首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
MCl2 (M = Ni, Co, Sn, or Mn) and PPh3 together acted as a catalyst for the radical polymerization of methyl methacrylate (MMA) in the presence of ethyl 2‐bromoisobutyrate as an initiator. The four systems all led to conventional radical polymerizations, which yielded polymers with a weight‐average molecular weight/number‐average molecular weight (Mw/Mn) ratio greater than 2.0 and became well controlled when a certain amount of FeCl3·6H2O was added. The polymerizations of MMA catalyzed by these four FeCl3‐modified catalyst systems provided well‐defined polymers with low polydispersities (Mw/Mn < 1.28). © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2625–2631, 2005  相似文献   

2.
2‐[(Diphenylphosphino)methyl]pyridine (DPPMP) was successfully used as a bidentate ligand in the iron‐mediated atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) with various initiators and solvents. The effect of the catalytic system on ATRP was studied systematically. Most of the polymerizations with DPPMP ligand were well controlled with a linear increase in the number‐average molecular weights (Mn) versus conversion and relatively low molecular weight distributions (Mw/Mn = 1.10–1.3) being observed throughout the reactions, and the measured molecular weights matched the predicted values. Initially added iron(III) bromide improved the controllability of the polymerization reactions in terms of molecular weight control. The ratio of ligand to metal influenced the controllability of ATRP system, and the optimum ratio was found to be 2:1. It was shown that ATRP of MMA with FeX2/DPPMP catalytic system (X = Cl, Br) initiated by 2‐bromopropionitrile (BPN) was controlled more effectively in toluene than in polar solvents. The rate of polymerization increased with increasing the polymerization temperature and the apparent activation energy was calculated to be 56.7 KJ mol?1. In addition, reverse ATRP of MMA was able to be successfully carried out using AIBN in toluene at 80 °C. Polymerization of styrene (St) was found to be controlled well by using the PEBr/FeBr2/DPPMP system in DMF at 110 °C. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2922–2935, 2008  相似文献   

3.
A new catalyst system, CoCl2/tris(2‐(dimethyl amino) ethyl)amine (Me6 TREN), was used to catalyze the polymerization of methyl methacrylate (MMA) successfully through atom transfer radical polymerization mechanism. The control over the polymerization was not ideal, the molecular weight distribution of the resulting polymer (PMMA) was relatively broad (Mw/Mn = 1.63–1.80). To improve its controllability, a small amount of hybrid deactivator (FeBr3/Me6TREN or CuBr2/Me6TREN) was added in the cobalt catalyst system. The results showed that the level of control over the polymerization was significantly improved with the hybrid cobalt–iron (or cobalt–copper) catalyst system; the polydispersity index of the resulting polymer was reduced to a low level (Mw/Mn = 1.15–1.46). Furthermore, with the hybrid cobalt–iron catalyst, the dependence of the propagation rate on the temperature and the copolymerization of methacrylate (MA) with PMMA‐Br as macroinitiator were also investigated. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5207–5216, 2005  相似文献   

4.
Two kinds of Schiff base, N,N′‐dibenzylidene‐1,2‐diaminoethane (NDBE) and N,N′‐disalicylidene‐1,2‐diaminoethane, have been found as efficient organic catalyst for reversible complexation‐mediated radical polymerization (RCMP) of methyl methacrylate (MMA) for the first time. The polymerization results show obvious features of “living”/controlled radical polymerization. Well‐defined and low‐polydispersity polymers (Mw/Mn = 1.20–1.40) are obtained in RCMP of MMA catalyzed by Schiff base at mild temperature (65–80°C). Moreover, Schiff base also exhibits a particularly high reactivity for RCMP of MMA with in situ formed alkyl iodide initiator. The polymer molecular weight and its polydispersity (Mw/Mn is around 1.20) are well controlled even with high monomer conversion. Notably, when the dosage of azo initiator is same as the dosage of iodine, the polymerization could also be realized in the presence of NDBE. The living feature of synthesized polymer is confirmed through the chain extension experiment. In short, Schiff base is a kind of high‐efficient catalyst for RCMP and reverse RCMP of MMA, which can be one of the most powerful and robust techniques for polymer synthesis. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1653–1663  相似文献   

5.
A reversible catalyst immobilization system via self‐assembly of hydrogen bonding between thymine anchored on silica gel support and 2,6‐diaminopyridine functionalized with a catalyst (copper bromide‐N,N,N′,N′‐tetraethyldiethylenetriamine (TEDETA) complex) was developed for the atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA). At elevated temperatures, the hydrogen bonding disassociated and released the catalyst as free small molecules for catalysis, which effectively mediated a living polymerization of MMA, producing PMMA with controlled molecular weight and narrow molecular weight distribution (<1.3). At room temperature, the catalyst assembled on the silica gel support by hydrogen bonding, and thus could be recovered and reused for a second run of ATRP. The recovered catalyst still mediated a living polymerization of MMA with reduced activity (54–64%), but had much improved control of the polymerization. The resulting PMMA had molecular weights very close to theoretical vales. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 22–30, 2004  相似文献   

6.
Single electron transfer‐living radical polymerization (SET‐LRP) represents a robust and versatile method for the rapid synthesis of macromolecules with defined architecture. The present article describes the polymerization of methyl methacrylate by SET‐LRP in protic solvent mixtures. Herein, the polymerization process was catalyzed by a straightforward Cu(0)wire/Me6‐TREN catalyst while initiation was obtained by toluenesulfonyl chloride. All experiments were conducted at 50 °C and the living polymerization was demonstrated by kinetic evaluation of the SET‐LRP. The process follows first order kinetic until all monomer is consumed which was typically achieved within 4 h. The molecular weight increased linearly with conversion and the molecular weight distributions were very narrow with Mw/Mn ~ 1.1. Detailed investigations of the polymer samples by MALDI‐TOF confirmed that no termination took place and that the chain end functionality is retained throughout the polymerization process. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2236–2242, 2010  相似文献   

7.
An asymmetric difunctional initiator 2‐phenyl‐2‐[(2,2,6,6 tetramethylpiperidino)oxy] ethyl 2‐bromo propanoate ( 1 ) was used for the synthesis of ABC‐type methyl methacrylate (MMA)‐tert‐butylacrylate (tBA)‐styrene (St) triblock copolymers via a combination of atom transfer radical polymerization (ATRP) and stable free‐radical polymerization (SFRP). The ATRP‐ATRP‐SFRP or SFRP‐ATRP‐ATRP route led to ABC‐type triblock copolymers with controlled molecular weight and moderate polydispersity (Mw/Mn < 1.35). The block copolymers were characterized by gel permeation chromatography and 1H NMR. The retaining chain‐end functionality and the applying halide exchange afforded high blocking efficiency as well as maintained control over entire routes. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2025–2032, 2002  相似文献   

8.
The bulk polymerization of methyl methacrylate (MMA) initiated with diethyl 2,3-dicyano-2,3-diphenylsuccinate (DCDPS) was studied. This polymerization showed some “living” characteristics; that is, both the yield and the molecular weight of the resulting polymers increased with reaction time, and the resultant polymer can be extended by adding MMA. The molecular weight distribution of PMMA obtained at high conversion is fairly narrow (Mw/Mn = 1.24≈1.34). It was confirmed that DCDPS can serve as a thermal iniferter for MMA polymerization by a “living” radical mechanism. Furthermore, the PMMA obtained can act as a macroinitiator for radical polymerization of styrene (St) to give a block copolymer. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4610–4615, 1999  相似文献   

9.
A fast living radical polymerization of methyl methacrylate (MMA) proceeded with the (MMA)2? Cl/Ru(Ind)Cl(PPh3)2 initiating system in the presence of n‐Bu2NH as an additive [where (MMA)2? Cl is dimethyl 2‐chloro‐2,4,4‐trimethyl glutarate]. The polymerization reached 94% conversion in 5 h to give polymers with controlled number‐average molecular weights (Mn's) in direct proportion to the monomer conversion and narrow molecular weight distributions [MWDs; weight‐average molecular weight/number‐average molecular weight (Mw/Mn) ≤ 1.2]. A poly(methyl methacrylate) with a high molecular weight (Mn ~ 105) and narrow MWD (Mw/Mn ≤ 1.2) was obtained with the system within 10 h. A similarly fast but slightly slower living radical polymerization was possible with n‐Bu3N, whereas n‐BuNH2 resulted in a very fast (93% conversion in 2.5 h) and uncontrolled polymerization. These added amines increased the catalytic activity through some interaction such as coordination to the ruthenium center. © 2002 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 617–623, 2002; DOI 10.1002/pola.10148  相似文献   

10.
Copolymers of methyl methacrylate (MMA) and n‐butyl acrylate (n‐BA) were synthesized under atom transfer radical polymerization (ATRP) conditions. The molar infeed ratio was varied to obtain copolymers with different compositions. Methyl 2‐bromo propionate was used as the initiator with CuBr/Cu(0)/N,N,N′,N″,N″‐pentamethyldiethylenetriamine as the catalyst at 60 °C. Molecular weight distribution was determined by gel permeation chromatography (GPC). Copolymer compositions (FM) were calculated from 1H NMR spectra. Reactivity ratios calculated with the Mao–Huglin terminal model at a high conversion were found to be rM = 2.17 and rB = 0.47. The polymerization mechanism was studied with the α‐methyl region of MMA. The backbone methylene and carbonyl carbons of both MMA and n‐BA units were found to be compositionally as well as configurationally sensitive. Complete spectral assignments were performed with the help of heteronuclear single quantum coherence (HSQC) spectroscopy along with total correlated spectroscopy (TOCSY). Further, the assignments of the carbonyl region were made with the help of heteronuclear multiple quantum coherence (HMBC) spectroscopy. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1100–1118, 2005  相似文献   

11.
A novel ionic polymerization of methyl methacrylate (MMA) with a series of enamines (1) in the presence of methylaluminum bis(2,6-di-tert-butylphenoxide) (2) was examined. Both nucleophile (1) and electrophile (2) are indispensable for the present polymerization, in which (1) acts as initiator and (2) as activator. MMA polymerization proceeded smoothly in toluene at or below room temperature (r.t.) in the presence of 1 and 2 (1 ∼ 4 mol %, respectively), went to completion within 1 h, and afforded syndiotactic-rich PMMA with molecular weight distribution (Mw/Mn) in the 1.1 ∼ 1.4 range. The number-average molecular weight (Mn) of the polymer was significantly higher than that calculated from the feed ratio of 1 to the monomer, indicating low initiating efficiency. Kinetic studies coupled with isolation of an intermediate species proved that the real monomeric species involved in both initiation and propagation was a complex of MMA with 2. The effects of the concentrations of 1, 2, and MMA as well as the temperature of polymerization were also examined. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3671–3679, 1999  相似文献   

12.
A series of ABA triblock copolymers of methyl methacrylate (MMA) and dodecyl methacrylate (DMA) [poly(MMA‐b‐DMA‐b‐MMA)] (PMDM) were synthesized by Ru‐based sequential living radical polymerization. For this, DMA was first polymerized from a difunctional initiator, ethane‐1,2‐diyl bis(2‐chloro‐2‐phenylacetate) with combination of RuCl2(PPh3)3 catalyst and nBu3N additive in toluene at 80 °C. As the conversion of DMA reached over about 90%, MMA was directly added into the reaction solution to give PMDM with controlled molecular weight (Mw/Mn ≤ 1.2). These triblock copolymers showed well‐organized morphologies such as body centered cubic, hexagonal cylinder, and lamella structures both in bulk and in thin film by self‐assembly phenomenon with different poly(methyl methacrylate) (PMMA) weight fractions. Obtained PMDMs with 20–40 wt % of the PMMA segments showed excellent electroactive actuation behaviors at relatively low voltages, which was much superior compared to conventional styrene‐ethylene‐butylene‐styrene triblock copolymer systems due to its higher polarity derived from the methacrylate backbone and lower modulus. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

13.
The stereospecific living radical polymerizations of methyl methacrylate (MMA) and 2‐hydroxyethyl methacrylate (HEMA) were achieved with a combination of ruthenium‐catalyzed living radical and solvent‐mediated stereospecific radical polymerizations. Among a series of ruthenium complexes [RuCl2(PPh3)3, Ru(Ind)Cl(PPh3)2, and RuCp*Cl(PPh3)2], Cp*–ruthenium afforded poly(methyl methacrylate) with highly controlled molecular weights [weight‐average molecular weight/number‐average molecular weight (Mw/Mn) = 1.08] and high syndiotacticity (r = 88%) in a fluoroalcohol such as (CF3)2C(Ph)OH at 0 °C. On the other hand, a hydroxy‐functionalized monomer, HEMA, was polymerized with RuCp*Cl(PPh3)2 in N,N‐dimethylformamide and N,N‐dimethylacetamide (DMA) to give syndiotactic polymers (r = 87–88%) with controlled molecular weights (Mw/Mn = 1.12–1.16). This was the first example of the syndiospecific living radical polymerization of HEMA. A fluoroalcohol [(CF3)2C(Ph)OH], which induced the syndiospecific radical polymerization of MMA, reduced the syndiospecificity in the HEMA polymerization to result in more or less atactic polymers (mm/mr/rr = 7.2/40.9/51.9%) with controlled molecular weights in the presence of RuCp*Cl(PPh3)2 at 80 °C. A successive living radical polymerization of HEMA in two solvents, first DMA followed by (CF3)2C(Ph)OH, resulted in stereoblock poly(2‐hydroxyethyl methacrylate) with syndiotactic–atactic segments. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3609–3615, 2006  相似文献   

14.
The synthesis of 21‐arm methyl methacrylate (MMA) and styrene star polymers is reported. The copper (I)‐mediated living radical polymerization of MMA was carried out with a cyclodextrin‐core‐based initiator with 21 independent discrete initiation sites: heptakis[2,3,6‐tri‐O‐(2‐bromo‐2‐methylpropionyl]‐β‐cyclodextrin. Living polymerization occurred, providing well‐defined 21‐arm star polymers with predicted molecular weights calculated from the initiator concentration and the consumed monomer as well as low polydispersities [e.g., poly(methyl methacrylate) (PMMA), number‐average molecular weight (Mn) = 55,700, polydispersity index (PDI) = 1.07; Mn = 118,000, PDI = 1.06; polystyrene, Mn = 37,100, PDI = 1.15]. Functional methacrylate monomers containing poly(ethylene glycol), a glucose residue, and a tert‐amine group in the side chain were also polymerized in a similar fashion, leading to hydrophilic star polymers, again with good control over the molecular weight and polydispersity (Mn = 15,000, PDI = 1.03; Mn = 36,500, PDI = 1.14; and Mn = 139,000, PDI = 1.09, respectively). When styrene was used as the monomer, it was difficult to obtain well‐defined polystyrene stars at high molecular weights. This was due to the increased occurrence of side reactions such as star–star coupling and thermal (spontaneous) polymerization; however, low‐polydispersity polymers were achieved at relatively low conversions. Furthermore, a star block copolymer consisting of PMMA and poly(butyl methacrylate) was successfully synthesized with a star PMMA as a macroinitiator (Mn = 104,000, PDI = 1.05). © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2206–2214, 2001  相似文献   

15.
The Cu(0)‐mediated single electron transfer‐living radical polymerization (SET‐LRP) of methyl methacrylate (MMA) using ethyl 2‐bromoisobutyrate (EBiB) as an initiator with Cu(0)/N,N,N′,N′′,N′′‐pentamethyldiethylenetriamine as a catalyst system in 1,1,1,3,3,3‐hexafluoro‐2‐propanol (HFIP) was studied. The polymerization showed some living features: the measured number‐average molecular weight (Mn,GPC) increased with monomer conversion and produced polymers with relatively low polydispersities. The increase of HFIP concentration improved the controllability over the polymerization with increased initiation efficiency and lowered polydispersity values. 1H NMR, MALDI‐TOF‐MS spectra, and chain extension reaction confirmed that the resultant polymer was end‐capped by EBiB species, and the polymer can be reactivated for chain extension. In contrast, in the cases of dimethyl sulfoxide or N,N‐dimethylformamide as reaction solvent, the polymerizations were uncontrolled. The different effects of the solvents on the polymerization indicated that the mechanism of SET‐LRP differed from that of atom transfer radical polymerization. Moreover, HFIP also facilitated the polymerization with control over stereoregularity of the polymers. Higher concentration of HFIP and lower reaction temperature produced higher syndiotactic ratio. The syndiotactic ratio can be reached to about 0.77 at 1/1.5 (v/v) of MMA/HFIP at ?18 °C. In conclusion, using HFIP as SET‐LRP solvent, the dual control over the molecular weight and tacticity of PMMA was realized. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6316–6327, 2009  相似文献   

16.
Polydimethylsiloxane (PDMS) block copolymers were synthesized by using PDMS macroinitiators with copper-mediated living radical polymerization. Diamino PDMS led to initiators that gave ABA block copolymers, but there was low initiator efficiency and molecular weights are somewhat uncontrolled. The use of mono- and difunctional carbinol–hydroxyl functional initiators led to AB and ABA block copolymers with narrow polydispersity indices (PDIs) and controlled number-average molecular weights (Mn's). Polymerization with methyl methacrylate (MMA) and 2-dimethylaminoethyl methacrylate (DMAEMA) was discovered with a range of molecular weights produced. Polymerizations proceeded with excellent first-order kinetics indicative of living polymerization. ABA block copolymers with MMA were prepared with between 28 and 84 wt % poly(methyl methacrylate) with Mn's between 7.6 and 35 K (PDI <1.30), which show thermal transitions characteristic of block copolymers. ABA block copolymers with DMAEMA led to amphiphilic block copolymers with Mn's between 9.5 and 45.7 K (PDIs of 1.25–1.70), which formed aggregates in solution with a critical micelle concentration of 0.1 g dm−3 as determined by pyrene fluorimetry experiments. Monocarbinol functional PDMS gave AB block copolymers with both MMA and DMAEMA. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1833–1842, 2001  相似文献   

17.
Sparteine was found to be an efficient ligand because when complexed with copper(I) halide it generated a homogeneous catalyst for the atom transfer radical polymerization of styrene or methyl methacrylate, which was initiated by (1-bromoethyl)benzene in the former case and by p-toluenesulfonyl chloride in the latter. The plots of ln([M]0/[M]) versus time and molecular weight versus monomer conversion exhibited linear dependencies, which indicated that the concentration of the living centers throughout polymerization was constant. The polydispersities of polystyrene and poly(methyl methacrylate) in both the bulk and solution polymerizations were quite low. An induction time was observed during the bulk polymerization of styrene; however, it was absent during the solution polymerization. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4191–4197, 1999  相似文献   

18.
The properties of a ligand, including molecular structure and substituents, strongly affect the catalyst activity and control of the polymerization in atom transfer radical polymerization (ATRP). A new tetradentate ligand, N,N′‐bis(pyridin‐2‐ylmethyl‐3‐hexoxo‐3‐oxopropyl)ethane‐1,2‐diamine (BPED) was synthesized and examined as the ligand of copper halide for ATRP of styrene (St), methyl acrylate (MA), and methyl methacrylate (MMA), and compared with other analogous linear tetrdendate ligands. The BPED ligand was found to significantly promote the activation reaction: the CuBr/BPED complex reacted with the initiators so fast that a large amount of Cu(II)Br2/BPED was produced and thus the polymerizations were slow for all the monomers. The reaction of CuCl/BPED with the initiator was also fast, but by reducing the catalyst concentration or adding CuCl2, the activation reaction could be slowed to establish the equilibrium of ATRP for a well‐controlled living polymerization of MA. CuCl/BPED was found very active for the polymerization of MA. For example, 10 mol% of the catalyst relatively to the initiator was sufficient to mediate a living polymerization of MA. The CuCl/BPED, however, could not catalyze a living polymerization of MMA because the resulting CuCl2/BPED could not deactivate the growing radicals. The effects of the ligand structures on the catalysis of ATRP are also discussed. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3553–3562, 2004  相似文献   

19.
The reverse atom transfer radical polymerization (RATRP) of methyl methacrylate (MMA) was successfully carried out under pulsed microwave irradiation (PMI) at 69 °C with N,N‐dimethylformamide as a solvent and with azobisisobutyronitrile (AIBN)/CuBr2/tetramethylethylenediamine as an initiation system. PMI resulted in a significant increase in the polymerization rate of RATRP. A 10.5% conversion for a polymer with a number‐average molecular weight of 34,500 and a polydispersity index of 1.23 was obtained under PMI with a mean power of 4.5 W in only 52 min, but 103 min was needed under a conventional heating process (CH) to reach a 8.3% conversion under identical conditions. At different [MMA]0/[AIBN]0 molar ratios, the apparent rate constant of polymerization under PMI was 1.5–2.3 times larger than that under CH. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3823–3834, 2002  相似文献   

20.
A hydrophilic ruthenium complex with ionic phosphine ligands { 1 : RuCl2[P(3‐C6H4SO3Na)(C6H5)2]2} induced controlled radical polymerization of 2‐hydroxyethyl methacrylate (HEMA) in methanol under homogeneous conditions; the initiator was a chloride (R‐Cl) such as CHCl2COPh. The number‐average molecular weights of poly(HEMA) increased in direct proportion to monomer conversion, and the molecular weight distributions were relatively narrow (Mw/Mn = 1.4–1.7). A similar living radical polymerization was possible with (MMA)2‐Cl [(CH3)2C(CO2CH3)CH2C(CH3)(CO2CH3)Cl] as an initiator coupled with amine additives such as n‐Bu3N. In a similar homogeneous system in methanol, methyl methacrylate (MMA) could also be polymerized in living fashion with the R‐Cl/ 1 initiating system. Especially for such hydrophobic polymers, the water‐soluble ruthenium catalyst was readily removed from the polymers by simple washing with an aqueous dilute acid. This system can be applied to the direct synthesis of amphiphilic random and block copolymers of HEMA and MMA. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2055–2065, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号