomer and 3,5‐bis{ethyleneoxy(4‐aminophenoxy)}phenyl carbonyl azide—a novel AB2‐type azide monomer were synthesized in high yield. Step‐growth polymerization of these monomers were found to give a first example of hyperbranched poly (aryl‐ether‐urea) and poly(aryl‐alkyl‐ether‐urea). Molecular weights (Mw) of the polymer were found to vary from 1,858 to 52,432 depending upon the monomer and experimental conditions used. The polydispersity indexes were relatively narrow due to the controlled regeneration of isocyanate functional groups for the polymerization reaction. The degree of branching (DB) was determined using 1H‐NMR spectroscopy and the values ranged from 87 to 54%. All the polymers underwent two‐stage decomposition and were stable up to 300 °C. Functionalized end‐capping of poly(aryl‐ether‐urea) using phenylchloroformate and di‐t‐butyl dicarbonate (Boc)2O changed the thermal properties and solubility of the polymers. Copolymerization of AB2‐type blocked isocyante monomer with functionally similar AB monomer were also carried out. The molecular weights of copolymers were found to be in the order of 6 × 105 with narrow dispersity. It was found that the Tg's of poly(aryl‐alkyl‐ether‐urea)s were significantly less (46–49 °C) compared to poly(aryl‐ether‐urea)s. Moreover the former showed melting transition at 154 °C, which was not observed in the latter case. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2959–2977, 2007  相似文献   

3.
Starting from 3,5‐diamino benzoic acid, 2‐hydroxy propyl[3,5‐bis{(benzoxycarbonyl)imino}]benzyl ether, an AB2‐type blocked isocyanate monomer with flexible ether group, and 2‐hydroxy propyl[3,5‐bis{(benzoxycarbonyl)imino}]benzoate, an AB2‐type blocked isocyanate monomer with ester group, were synthesized for the first time. Using the same starting compound, 3,5‐bis{(benzoxycarbonyl)imino}benzylalcohol, an AB2‐type blocked isocyanate monomer, was synthesized through a highly efficient short‐cut route. Step‐growth polymerization of these monomers at individually optimized experimental conditions results in the formation of hyperbranched polyurethanes with and without ether and ester groups. Copolymerizations of these monomers with functionally similar AB monomers were also carried out. The molecular weights of the polymers were determined using GPC and the values (Mw) were found to vary from 1.5 × 104 to 1.2 × 106. While hyperbranched polyurethanes having no ether or ester group were found to be thermally stable up to 217 °C, hyperbranched poly(ether–urethane)s and poly(ester–urethane)s were found to be thermally stable up to 245 and 300 °C, respectively. Glass transition temperature (Tg) of polyurethane was reduced significantly when introducing ether groups into the polymer chain, whereas Tg was not observed even up to 250 °C in the case of poly(ester–urethane). Hyperbranched polyurethanes derived from all the three different AB2 monomers were soluble in highly polar solvents and the copolymers showed improved solubility. Polyethylene glycol monomethyl ether of molecular weight 550 and decanol were used as end‐capping groups, which were seen to affect the thermal, solution, and solubility properties of polymers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3877–3893, 2007  相似文献   

4.
Linear and hyperbranched poly(ether‐ketone)s (PEKs) containing flexible oxyethylene spacers grafted multiwalled carbon nanotube (PEK‐g‐MWNT) nanocomposites were prepared by direct Friedel‐Crafts acylation as the polymer forming and grafting reaction. To achieve the composites, in situ polycondensations of AB monomers 3‐(2‐phenoxyethoxy)benzoic acid (3‐PEBA) and 4‐(2‐phenoxyethoxy)benzoic acid (4‐PEBA), and AB2 monomer 3,5‐bis(2‐phenoxyethoxy)benzoic acid (3,5‐BPEBA) were carried out in the presence of multiwalled carbon nanotubes (MWNTs). The reaction conditions, polyphosphoric acid (PPA) with additional phosphorous phentoxide (P2O5) in the temperature range of 110–120 °C, were previously optimized. The conditions were used as the polymerization and grafting medium that were indeed benign not to damage MWNTs but strong enough to promote the covalent attachment of PEKs onto the surface of the electron‐deficient MWNTs. From scanning electron microscopy (SEM) and transmission electron microscopy studies, the polymers were uniformly grafted onto the MWNTs. The resultant nanocomposites are soluble in most strong acids such as trifluoroacetic acid, methanesulfonic acid, and sulfuric acid. Both isothermal and dynamic TGA studies in air showed that nanocomposites displayed improved thermo‐oxidative stability when compared with those of corresponding PEK homopolymers. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3471–3481, 2008  相似文献   

5.
As an alternative to strong acid reaction media for the Friedel–Crafts acylation for a polymer‐forming reaction, a mild polyphosphoric acid (PPA) with optimized amount of phosphorous pentoxide (P2O5) has been tested for the polymerization of AB monomers 4‐(2‐phenoxyethoxy)benzoic acid and 3‐(2‐phenoxyethoxy)benzoic acid, and an AB2 monomer 3,5‐bis(2‐phenoxyethoxy)benzoic acid. The reaction progress of AB2 monomer was conveniently traced by FTIR spectroscopy monitoring aromatic ketone (C?O) stretching bands arisen from carboxylic acid groups at the chain ends and carbonyl groups in the backbone as a function of reaction time at 110 °C. The resultant linear and hyperbranched polymers containing flexible oxyethylene spacers, which were prone to be hydrolyzed in strong acids at elevated temperature, displayed high intrinsic viscosities. Thus, the reaction medium PPA/P2O5 mixture as an electrophilic substitution reaction was indeed benign not to depolymerize growing polymer molecules but strong enough for the direct generation of carbonium ion from carboxylic acid to promote efficient polymerization. The resultant hyperbranched poly(etherketone) (PEK) displayed the best solubility among samples. All PEKs showed good thermal stability; glass transition temperatures were in the range of 90–117 °C; 5% weight loss generally occurred at greater than 345 °C in air. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5112–5122, 2007  相似文献   

6.
As a convenient alternative to the classical melt polycondensation the one‐pot solution polycondensation of suitable AB2 monomers under mild conditions has been successfully adapted to hyperbranched all‐aromatic polyester with phenol terminal groups. The polymerization was performed in solution at room temperature directly using commercially available 3,5‐dihydroxybenzoic acid as monomer and 4‐(dimethylamino) pyridinium 4‐tosylate as catalyst to suppress the formation of N‐acylurea. Different carbodiimides as coupling agents were investigated to find the optimal esterification conditions. The polymers have been characterized extensively and were compared with their well‐known analogs synthesized in melt. The characterization was carried out by NMR spectroscopy, size exclusion chromatography, and asymmetric flow‐field flow fractionation as an alternative separation technique for multifunctional polymers. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5158–5168, 2009  相似文献   

7.
In this study, a novel application of radical addition‐coupling polymerization (RACP) for synthesis of hyperbranched polymers is reported. By Cu/PMDETA‐mediated RACP of 2‐methyl‐2‐nitrosopropane with trimethylolpropane tris(2‐bromopropionate) or a bromo‐ended 3‐arm PS macromonomer, two types of hyperbranched polymers with high degree of polymerization are synthesized under mild conditions, respectively. The chemical structures of the hyperbranched polymers are carefully characterized. By selective degradations of the ester groups and weak bonds of NO? C in the polymers, high degree of alternative connection of the two monomers in the synthesized polymers have been identified. Based on the experimental results, mechanism of formation of the hyperbranched polymer is proposed, which includes formation of carbon radicals from the tribromo monomer through single electron transfer, its capture by 2‐methyl‐2‐nitrosopropane that results in nitroxide radical, and cross‐coupling reaction of the nitroxide radical with other carbon radicals. Hyperbranched polymer can be formed in a step‐growth mode after multiple steps of such reactions. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 904–913  相似文献   

8.
The copolymerization behavior of the one‐step direct polycondensation of 3,5‐bis‐(4‐aminophenoxy)benzoic acid (AB2 monomer) and 3‐(4‐aminophenoxy)benzoic acid (AB monomer) was investigated by IR and 13C NMR measurements. IR measurements revealed that the content of the AB2 units in the polymer was higher in the early stages of polymerization. 13C NMR spectra of the polymers indicated that the number of dendritic units increased slowly with increasing reaction time. The stepwise copolymerization of the AB2 and AB monomers was also carried out, and the structure was analyzed by 13C NMR measurements. Copolymer synthesized stepwise by adding AB2 monomer first (polymer II ) had more dendritic units and less terminal units as compared with the one‐step copolymer (polymer I ). Copolymer synthesized stepwise by adding AB monomer first gave a resulting copolymer (polymer III ) composed of long AB chains. The solubility of the stepwise copolymers was low, and the inherent viscosity was high in comparison with the one‐step copolymer as a result of the difference in architecture of the copolymers. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3304–3310, 2001  相似文献   

9.
Hyperbranched poly(ether nitrile)s were prepared from a novel AB2 type monomer, 2‐chloro‐4‐(3,5‐dihydroxyphenoxy)benzonitrile, via nucleophilic aromatic substitution. Soluble and low‐viscous hyperbranched polymers with molecular weights upto 233,600 (Mw) were isolated. According to the 1H NMR and GPC data, the unique polymerization behavior was observed, which implies that the weight average molecular weight increased after the number average molecular weight reached plateau region. Model compounds were prepared to characterize the branching structure. Spectroscopic measurements of the model compounds and the resulting polymers, such as 1H, DEPT 13C NMR, and MS, strongly suggest that the ether exchange reaction and cyclization are involved in the propagation reaction. The side reactions would affect the unique polymerization behavior. The resulting polymers showed a good solubility in organic solvents similar to other hyperbranched aromatic polymers. The hydroxy‐terminated polymer was even soluble in basic water. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5835–5844, 2009  相似文献   

10.
N,N′‐disubstituted hyperbranched polyureas with methyl, benzyl, and allyl substitutents were synthesized starting from AB2 monomers based on 3,5‐diamino benzoic acid. Carbonyl azide approach, which generates isocyanate group in situ on thermal decomposition, was used for the protection of isocyanate functional groups. The N‐substituted hyperbranched polymers can be considered as the new class of internally functionalized hyperbranched polyureas wherein the substituent can function either as receptor or as a chemical entity for selective transformations as a tool to tailor the properties. The chain‐ends were also modified by attaching long chain aliphatic groups to fully realize the interior functionalization. This approach opens up a possible synthetic route wherein different functional substituents can be used to generate a library of internally functionalized hyperbranched polymers. All the hyperbranched polyureas were characterized by FTIR, 1H‐NMR, DSC, TGA, and size exclusion chromatography. Degree of branching in these N,N′‐disubstituted hyperbranched polyureas, as calculated by 1H‐NMR spectroscopy using model compounds, was found to be lower than the unsubstituted hyperbranched polyurea and is attributed to the lower reactivity of N‐substituted amines compared to that of unsubstituted amines. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5134–5145, 2004  相似文献   

11.
Hyperbranched polymers consisting of aromatic or aliphatic polyether cores and epoxide chain‐end peripheries were prepared by proton transfer polymerization. AB2 diepoxyphenol monomer 1 proved to be well suited for the preparation of hyperbranched aromatic polymer 2 by this proton transfer polymerization. The use of chloride‐ion catalysis, rather than conventional base catalysis, for the preparation of polymers from diepoxyphenol 1 offered a unique method to control the ultimate molecular weight of the polymer product through variations of the initial concentration of monomer 1 in tetrahydrofuran. An alternative route to hyperbranched polyether epoxies made use of commercially available or easily prepared aliphatic monomers of the types AB2, AB3, and A2 + B3. Although these aliphatic polymerizations can be initiated with a base, chloride‐ion catalysis proved most effective for controlling the polymerization. The hyperbranched epoxies were characterized by NMR spectroscopy, gel permeation chromatography, and multi‐angle laser light scattering. Chemical modification of the polymers after polymerization was carried out via nucleophilic addition on the epoxide groups or derivatization of the hydroxy substituents within the hyperbranched polymer structure. Spectroscopic measurements suggested that some such ring‐opened materials may adopt reverse unimolecular micellar structures in appropriate solution environments. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4850–4869, 2000  相似文献   

12.
Facile syntheses of hyperbranched polyimides were realized by the polymerization of A2 + BB2 monomers, 2,2‐bis(3,4‐dicarboxylphenyl) hexafluoropropane dianhydride (6FDA) + 2,4,6‐triaminopyrimidine (TAP), performed by mixing the monomers together in N‐methylpyrrolidone at 17% w/v concentrations with molar ratios of 6FDA:TAP ranging from 1:1 to 2:1. The lower reactivity of 2‐amino as compared with 4‐/6‐amino in TAP, demonstrated by 1H NMR, was probably the main reason for no gelation formed during the polymerization although monomer conversions surpassed the theoretical gel points. Fourier transform infrared spectroscopy and NMR were used to verify the structures of the obtained polymers. 1H NMR analysis indicated the degrees of branching (DB) of the polymers increased from 36 to 83% with the molar ratios of 6FDA:TAP increasing from 1:1 to 2:1. Molecular weights were determined by gel permeation chromatography, and inherent viscosities were measured. Glass‐transition temperature values, determined by differential scanning calorimetry, decreased when DB increased, and thermogravimetric analysis reflected the excellent thermal stability of the obtained hyperbranched polyimides. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4563–4569, 2002  相似文献   

13.
A new method for the synthesis of hyperbranched polymers involving the use of ABx macromonomers containing linear units have been investigated. Two types of novel hyperbranched polyurethanes have been synthesized by a one‐pot approach. The structures of monomers and polymers were characterized by elemental analysis, 1H NMR, 13C NMR, Fourier transform infrared spectroscopy, gel permeation chromatography, and thermogravimetric analysis. The hyperbranched polymers have been proven to be extremely soluble in a wide range of solvents. Polymer electrolytes were prepared with hyperbranched polymer, linear polymer as the host, and lithium perchlorate (LiClO4) as the ion source. Analysis of the isotherm conductivity dependence of the ion concentration indicated that these hyperbranched polymers could function as a “solvent” for the lithium salt. The conductivity increased with the increasing concentration of hyperbranched polymers in the host polymer. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 344–350, 2002  相似文献   

14.
A novel cyclic ether monomer 3‐{2‐[2‐(2‐hydroxyethoxy)ethoxy]ethoxy‐methyl}‐3′‐methyloxetane (HEMO) was prepared from the reaction of 3‐hydroxymethyl‐3′‐methyloxetane tosylate with triethylene glycol. The corresponding hyperbranched polyether (PHEMO) was synthesized using BF3·Et2O as initiator through cationic ring‐opening polymerization. The evidence from 1H and 13C NMR analyses revealed that the hyperbranched structure is constructed by the competition between two chain propagation mechanisms, i.e. active chain end and activated monomer mechanism. The terminal structure of PHEMO with a cyclic fragment was definitely detected by MALDI‐TOF measurement. A DSC test implied that the resulting polyether has excellent segment motion performance potentially beneficial for the ion transport of polymer electrolytes. Moreover, a TGA assay showed that this hyperbranched polymer possesses high thermostability as compared to its liquid counterpart. The ion conductivity was measured to reach 5.6 × 10?5 S/cm at room temperature and 6.3 × 10?4 S/cm at 80 °C after doped with LiTFSI at a ratio of Li:O = 0.05, presenting the promise to meet the practical requirement of lithium ion batteries for polymer electrolytes. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3650–3665, 2006  相似文献   

15.
A novel photoactive, liquid‐crystalline, hyperbranched benzylidene polyester (PAHBP) was synthesized from a dilute solution of an A2 photoactive monomer [bis(4‐hydroxybenzylidene)‐4‐phenyl cyclohexanone] and a B3 monomer (1,3,5‐benzene tricarboxylic acid chloride) by the solution polycondensation method in the presence of pyridine as a condensing agent. PAHBP was thoroughly characterized by Fourier transform infrared, 1H and 13C NMR, ultraviolet–visible spectrometry, and gel permeation chromatography. The inherent viscosity of the polymer was 0.35 dL/g in tetrahydrofuran. The degree of branching was 0.53, which confirmed the branched architecture of the polymer. Furthermore, thermogravimetric analysis, differential scanning calorimetry, and polarized optical microscopy were used to examine the thermal stability and thermotropic liquid‐crystalline properties of the hyperbranched polyester. The polymer exhibited a nematic mesophase over a wide range of temperatures. The photoreactivity of PAHBP was studied by photolysis under ultraviolet light. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 53–61, 2006  相似文献   

16.
Highly fluorinated, hyperbranched polymers were synthesized from the polycondensation of AB2 monomers, 3,5‐bis[(pentafluorobenzyl)oxy]benzyl alcohol and 3,5‐bis[(pentafluorobenzyl)‐oxy]phenol with potassium carbonate base, and 18‐crown‐6 phase transfer agent in a variety of polar aprotic solvents. The regioselectivity of the polymerization was optimized and was found to be temperature dependent. The new polymerization technique produced higher molecular weight polymer using safer conditions than earlier methods. The resulting optimization was used to control substitution of oxygen‐bearing nucleophiles along nonactivated fluoroaryl systems in high yield. Water was found to induce side reactions that generate a highly conjugated fluoroaryl phenol with lowered reactivity. The removal of a methylene spacer in the polymer backbone of the hyperbranched polymer produced a polymer with greater thermal stability. The reaction conditions for polymerization were found to be general for nucleophile‐bearing perfluorinated systems. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 985–994  相似文献   

17.
Hyperbranched poly(ether sulfone)s were prepared by the self‐polycondensation of the novel AB2 monomer, 4‐(3,5‐hydroxyphenoxy)‐4′‐fluorodiphenylsulfone. The high‐molecular‐weight polymers were isolated in good yields. The degree of branching (DB) of the resulting polymers was investigated by the preparation of dendritic and linear model compounds. The DB determined by gated decoupling 13C NMR measurements was in the range 0.17–0.41 and was dependent on the base used for the self‐polycondensation. It was found that cesium fluoride was an effective base to form the polymer having the DB of 0.41. The resulting hyperbranched poly(ether sulfone)s showed good solubility in organic solvents. The solubility and the glass transition temperature of the polymers were influenced by the terminal functional groups. The unique thermal crosslinking phenomenon was observed during the DSC measurements of the hydroxyl‐terminated hyperbranched poly(ether sulfone) under air condition. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

18.
A series of s‐triazine‐based hyperbranched polyethers (HBPE) have been synthesized to obtain thermostability but flexible polymers by an interfacial polycondensation of different diols as A2 and cyanuric chloride as B3 monomers using A2 + B3 approach in the presence of a phase transfer catalyst. The polymerization reaction parameters are optimized, and the results indicate that the optimum conditions for the interfacial polycondensation are a 2:3 mole ratio of cyanuric chloride to diol using butanediol, benzyldimethylhexadecyl ammonium chloride as the catalyst, dichloromethane as the organic solvent, and a three‐step procedure with keeping the reaction mixture at different low temperatures for 2h/2h/5h. Other techniques such as high‐temperature solution, one‐step polycondensation, and transesterification were also carried out to synthesize the HBPE but proved to be not suitable due to large number of side reactions. The synthesized polymers were characterized by FTIR, 1H NMR, and 13C NMR spectroscopy, hydroxyl number determination, solution viscosity measurements, and GPC analysis. The thermal behavior of the hyperbranched polymer was investigated by thermogravimetric analysis and differential scanning calorimetry. All the results were compared with those from an analogous linear polyether, obtained from 2‐methoxy‐4,6‐dichloro‐s‐triazine and butanediol by using the same polymerization technique. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3994–4004, 2010  相似文献   

19.
Based on the dibenzo‐24‐crown‐8/1,2‐bis(pyridinium)ethane recognition motif, a hyperbranched mechanically interlocked polymer was prepared by polyesterification of an easily available dynamic trifunctional AB2 pseudorotaxane monomer. It was characterized by various techniques including 1H NMR, COSY, NOESY, GPC, viscosity, TGA, dynamic laser light scattering, AFM, and SEM. Its GPC Mn was determined to be 191 kDa with polydispersity 1.7 and its hydrodynamic diameter in a dilute solution in acetone was about 70 nm. This measured Mn value corresponds to about 93 repeating units. The study reported here presents not only a new polymer topology but also a novel and convenient way to prepare mechanically interlocked polymers. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 4067–4073, 2010  相似文献   

20.
Hyperbranched polymethacrylates were prepared by means of oxyanionic vinyl polymerization of commercially available monomers, including hydroxyethyl methacrylate (HEMA) and poly(ethylene glycol) methacrylate (PEG‐MA). Hyperbranched polymethacrylates with high molecular weight were obtained with the complex of potassium hydride and 18‐crown‐6 as the initiator. The effect of 18‐crown‐6 is very important, and only oligomer can be obtained in the polymerization without 18‐crown‐6. The molecular structure of the hyperbranched polymers was confirmed with 1H NMR and 13C NMR spectra. The ratio of initiator to monomer significantly affects the architecture of the resultant polymers. When the ratio of initiator to monomer equals 1 in the oxyanionic vinyl polymerization of HEMA, the degree of branching of the resulting polymer was calculated to be around 0.49. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3502–3509, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号