首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Novel copolymers based on acrylamide(AM)and complex pseudorotaxane monomer N’-(3-vinylbenzyl)-1,4- diaminobutane dihydrochloride with cucurbit[6]uril(CB[6])(3VBCB)were prepared via free-radical polymerization in aqueous solution,and characterized by 1H-NMR,FT-IR,elemental analysis and static light scattering.The compositions of the copolymers(PAM3VBCB)with pseudorotaxane units were determined by 1H-NMR and elemental analysis.Thermal properties of the copolymers were studied by TGA,and the effects of the copolymer concentration and pH on the average hydrodynamic radius(Rh)of the copolymer molecules were studied by dynamic light scattering(DLS).The experiment data show that CB[6]beads are localized on 1,4-diaminobutane units in side chains of the copolymers.TGA results show that thermal stability of the copolymer increases with increasing the content of pseudorotaxane unit because of the enhanced rigidity and the bulky steric hindrance of 3VBCB in side chains of PAM3VBCB.DLS data show that the average hydrodynamic radius of copolymer molecules increases with the increase in the copolymer concentration,and both the pH and electrical conductivity of PAM3VBCB solutions demonstrate an acute change with addition of NaOH because of CB[6] dethreading from the side chains of PAM3VBCB.CB[6]threading and dethreading of PAM3VBCB could be controlled by addition of BaCl2 and Na2SO4  相似文献   

2.
Homopolymers of tbutyl acrylate (PtBuA) and a monosubstituted acrylamide (PAM) having an amino acid moiety in the side chain, N‐acryloyl‐(L )‐phenylalanine methyl ester 1 , have been synthesized by Reversible Addition‐Fragmentation Chain Transfer (RAFT) polymerization. Diblock copolymers of these homopolymers were also synthesized by chain extending PtBuA with monomer 1 and after modification, using simple acid deprotection chemistries of the acrylate block to afford a poly (acrylic acid) block, an optically active amphiphilic diblock copolymer was isolated. The optically active amphiphilic diblock copolymers, which contain chiral amino acid moieties within the hydrophobic segment, were then self‐assembled to afford spherical micelles which were subsequently crosslinked throughout the shell layer to afford robust chiral nanoparticles. The hydrodynamic diameters (Dh) of the block copolymer micelles and nanoparticles were measured by dynamic light scattering (DLS) and the dimensions of the nanoparticles were determined using tapping‐mode atomic force microscopy (AFM) and transmission electron microscopy (TEM). © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3690–3702, 2008  相似文献   

3.
Fluoroalkyl methacrylates, 2,2,2‐trifluoroethyl methacrylate ( 1 ), hexafluoroisopropyl methacrylate ( 2 ), 1,1,1,3,3,3‐hexafluoro‐2‐methyl‐2‐propyl methacrylate ( 3 ), and perfluoro t‐butyl methacrylate ( 4 ) were synthesized. Homopolymers and copolymers of these fluoroalkyl methacrylates with methyl methacrylate (MMA) were prepared and characterized. With the exception of the copolymers of MMA and 2,2,2‐trifluoroethyl methacrylate ( 1 ), the glass transition temperatures (Tgs) of the copolymers were found to deviate positively from the Gordon‐Taylor equation. The positive deviation from the Gordon‐Taylor equation could be accounted for by the dipole–dipole intrachain interaction between the methyl ester group and the fluoroalkyl ester group of the monomer units. These Tg values of the copolymers were found to fit with the Schneider equation. The fitting parameters in the Schneider equation were calculated, and R2 values, the coefficients of determination, were almost 1.0. The refractive indices of the copolymers, measured at 532, 633, and 839 nm wavelengths, were lower than that of PMMA and showed a linear relationship with monomer composition in the copolymers. 2 and MMA have a tendency to polymerize in an alternating uniform monomer composition, resulting in less light scattering. This result suggests that the copolymer prepared with an equal molar ratio of 2 and MMA may have useful properties with applications in optical devices. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4748–4755, 2008  相似文献   

4.
A technique is described for the preparation of arborescent graft copolymers containing poly(tert‐butyl methacrylate) (PtBMA) segments. For this purpose, tert‐butyl methacrylate is first polymerized with 1,1‐diphenyl‐2‐methylpentyllithium in tetrahydrofuran. The graft copolymers are obtained by addition of a solution of a bromomethylated polystyrene substrate to the living PtBMA macroanion solution. Copolymers incorporating either short (Mw ≈ 5000) or long (Mw ≈ 30,000) PtBMA side chains were prepared by grafting onto linear, comb‐branched (G0), G1, and G2 bromomethylated arborescent polystyrenes. Branching functionalities ranging from 9 to 4500 and molecular weights ranging from 8.8 × 104 to 6.3 × 107 were obtained for the copolymers, while maintaining a low apparent polydispersity index (Mw/Mn ≈ 1.14–1.25). Arborescent polystyrene‐graft‐poly(methacrylic acid) (PMAA) copolymers were obtained by hydrolysis of the tert‐butyl methacrylate units. Dynamic light scattering measurements showed that the arborescent PMAA copolymers are more expanded than their linear PMAA analogues when neutralized with NaOH. This effect is attributed to the higher charge density in the branched arborescent copolymer structures. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2335–2346, 2008  相似文献   

5.
The physical properties of well‐defined alternating copolymers poly(methyl methacrylate‐alt‐styrene) and poly(n‐butyl methacrylate‐alt‐styrene), prepared by reversible addition–fragmentation chain transfer polymerization in the presence of Lewis acids, were investigated with differential scanning calorimetry, wide‐angle X‐ray scattering, and dynamic mechanical measurements. The properties were compared with those of random copolymers of the same overall composition and the corresponding homopolymers. Wide‐angle X‐ray scattering data showed that the alternating copolymers possessed a more regular comonomer sequence than the random copolymers. The thermomechanical properties of alternating copolymers and random copolymers were quite similar and typical for amorphous polymers, but in one of the cases studied the glass‐transition temperature for alternating copolymer was remarkably higher than for the random copolymer. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3440–3446, 2005  相似文献   

6.
Amphiphilic block copolymers of poly(acrylic acid‐b‐butyl acrylate) were prepared by reversible addition–fragmentation chain transfer polymerization in a one‐pot reaction. These copolymers were characterized by NMR, static and dynamic light scattering, tensiometry, and size exclusion chromatography. The aggregation characteristics of the copolymers corresponded to those theoretically predicted for a star micelle. In a butyl acrylate and methyl methacrylate emulsion polymerization, low amounts of these copolymers could stabilize latices with solid contents up to 50%. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 684–698, 2003  相似文献   

7.
Amphiphilic polymeric particles with hydrophobic cores and hydrophilic shells were prepared via living radical emulsion polymerization of styrene using a water‐soluble poly(acrylamide)‐based macro‐RAFT agent in aqueous solution in the absence of any surfactants. Firstly, the homopolymerization of acrylamide (AM) was carried out in aqueous phase by reversible addition‐fragmentation chain transfer radical polymerization (RAFT) using a trithiocarbonate as a chain transfer agent. Then the PAM‐based macro‐RAFT agent has been used as a water‐soluble macromolecular chain transfer agent in the batch emulsion polymerization of Styrene (St) free of surfactants. The RAFT controlled growth of hydrophobic block led to the formation of well‐defined poly(acrylamide)‐copolystyrene amphiphilic copolymer, which was able to work as a polymeric stabilizer (self‐stability). Finally, very stable latex was prepared, having no visible phase separation for several months. FTIR and 1H‐NMR measurements showed that the product was the block copolymer PAM‐co‐PS in the form of stable latex. Atomic force microscope (AFM), transmission electron microscope (TEM), and dynamic light scattering (DLS) studies indicated that the nanoparticles have a narrow particle size distribution and the average particle hydrodynamic radius was kept in the diameter of 58 nm. Core‐shell structure of the copolymer was also recorded by TEM. The mechanism of the self‐stability of polymer particles during the polymerization in the absence of surfactants was studied. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3098–3107, 2008  相似文献   

8.
Novel amphiphilic star‐block copolymers, star poly(caprolactone)‐block‐poly[(2‐dimethylamino)ethyl methacrylate] and poly(caprolactone)‐block‐poly(methacrylic acid), with hyperbranched poly(2‐hydroxyethyl methacrylate) (PHEMA–OH) as a core moiety were synthesized and characterized. The star‐block copolymers were prepared by a combination of ring‐opening polymerization and atom transfer radical polymerization (ATRP). First, hyperbranched PHEMA–OH with 18 hydroxyl end groups on average was used as an initiator for the ring‐opening polymerization of ε‐caprolactone to produce PHEMA–PCL star homopolymers [PHEMA = poly(2‐hydroxyethyl methacrylate); PCL = poly(caprolactone)]. Next, the hydroxyl end groups of PHEMA–PCL were converted to 2‐bromoesters, and this gave rise to macroinitiator PHEMA–PCL–Br for ATRP. Then, 2‐dimethylaminoethyl methacrylate or tert‐butyl methacrylate was polymerized from the macroinitiators, and this afforded the star‐block copolymers PHEMA–PCL–PDMA [PDMA = poly(2‐dimethylaminoethyl methacrylate)] and PHEMA–PCL–PtBMA [PtBMA = poly(tert‐butyl methacrylate)]. Characterization by gel permeation chromatography and nuclear magnetic resonance confirmed the expected molecular structure. The hydrolysis of tert‐butyl ester groups of the poly(tert‐butyl methacrylate) blocks gave the star‐block copolymer PHEMA–PCL–PMAA [PMAA = poly(methacrylic acid)]. These amphiphilic star‐block copolymers could self‐assemble into spherical micelles, as characterized by dynamic light scattering and transmission electron microscopy. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6534–6544, 2005  相似文献   

9.
A series of well‐defined amphiphilic triblock copolymers, poly(ethylene glycol)‐b‐poly(tert‐butyl acrylate)‐b‐poly(2‐hydroxyethyl methacrylate) (PEG‐b‐PtBA‐b‐PHEMA), were synthesized via successive atom transfer radical polymerization (ATRP). ATRP of tBA was first initiated by PEG‐Br macroinitiator using CuBr/N,N,N′,N″,N′″‐pentamethyldiethylenetriamine as catalytic system to give PEG‐b‐PtBA diblock copolymer. This copolymer was then used as macroinitiator to initiate ATRP of HEMA, which afforded the target triblock copolymer, PEG‐b‐PtBA‐b‐PHEMA. The critical micelle concentrations of obtained amphiphilic triblock copolymers were determined by fluorescence spectroscopy using N‐phenyl‐1‐naphthylamine as probe. The morphology and size of formed aggregates were investigated by transmission electron microscopy and dynamic light scattering, respectively. Finally, an acid‐sensitive PEG‐b‐PtBA‐b‐P(HEMA‐CAD) prodrug via cis‐aconityl linkage between doxorubicin and hydroxyls of triblock copolymers with a high drug loading content up to 38%, was prepared to preliminarily explore the application of triblock copolymer in drug delivery. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

10.
A versatile family of cationic methacrylate copolymers containing varying amounts of primary and tertiary amino side groups were synthesized and investigated for in vitro gene transfection. Two different types of methacrylate copolymers, poly(2‐(dimethylamino)ethyl methacrylate)/aminoethyl methacrylate [P(DMAEMA/AEMA)] and poly(2‐(dimethylamino)ethyl methacrylate)/aminohexyl methacrylate [P(DMAEMA/AHMA)], were obtained by reversible addition‐fragmentation chain transfer (RAFT) copolymerization of dimethylaminoethyl methacrylate (DMAEMA) with N‐(tert‐butoxycarbonyl)aminoethyl methacrylate (Boc‐AEMA) or N‐(tert‐butoxycarbonyl)aminohexyl methacrylate (Boc‐AHMA) followed by acid deprotection. Gel permeation chromatography (GPC) measurements revealed that Boc‐protected methacrylate copolymers had Mn in the range of 16.1–23.0 kDa and low polydispersities of 1.12–1.26. The copolymer compositions were well controlled by monomer feed ratios. Dynamic light scattering and agarose gel electrophoresis measurements demonstrated that these PDMAEMA copolymers had better DNA condensation than PDMAEMA homopolymer. The polyplexes of these copolymers revealed low cytotoxicity at an N/P ratio of 3/1. The in vitro transfection in COS‐7 cells in serum free medium demonstrated significantly enhanced (up to 24‐fold) transfection efficiencies of PDMAEMA copolymer polyplexes as compared with PDMAEMA control. In the presence of 10% serum, P(DMAEMA/AEMA) and P(DMAEMA/AHMA) displayed a high transfection activity comparable with or better than 25 kDa PEI. These results suggest that cationic methacrylate copolymers are highly promising for development of safe and efficient nonviral gene transfer agents. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2869–2877, 2010  相似文献   

11.
A monomer design having a bulky terminal tricyclodecane (TCD) unit linked via hydrogen bondable urethane to an ethyleneoxy methacrylate unit, and capable of generating three‐dimensional honeycomb patterns upon solvent casting has been investigated. Random copolymers as well as a diblock copolymer Poly(Sty42b‐TCD18) of this monomer with styrene were prepared by free‐radical polymerization route and atom transfer radical polymerization (ATRP) route. Morphology characterization was carried out using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis. Particle size was measured by dynamic light scattering measurements (DLS). Irrespective of the wide differences in molecular weight and polydispersity index values, the random copolymers having TCD content >30 mol % were found to form microporous films upon solvent casting from a THF/water 9:1 solvent combination. The amount of TCD in the copolymer was found to have an influence on the pore size formed. The diblock copolymer formed microspheres ~200 nm in diameter. The thermal properties of all the polymers were studied using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), and the copolymers were found to have good thermal stability. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1278–1288, 2008  相似文献   

12.
A series of amphiphilic thermoresponsive copolymers was synthesized by group transfer polymerization. Seven copolymers were prepared based on the nonionic hydrophobic n‐butyl methacrylate (BuMA), the ionizable hydrophilic and thermoresponsive 2‐(dimethylamino)ethyl methacrylate (DMAEMA) and the nonionic hydrophilic poly(ethylene glycol)methyl methacrylate (PEGMA). In particular, one diblock copolymer and six tricomponent copolymers of different architectures and compositions, one random and five triblock copolymers, were synthesized. The polymers and their precursors were characterized in terms of their molecular weight and composition using gel permeation chromatography and proton nuclear magnetic resonance spectroscopy, respectively. Aqueous solutions of the polymers were studied by turbidimetry, hydrogen ion titration, and light scattering to determine their cloud points, pKas, and hydrodynamic diameters and investigate the effect of the polymers' composition and architecture. The thermoresponsive behavior of the copolymers was also studied. By increasing the temperature, all polymer solutions became more viscous, but only one polymer, the one with the highest content of the hydrophobic BuMA, formed a stable physical gel. Interestingly, the thermoresponsive behavior of these triblock copolymers was affected not only by the terpolymers' composition but also by the terpolymers' architecture. These findings can facilitate the design and engineering of injectable copolymers for tissue engineering that could enable the in situ formation of physical gels at body temperature. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 775–783, 2010  相似文献   

13.
In this work, fluorinated nonamphiphilic gradient copolymers of tert‐butyl acrylate (tBA) and 2,2,3,3,4,4,4‐heptafluorobutyl methacrylate (HFBMA) [poly(tBA‐grad‐HFBMA)] were first synthesized by semibatch atom transfer radical copolymerization of tBA and HFBMA. Their hydrolysis at acidic conditions led to amphiphilic poly(acrylic acid‐grad‐HFBMA). The chemical compositions and structures of these copolymers were characterized by proton nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, and gel permeation chromatography. Their surface properties were evaluated with water contact angle measurement and x‐ray photoelectron spectroscopy. The micellization behaviors of amphiphilic copolymer were also studied by transmission electron microscopy and dynamic light scattering. The results showed that the fluorinated and amphiphilic gradient copolymers could self‐assemble in a dilute solution to form aggregates of morphologies. Furthermore, the effect of pH on the aggregates was investigated to verify that the resulting gradient copolymers were to some extent pH sensitive. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

14.
This investigation reports the preparation of thermally amendable copolymers of 2-hydroxyethylmethacrylate (HEMA) with methyl methacrylate (MMA) and butyl methacrylate (BMA) via reversible addition fragmentation chain-transfer (RAFT) polymerization followed by Alder-ene reaction. The chemical compositions and molecular weights of the copolymers were determined via 1H NMR and gel-permeation chromatography (GPC) analyses. The hydroxyl groups of PHEMA in the copolymer were modified to incorporate indole functional group, which was further modified via an ultrafast Alder-ene reaction using a bifunctional 1,2,4-triazoline-3,5-dione (TAD) derivative. The thermoreversible character of the resultant crosslinked network was studied via differential scanning calorimetry (DSC) and FT-IR analyses. Different microscopic analyses were performed to study the self-healing property and self-healing efficiency of the crosslinked network. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 2310–2318  相似文献   

15.
Methyl methacrylate (MMA)/tert‐butyl methacrylate (tBMA) gradient copolymers having linear and hyperbolic composition profiles were synthesized. These special copolymer products were achieved via a model‐based computer‐controlled semibatch atom transfer radical copolymerization (ATRcoP) process. A simple ATRcoP model was developed based on the terminal model. The equilibrium constants in the ATRP of MMA and tBMA were estimated by the data correlation. The model was verified by batch experiments and was found to give good correlation for the polymerization rate, molecular weight, and copolymer composition data. The model coupled with a reactor model was then applied to the semibatch ATRcoP and was used to calculate comonomer feeding rates for the targeted gradient composition profiles. It was found that the experimental monomer conversion, molecular weight, and cumulative copolymer composition were in good agreement with their targeted theoretical values. The gradient copolymers had low polydispersities close to 1.1. This work demonstrated the feasibility of the model‐based semibatch ATRcoP in fine‐tuning gradient copolymer composition profiles. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 69–79, 2009  相似文献   

16.
pH and temperature responsive copolymers PNAM4VBCB of N-isopropyl acrylamide(NAM) and complex pseudorotaxane monomer N1-(4-vinylbenzyl)-1,4-diaminobutane dihydrochloride with cucurbit[6]uril(CB[6]) threaded(4VBCB) were prepared via free-radical polymerization in aqueous solution. The copolymers were characterized by 1H NMR, Fourier transform infrared(FTIR) spectrometry, elemental analysis, and static light scattering. The thermodynamic properties of the copolymers were studied by thermogravimetric analysis(TGA), and the effects of pH and the concentration of the copolymer on the average hydrodynamic radius(Rh) were studied by dynamic light scattering(DLS). In addition, the thermal sensitivities of the copolymers were studied by DLS and UV-Vis. The experiment data show that CB[6] beads are localized on 1,4-diaminobutane units in the side chains of the copolymer. TGA data show that thermal stability of the copolymers increases with the adding of CB[6] threaded because of the enhanced rigidity and the bulky steric hindrance of 4VBCB in the side chain of PNAM4VBCB. DLS data show that the average hydrodynamic radius of copolymer increases with the increase of the copolymer concentration and has a jump with adjusting pH due to the existing of the small size CB[6] dethreaded from the copolymer with increasing pH. Both pH and electrical conductivity curves of the solution of PNAM4VBCB-4 have a jump because CB[6] could dethread from the copolymers with the addition of NaOH. In addition, the copolymers have thermal sensitivity and their phase-change temperatures could be controlled by adjusting the molar ratio of NAM to 4VBCB in the copolymers.  相似文献   

17.
Copper(I)‐mediated living radical polymerization was used to synthesize amphiphilic block copolymers of poly(n‐butyl methacrylate) [P(n‐BMA)] and poly[(2‐dimethylamino)ethyl methacrylate] (PDMAEMA). Functionalized bromo P(n‐BMA) macroinitiators were prepared from monofunctional, difunctional, and trifunctional initiators: 2‐bromo‐2‐methylpropionic acid 4‐methoxyphenyl ester, 1,4‐(2′‐bromo‐2′‐methyl‐propionate)benzene, and 1,3,5‐(2′‐bromo‐2′‐methylpropionato)benzene. The living nature of the polymerizations involved was investigated in each case, leading to narrow‐polydispersity polymers for which the number‐average molecular weight increased fairly linearly with time with good first‐order kinetics in the monomer. These macroinitiators were subsequently used for the polymerization of (2‐dimethylamino)ethyl methacrylate to obtain well‐defined [P(n‐BMA)xb‐PDMAEMAy]z diblock (15,900; polydispersity index = 1.60), triblock (23,200; polydispersity index = 1.24), and star block copolymers (50,700; polydispersity index = 1.46). Amphiphilic block copolymers contained between 60 and 80 mol % hydrophilic PDMAEMA blocks to solubilize them in water. The polymers were quaternized with methyl iodide to render them even more hydrophilic. The aggregation behavior of these copolymers was investigated with fluorescence spectroscopy and dynamic light scattering. For blocks of similar comonomer compositions, the apparent critical aggregation concentration (cac = 3.22–7.13 × 10?3 g L?1) and the aggregate size (ca. 65 nm) were both dependent on the copolymer architecture. However, for the same copolymer structure, increasing the hydrophilic PDMAEMA block length had little effect on the cac but resulted in a change in the aggregate size. © 2002 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 439–450, 2002; DOI 10.1002/pola.10122  相似文献   

18.
Various star‐shaped copolymers of methyl methacrylate (MMA) and n‐butyl methacrylate (nBMA) were synthesized in one pot with RuCl2(PPh3)3‐catalyzed living radical polymerization and subsequent polymer linking reactions with divinyl compounds. Sequential living radical polymerization of nBMA and MMA in that order and vice versa, followed by linking reactions of the living block copolymers with appropriate divinyl compounds, afforded star block copolymers consisting of AB‐ or BA‐type block copolymer arms with controlled lengths and comonomer compositions in high yields (≥90%). The lengths and compositions of each unit varied with the amount of each monomer feed. Star copolymers with random copolymer arms were prepared by the living radical random copolymerization of MMA and nBMA followed by linking reactions. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 633–641, 2002; DOI 10.1002/pola.10145  相似文献   

19.
Antimicrobial copolymers bearing quaternary ammonium and phosphonium salts based on a copolymer of glycidyl methacrylate and 2‐hydroxyethyl methacrylate were synthesized. Poly(glycidyl methacrylate‐co‐2‐hydroxyethyl methacrylate) was modified for the introduction of chloromethyl groups by its reaction with chloroacetyl chloride. The chloroacetylated copolymer was modified for the production of quaternary ammonium or phosphonium salts. The antimicrobial activity of the obtained copolymers was studied against gram‐negative bacteria (Escherichia coli, Pseudomonas aeruginosa, Shigella sp., and Salmonella typhae), gram‐positive bacteria (Bacillus subtilus and B. cereus), and the fungus Trichophyton rubrum by the cut‐plug method. The results showed that the three copolymers had high antimicrobial activity. A control experiment was carried out on the main polymer without ammonium or phosphonium groups. The copolymer bearing quaternary salt made from tributyl phosphine was the most effective copolymer against both gram‐negative and gram‐positive bacteria and the fungus T. rubrum. The diameters of the inhibition zones ranged between 20 and 60 mm after 24 h. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2384–2393, 2002  相似文献   

20.
Four well‐defined diblock copolymers and one statistical copolymer based on lauryl methacrylate (LauMA) and 2‐(acetoacetoxy)ethyl methacrylate (AEMA) were prepared using reversible addition‐fragmentation chain transfer (RAFT) polymerization. The polymers were characterized in terms of molecular weights, polydispersity indices (ranging between 1.12 and 1.23) and compositions by size exclusion chromatography and 1H NMR spectroscopy, respectively. The preparation of the block copolymers was accomplished following a two‐step methodology: First, well‐defined LauMA homopolymers were prepared by RAFT using cumyl dithiobenzoate as the chain transfer agent (CTA). Kinetic studies revealed that the polymerization of LauMA followed first‐order kinetics demonstrating the “livingness” of the RAFT process. The pLauMAs were subsequently used as macro‐CTA for the polymerization of AEMA. The glass transition (Tg) and decomposition temperatures (ranging between 200 and 300 °C) of the copolymers were determined using differential scanning calorimetry and thermal gravimetric analysis, respectively. The Tgs of the LauMA homopolymers were found to be around ?53 °C. Block copolymers exhibited two Tgs suggesting microphase separation in the bulk whereas the statistical copolymer presented a single Tg as expected. Furthermore, the micellization behavior of pLauMA‐b‐pAEMA block copolymers was investigated in n‐hexane, a selective solvent for the LauMA block, using dynamic light scattering. pLauMA‐b‐pAEMA block copolymers formed spherical micelles in dilute hexane solutions with hydrodynamic diameters ranging between 30 and 50 nm. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5442–5451, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号