首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two Metal‐rich Phosphides – The Crystal Structures of Mg8Ir23P8 and Mg13Pt26P10 Mg8Ir23P8 (a = 8.586(4), b = 16.998(7), c = 3.959(2) Å) and Mg13Pt26P10 (a = 8.834(2), b = 21.154(4), c = 4.074(1) Å) crystallize in new structure types (Pbam, Z = 1), which were determined by single crystal methods. In the Ir compound four of seven crystallographically different Ir atoms build up cuboctahedra centered by other Ir atoms. The cuboctahedra are connected with each other via common faces to strands along [001] and they are linked with Ir5 square pyramids centered by P atoms to a three‐dimensional network, in which some of the Ir atoms are part of both polyhedra. The Mg atoms are situated in the holes of the network coordinated by 14 nearest neighbours. The structure of Mg13Pt26P10 is quite similar and contains cuboctahedra too, but they are formed by both kinds of metal atoms building two different polyhedra. The first type is centered by Pt atoms, whereas the centers of the other one are occupied by Mg atoms and P2 dumb‐bells with a statistical distribution. The cuboctahedra are linked with each other via common faces along [001] and edges along [100] and they are connected with Pt5 square pyramids centered by P atoms in a similar fashion like in Mg8Ir23P8.  相似文献   

2.
Synthesis and Crystal Structures of Zinc Rhodium Boride Zn5Rh8B4 and the Lithium Magnesium Rhodium Borides LixMg5?xRh8B4 (x = 1.1 and 0.5) and Li8Mg4Rh19B12 The title compounds were prepared by reaction of the elemental components in metal ampoules under argon atmosphere (1100 °C, 7 d). In the case of Zn5Rh8B4 (orthorhombic, space group Cmmm, a = 8.467(2) Å, b = 16.787(3) Å, c = 2.846(1) Å, Z = 2) a BN crucible enclosed in a sealed tantalum container was used. The syntheses of LixMg5?xRh8B4 (orthorhombic, space group Cmmm, Z = 2, isotypic with Zn5Rh8B4, lattice constants for x = 1.1: a = 8.511(3) Å, b = 16.588(6) Å, c = 2.885(1) Å, and for x = 0.5: a = 8.613(1) Å, b = 16.949(3) Å, c = 2.9139(2) Å) and Li8Mg4Rh19B12 (orthorhombic, space group Pbam, a = 26.210(5) Å, b = 13.612(4) Å, c = 2.8530(5) Å, Z = 2) were carried out in tantalum crucibles enclosed in steel containers using lithium as a metal flux. The crystal structures were solved from single crystal X‐ray diffraction data. In both structures Rh atoms reside at z = 0 and all non‐transition metal atoms at z = 1/2. Columns of Rh6B trigonal prisms running along the c‐axis are laterally connected to form three‐dimensional networks with channels of various cross sections containing Li‐, Mg‐, and Zn‐atoms, respectively. A very short Li‐Li distance of 2.29(7) Å is observed in Li8Mg4Rh19B12.  相似文献   

3.
Crystal Structures of CaBe2Ge2 and CeMg2Si2 analogous Units: The Phosphides LnPt2P2?x (Ln: La, Sm) Single crystals of LaPt2P1.44 (a = 4.174(1), c = 19.212(5) Å) were grown by reaction of vaporous phosphorus with LaPt2 at 1050 °C during two weeks, whereas SmPt2P1.50 (a = 4.131(1), c = 19.086(4) Å) was synthesized by heating mixtures of the elements at 900 and 1100 °C (60 h) and annealing at 1050 °C (300 h). Both phosphides were investigated by single crystal X‐ray methods. Their crystal structures (I4/mmm; Z = 4) consist of CaBe2Ge2 and CeMg2Si2 analogous units alternating with each other along [001]. The positions of the P1 atoms are occupied incompletely causing the deviation to the 1:2:2 stoichiometry. Another compounds LnPt2P2?x were studied by X‐ray powder diffraction resulting in the following lattice constants: a = 4.150(1), c = 19.132(5) Å for CePt2P2–x, a = 4.137(1), c = 19.085(4) Å for PrPt2P2?x, and a = 4.127(1), c = 19.040(2) Å for NdPt2P2?x.  相似文献   

4.
The four compounds Ln3Pt7Sb4 (Ln = Ce, Pr, Nd, and Sm) were prepared from the elements by arc‐melting and subsequent heat treatment in resistance and high‐frequency furnaces. The crystal structure of these isotypic compounds was determined from four‐circle X‐ray diffractometer data of Nd3Pt7Sb4 [C2/m, a = 1644.0(2) pm, b = 429.3(1) pm, c = 1030.6(1) pm, β = 128.58(1)°, Z = 2, R = 0.032 for 698 structure factors and 46 variable parameters] and Sm3Pt7Sb4 [a = 1639.5(2) pm, b = 427.1(1) pm, c = 1031.8(1) pm, β = 128.76(1)°, Z = 2, R = 0.025 for 816 F‐values and 46 variables]. The structure is isotypic with that of the homologous phosphide Er3Pd7P4. In contrast to the structure of this phosphide, where the phosphorus atoms have the coordination number nine, the larger antimony atoms of Nd3Pt7Sb4 obtain the coordination number ten. The structural relationships between the structures of EuNi2—xSb2, EuPd2Sb2, CeNi2+xSb2—x, Ce3Pd6Sb5, and Nd3Pt7Sb4, all closely related to the tetragonal BaAl4 (ThCr2Si2) type structure, are briefly discussed emphasizing their space group relationships.  相似文献   

5.
New Alkaline‐Earth Metal Phosphides and Arsenides of Cobalt Five new compounds of cobalt were prepared by heating mixtures of the elements and investigated by means of single crystal X‐ray methods. Mg2Co12As7 (a = 12.096(6), b = 3.670(2), c = 24.93(1) Å) crystallizes in a new structure type (Pnma; Z = 4). Most of the Co atoms are coordinated tetrahedrally by arsenic, the other ones in the form of a square pyramid. Due to the linking of these polyhedra channels of hexagonal cross section are formed along [010], in which the Mg atoms are arranged. Mg2Co12P7 (a = 9.012(2), c = 3.504(1) Å), Ca2Co12P7 (a = 9.073(1), c = 3.585(1) Å) as well as Ca2Co12As7 (a = 9.428(5), c = 3.728(2) Å) crystallize in the Zr2Fe12P7 structure type (P6; Z = 1). Micro domains of the arsenide required refinements of the structure parameters in space group P63/m. MgCo6P4 (a = 6.609(1), c = 3.380(1) Å) is isotypic with LiCo6P4 (P6m2; Z = 1). The compounds belong to the large family of phosphides and arsenides with a metal : non‐metal ratio of about 2 : 1. Their structures can be described by the linkings of non‐metal centred trigonal prisms of metal atoms with additional metal atoms capping the rectangular faces of the prisms.  相似文献   

6.
Synthesis and Structure of the Platinum(0) Compounds [(dipb)Pt]2(COD) and (dipb)3Pt2 and of the Cluster Hg6[Pt(dipb)]4 (dipb = (i-Pr)2P(CH2)4P(i-Pr)2) The reduction of (dipb)PtCl2 with Na/Hg yields (dipb)Pt as an intermediate which reacts with the amalgam to form the cluster Hg6[Pt(dipb)]4 ( 3 ) or decomposes to (dipb)3Pt2 ( 2 ) and Pt. In the presence of COD [(dipb)Pt]2(COD) ( 1 ) is obtained. 1 crystallizes monoclinicly in the space group P21/c with a = 1596.1(4), b = 996.5(2), c = 1550.4(3) pm, β = 113.65(2)°, Z = 2. In the dinuclear complex two (dipb)Pt units are bridged by a 1,2-η2-5,6-η2 bonded COD ligand. Whereby the C = C double bonds are lengthened to 145 pm. 2 forms triclinic crystals with the space group P1 and a = 1002.0(2), b = 1635.9(3), c = 868.2(2) pm, α = 94.70(2)°, β = 94.45(2)°, σ = 87.95(1)°, Z = 1. In 2 two (dipb)Pt moieties are connected by a μ-dipb ligand in a centrosymmetrical arrangement. 3 is monoclinic with the space group C2/c and a = 1273.8(3), b = 4869.2(6), c = 1660.2(3) pm, β = 95.16(2)°, Z = 4. The clusters Hg6[Pt(dipb)]4 have the symmetry C2. Central unit is a Hg6 octahedron of which four faces are occupied by Pt(dipb) groups. The bonding in the cluster is discussed on the basis of eight Pt? Hg two center bonds of 267.6 pm and two Pt? Hg? Pt three center bonds with Pt? Hg = 288.0 pm.  相似文献   

7.
Contributions on Crystal Chemistry and Thermal Behaviour of Anhydrous Phosphates. XXXI. (Mg1–xCrx)2P2O7, CaCrP2O7, SrCrP2O7 and BaCrP2O7 – New Diphosphates of Divalent Chromium In the quasi‐binary systems A2P2O7/Cr2P2O7 (A = Mg, Ca, Sr, Ba) the solid solution (Mg1–xCrx)2P2O7 as well as the new compounds CaCrP2O7, SrCrP2O7, and BaCrP2O7 have been synthesized and characterized for the first time. In the whole experimental range (0.01 < x < 0.94; T = 950 °C) the solid solution (Mg1–xCrx)2P2O7 is isotypic to the pure phases β‐Mg2P2O7 and β‐Cr2P2O7; but no phase transition (β → α) to a low‐temperature modification, as in Mg2P2O7 and Cr2P2O7, was found. CaCrP2O7 ( A ), SrCrP2O7 ( B ), and BaCrP2O7 ( C ), phases without detectable homogenity range in the other quasi‐binary systems are not structurally related to each other, but are isotypic to the corresponding compounds containing cobalt. [( A ): P‐1, Z = 2, a = 6.312(2) Å, b = 6.499(2) Å, c = 6.916(2) Å, α = 83.12(3)°, β = 88.37(3)°, γ = 67.72(3)°, 3235 independent reflections, R1 = 0.041, wR2 = 0.112; ( C ): P‐1, Z = 2, a = 5.382(8) Å, b = 7.271(8) Å, c = 7.589(4) Å, α = 103.33(7)°, β = 89.91(9)°, γ = 93.6(1)°, 1571 independent reflections, R1 = 0.085, wR2 = 0.31]. We have reported earlier details on SrCrP2O7. The coordination of Cr2+ by oxygen is distorted octahedral in ( A) , while in the structures of ( B) and ( C) square‐pyramidal environment is found. The results of UV/VIS‐spectroscopic and magnetic measurements as well as IR‐spectra of the diphosphates are reported.  相似文献   

8.
New intermetallic rare earth compounds LaRhMg, CeRhMg, PrRhMg, and NdRhMg were prepared by reaction of the elements in sealed tantalum tubes in a high‐frequency furnace. The compounds were investigated by X‐ray diffraction both on powders and single crystals. LaRhMg crystallizes with the LaNiAl type structure, space group Pnma, Z = 8, a = 760.1(2), b = 419.92(8), c = 1702.6(2) pm, wR2 = 0.0482, 740 F2 values and 38 variable parameters. The cerium compound adopts the ZrNiAl structure: P6¯2m, Z = 3, a = 752.3(1), c = 417.6(1) pm, wR2 = 0.0497, 250 F22 values and 17 variable parameters. PrRhMg and NdRhMg crystallize with the TiNiSi type: Pnma, Z = 4, a = 721.62(7), b = 415.98(4), c = 869.47(8) pm, wR2 = 0.1864, 440 F2 values, 20 variables for PrRhMg and a = 720.6(1), b = 417.6(1), c = 868.8(1) pm, wR2 = 0.0779, 425 F2 values, 22 variables for NdRhMg. Refinements of the occupancy parameters revealed mixed Mg/Rh occupancy for the magnesium sites of the cerium and the neodymium compound leading to the compositions CeRh1.262(8)Mg0.738(8) and NdRh1.114(9)Mg0.886(9) for the investigated single crystals. From a geometrical point of view, the four crystal structures are built up from different rhodium centered trigonal prisms. The rhodium and magnesium atoms form three‐dimensional [RhMg] networks in which the rare earth metal atoms are located in different types of channels. The networks show Rh—Mg and Mg—Mg bonding.  相似文献   

9.
Crystal Structures of Hexachalcogeno‐Hypodiphosphates of Magnesium and Zinc Five chalcogeno‐hypodiphosphates were synthesized and investigated by single crystal X‐ray methods. Mg2P2S6 (C2/m; a = 6.085(1), b = 10.560(2), c = 6.835(1)Å, β = 106.97(3)°; Z = 2) crystallizes with the Fe2P2S6 type structure, whereas Mg2P2Se6 (a = 6.404(1), c = 20.194(4)Å) and Zn2P2Se6 (a = 6.290(3), c = 19.93(2)Å) build up the Fe2P2Se6 type (R3; Z = 3). The structures are characterized by closest packings of sulfur (selenium) with Mg2+ (Zn2+) ions and P2 pairs in half the octahedra — analogous to the CdCl2 and CdI2 type, respectively. In Mg2P2S6 half the Mg2+ ions can be substituted by Ag+ ions resulting in Ag2MgP2S6 (C2/n; a = 6.364(1), b = 10.975(2), c = 13.999(3)Å, β = 108.29(3)°; Z = 4). In this compound the Ag+ ions are disordered and located in the octahedra originally occupied by Mg2+ ions. In Mg2P2Se6 an analogous substitution by K+ ions leads to the compound K2MgP2Se6 (P21/n; a = 6.546(1), b = 12.724(3), c = 7.599(2)Å, β = 103.02(3)°; Z = 2) with K2FeP2S6 type structure. The structure is characterized by columns of alternating face‐sharing Se octahedra (centered by Mg) and trigonal antiprisms (centered by P2 pairs) along [100]. The columns are interconnected by inserted K+ ions.  相似文献   

10.
New Germanides with an Ordered Variant of the Ce3Pt4Ge6 Type of Structure – The Compounds Ln3Pt4Ge6 (Ln: Pr–Dy) Six new germanides Ln3Pt4Ge6 with Ln = Pr–Dy were synthesized by heating mixtures of the elements at 900 °C, annealing the inhomogeneous powders at 1050‐1100 °C for six days and then cooling down from 700 °C in the course of two months. The crystal structures of Pr3Pt4Ge6 (a = 26.131(5), b = 4.399(1), c = 8.820(2) Å), Sm3Pt4Ge6 (a = 25.974(3), b = 4.356(1), c = 8.748(1) Å), and Dy3Pt4Ge6 (a = 26.079(5), b = 4.311(1), c = 8.729(2) Å) were determined by single crystal X‐ray methods. The compounds are isotypic (Pnma, Z = 4) and crystallize with an ordered variant of the Ce3Pt4Ge6 type of structure (Cmcm, Z = 2) consisting of CaBe2Ge2‐ and YIrGe2‐analogous units. The platinum atoms are located in distorted square pyramids of germanium atoms and build up with them a three‐dimensional network. The coordination polyhedra of the platinum and germanium atoms around the rare‐earth metal atoms are pentagonal and hexagonal prisms. These are completed by some additional atoms resulting in coordination numbers of 14 and 15 respectively. The other germanides were investigated by powder methods resulting in the following lattice constants: a = 26.067(6), b = 4.388(1), c = 8.800(2) Å for Ln = Nd; a = 25.955(7), b = 4.337(1), c = 8.728(2) Å for Ln = Gd; a = 25.944(5), b = 4.322(1), c = 8.698(2) Å for Ln = Tb. The atomic arrangement of Ln3Pt4Ge6 is compared with the well‐known monoclinic structure of Y3Pt4Ge6.  相似文献   

11.
The new compound Yb2+3—xPd12—3+xP7 x = 0.40(4)) was synthesized by sintering of a mixture of elemental components at 1100 °C with subsequent annealing at 800 °C. The crystal structure of Yb2+3—xPd12—3+xP7 was solved and refined from X‐ray single‐crystal diffraction data: space group P6¯, a = 10.0094(4)Å, c = 3.9543(2)Å, Z = 1; R(F) = 0.022 for 814 observed unique reflections and 38 refined parameters. The atomic arrangement reproduces a structure motif of the hexagonal Zr2Fe12P7 type in which one of the transition metal positions is substituted predominantly by ytterbium (Yb : Pd = 0.86(1) : 0.14). The ytterbium atoms are embedded in the 3D polyanion formed by palladium and phosphorus atoms. Two different environments for ytterbium atoms are present in the structure. Magnetic susceptibility measurements and XAS spectroscopy at the Yb LIII edge show the presence of ytterbium in two electronic configurations, 4?13 and 4?14. The following model was derived. Ytterbium atoms in the 3k site are in the 4?13 state, the two remaining positions contain ytterbium in intermediate‐valence states, giving totally 79 % ytterbium in the 4?13 electronic configuration.  相似文献   

12.
The crystal structures of Mg11Rh18B8 and Mg3Rh5B3 have been investigated by using single‐crystal X‐ray diffraction. Mg11Rh18B8: space group P4/mbm; a=17.9949(7), c=2.9271(1) Å; Z=2. Mg3Rh5B3: space group Pmma; a=8.450(2), b=2.8644(6), c=11.602(2) Å; Z=2. Both crystal structures are characterized by trigonal prismatic coordination of the boron atoms by rhodium atoms. The [BRh6] trigonal prisms form arrangements with different connectivity patterns. Analysis of the chemical bonding by means of the electron‐localizability/electron‐density approach reveals covalent B? Rh interactions in these arrangements and the formation of B? Rh polyanions. The magnesium atoms that are located inside the polyanions interact ionically with their environment, whereas, in the structure parts, which are mainly formed by Mg and Rh atoms, multicenter (metallic) interactions are observed. Diamagnetic behavior and metallic electron transport of the Mg11Rh18B8 and Mg3Rh5B3 phases are in agreement with the bonding picture and the band structure.  相似文献   

13.
SrNi10P6, EuNi10P6, and BaCo10As6: Phase Transitions and Crystal Structures SrNi10P6, EuNi10P6 and BaCo10As6 were prepared by heating mixtures of the elements in the range of 800°–1000 °C and were investigated by means of single‐crystal X‐ray methods. At higher temperatures the isotypic Ni phosphides (HT‐SrNi10P6: a = 6.481(2), b = 16.080(4), c = 8.763(2) Å (350 °C); HT‐EuNi10P6: a = 6.509(2), b = 16.063(4), c = 8.766(4) Å (500 °C)) crystallize in the BaNi10P6 type structure (Cmca; Z = 4), which can be described as an arrangement of Ni14P12 cages with Sr or Eu atoms in the centres. The cages are linked to layers separated by additional Ni atoms, which are coordinated tetrahedrally by P atoms of different cages. Cooling down both compounds undergo from about 270 °C (SrNi10P6) and 410 °C (EuNi10P6) respectively a second‐order phase transition involved with a change to an orthorhombic P lattice. In the structure of the NT phases (Pnma; Z = 4; NT‐SrNi10P6: a = 15.993(1), b = 6.473(1), c = 8.735(1) Å; NT‐EuNi10P6: a = 15.925(1), b = 6.478(1), c = 8.720(1) Å (25 °C)) the Ni14P12 cages are slightly distorted in comparison with the high temperature modifications. BaCo12As6 (a = 16.405(9), b = 6.858(4), c = 8.955(7) Å) crystallizes in the same structure (Pnma), but doesn't exhibit a comparable phase transition up to 600 °C. Measurements of the suszeptibiliy of EuNi10P6 between 4 K and 850 K showed divalent Europium and no magnetic order down to 4 K.  相似文献   

14.
The crystal structures of two members of the solid solution series Ag3xBi5?3xS8?6xCl6x?1 (x = 0.52 (I) , x = 0.67 (II) ) and three compounds of the Ag4xBi6?4xQ10?8xBr8x?2 series (Q = S: x = 0.70 (III) , x = 0.84 (IV) ; Q = Se: x = 0.72 (V) ) were determined by single‐crystal X‐ray diffraction. The compounds crystallize in the monoclinic space group C2/m (No. 12) with a = 1326.7(3), b = 403.9(1), c = 1176.7(2) pm, β = 107.83(3)° for (I) ; a = 1325.4(3), b = 403.3(1), c = 1170.6(2) pm, β = 108.14(3)° for (II) ; a = 1338.9(4), b = 407.7(1), c = 1426.4(4) pm, β = 113.95(2)° for (III) ; a = 1346.7(4), b = 409.3(1), c = 1440.7(4) pm, β = 114.40(1)° for (IV) ; and a = 1370.9(2), b = 417.64(4), c = 1480.4(2) pm, β = 114.92(2)° for (V) . (I) and (II) adopt the PbBi4S7 structure type, (III) to (V) crystallize in the CuBi5S8 type. All five compounds belong to the homologous series with general formula [BiQX]2[AgxBi1?xQ2?2xX2x?1]N+1 (Q = S, Se; X = Cl, Br; 1/2 ≤ x ≤ 1)), which resemble minerals of the pavonite series. They are characterized by the parameters N and x and are denoted (N, x)P. In the crystal structures, two kinds of layered modules alternate along [001]. Modules of type A uniformly consist of paired rods of face‐sharing monocapped trigonal prisms around Bi atoms with octahedra around mixed occupied metal positions (M = Ag/Bi) between them. Modules of type B are composed of chains of edge‐sharing [MZ6] octahedra (M = Ag/Bi; Z = Q/X). These NaCl‐type fragments are of thickness N = 2 in Ag3xBi5?3xS8?6xCl6x?1 and N = 3 in Ag4xBi6?4xQ10?8xBr8x?2. All structures exhibit Ag/Bi disorder in octahedrally coordinated metal positions and Q/X mixed occupation of some anion positions.  相似文献   

15.
Recently lithium phosphidogermanates were discovered as fast lithium ion conductors for potential usage as solid electrolytes in all solid-state batteries. In this context we also studied sodium phosphidogermanates since sodium ion conductors are of equal interest. Na2Ge3P3 and Na5Ge7P5 both crystallize in the monoclinic space group C2/m with unit cell parameters of a = 17.639(4) Å, b = 3.6176(7) Å, c = 11.354(2) Å, β = 92.74(3)° and a = 16.168(5) Å, b = 3.6776(7) Å, c = 12.924(4) Å, β = 91.30(3)°, respectively. Both show linearly condensed 9-atom cages of four Ge / five P and five Ge / four P atoms, respectively. These cages contain Ge–Ge bonds and form one-dimensional tubes by sharing three atoms. The parallel tubes are paired through further Ge–Ge bonds. Both structures are closely related to the one of the fibrous type of crystalline red phosphorus. A comparison with other compounds such as NaGe3P3 and GeP reveals recurring structural motifs with a broad variety of connection patterns. According to the general formula Na4+xGe6+xP6–x with x = 0 and 1, the two novel structures hint for the possibility of a variable Na content which might allow Na ion mobility.  相似文献   

16.
Palladium Pnictides of Zirconium and Hafnium with a Metal : Nonmetal Ratio of 2 : 1 The following compounds were prepared by heating the elements in the range of 800°–1100 °C and characterized by means of X‐ray single crystal methods: Zr5Pd9P7 (a = 3.815(1), b = 26.319(5), c = 6.511(1) Å) and Hf5Pd9P7 (a = 3.776(1), b = 26.382(7), c = 6.500(3) Å) are isotypic and crystallize in a new structure type (Amm2; Z = 2). This also applies to ZrPdAs (a = 3.887(1), b = 19.288(6), c = 6.690(2) Å; Pmmn; Z = 10), while ZrPdSb (a = 6.814(1), b = 4.289(1), c = 7.870(2) Å) forms a TiNiSi analogous structure (Pnma; Z = 4). Common feature of all structures is the tetrahedral environment of Pd by X atoms (X: P, As, Sb). The linking of the tetrahedra leads to a PdX framework with holes, in which the Zr and Hf atoms respectively are located. The non‐metal atoms have trigonal prismatic metal coordination with three additional metal atoms outside the rectangular faces of the prisms. This XMe9 polyhedron (Me = metal) is typical for the large family of ternary pnictides with a metal : non‐metal ratio of 2 : 1.  相似文献   

17.
Er3Pd7P4 — Crystal Structure Determination and Extended Hückel Calculations Er3Pd7P4 was prepared by heating the elements (1050°C) and investigated by means of single-crystal X-ray methods. The compound crystallizes in a new structure (C2/m; a = 15.180(3) Å, b = 3.955(1) Å, c = 9.320(1) Å, β = 125,65(1)°; Z = 2) with a three-dimensional framework of Pd and P atoms and with Er atoms in the holes. The Pd atoms are surrounded tetrahedrally, trigonally or linearly by P atoms, which are coordinated by nine metal atoms in the form of a tricapped trigonal prism. Therefore the atomic arrangement of Er3Pd7P4 is related to the structures of ternary transition metal phosphides with a metal: phosphorus ratio of 2:1. Band calculations using the Extended Hückel method show strong covalent Pd? P bonds and weak bonding interactions between Pd atoms with Pd? Pd distances shorter than 2.9 Å.  相似文献   

18.
Synthesis and Structure of Crown Ether Complexes of Potassium Hexachlorodipalladate(II) and -diplatinate(II) K2[MCl4] (M ? Pd, Pt) reacts with an excess of crown ether 18-crown-6 in water to give the crown ether complexes of potassium hexachlorodipalladate(II) and -diplatinate(II) [K(18-cr-6)]2[M2Cl6] (M ? Pd, 1 ; M ? Pt, 3 ), respectively, and in methylene chloride to give those of potassium tetrachloropalladate(II) and -platinate(II) [K(18-cr-6)]2[MCl4] ( 1 ) (M ? Pd, 2 ; M ? Pt, 4 ), respectively. 1 - 4 are characterized by microanalysis, NMR (1H, 13C), and vibrational spectroscopy. The X-ray structure analyses of the isotypic complexes 1 (P21/c; a = 10,9678(8), b = 8,2991(7), c = 22,469(2) Å, β = 98,523(5)°; Z = 2) and 3 (P21/c; a = 10,934(3), b = 8.376(3), c = 22,410(5) Å, β = 98,77(3)°; Z = 2) reveal [M2Cl6]2? anions of nearly D2h symmetry and [K(18-cr-6)]+ cations, in which the distance of K+ to the mean plane of the crown ether defined by its six oxygen atoms amounts to 0,830(4) Å in 1 and 0,821(2) Å in 3 , respectively. There are tight contacts between cations and anions (d(K-Cl): 3,341(2)/3,260(2) Å ( 1 ); 3,348(4)/3,259(4) Å ( 3 )).  相似文献   

19.
The title compound, {[PtIIPtIVI2(C2H8N2)4](HPO4)(H2PO4)I·3H2O}n, has a chain structure composed of square‐planar [Pt(en)2]2+ and elongated octa­hedral trans‐[PtI2(en)2]2+ cations (en is ethyl­ene­diamine) stacked alternately along the c axis and bridged by the I atoms; a three‐dimensionally valence‐ordered system exists with respect to the Pt sites. The title compound also has a unique cyclic tetra­mer structure composed of two hydrogenphosphate and two dihydrogenphosphate ions connected by strong hydrogen bonds [O⋯O = 2.522 (10), 2.567 (10) and 2.569 (11) Å]. The Pt and I atoms form a zigzag ⋯I—PtIV—I⋯PtII⋯ chain, with PtIV—I bond distances of 2.6997 (7) and 2.6921 (7) Å, inter­atomic PtII⋯I distances of 3.3239 (8) and 3.2902 (7) Å, and PtIV—I⋯PtII angles of 154.52 (3) and 163.64 (3)°. The structural parameters indicating the mixed‐valence state of platinum, expressed by δ = (PtIV—I)/(PtII—I), are 0.812 and 0.818 for the two independent I atoms.  相似文献   

20.
Preparation and Crystal Structure of the First Polymeric Phosphorus Selenide catena-(P4Se4)x Catena-(P4Se4)x was prepared in crystalline form from the elements using iodine as a catalyst, and characterized by means of X-ray diffraction and IR spectroscopy. Single-crystal investigations (space group P21/c, a = 1 119.2(3), b = 728.2(2), c = 1 142.5(3) pm, β = 115.91(2)°, V = 837.5(7) · 106 pm3) revealed parallel chains of P4Se3 hetero-norbornane units linked via Se atoms. Thus, being the first phosphorus selenide which does not contain discrete molecules, catena-(P4Se4)x can be regarded as a polymeric form of α-P4Se4 or as a crystalline modification of vitrous phosphorus selenide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号