首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
This international standard specifies chemical methods for the collection of iron and/or nickel from the surface of silicon‐wafer working reference materials by the vapour‐phase decomposition method or the direct acid droplet decomposition method. The determination of the elements collected may be carried out by total‐reflection x‐ray fluorescence spectroscopy, as well as by graphite‐furnace atomic absorption spectroscopy or inductively coupled plasma mass spectroscopy. This international standard applies to iron and/or nickel atomic surface densities from 6 × 109 to 5 × 1011 atoms cm?2. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
Atomic absorption spectrometry (AAS) with a resistively-heated graphite furnace is used for the determination of chromium (0.3–1 atom/106 atom) in chromium-doped gallium arsenide after pretreatment in a separate furnace in a stream of argon to remove arsenic, and of manganese and silver (0.03 and 0.04 atom/106 atoms, respectively) by a similar procedure after pretreatment with argon and chlorine, the latter to remove both gallium and arsenic as volatile chlorides. Results for chromium were in agreement with those obtained by furnace AAS after dissolution and by spark-source mass spectrometry (SSMS) but AAS after dissolution is more precise. Results for manganese and silver obtained by both gas pretreatments were in good agreement, but were higher than those obtained for presparked material by SSMS, indicating that surface contamination of gallium arsenide was not completely removed by the etching methods used. The procedures established that the concentrations of bismuth, indium and lead in the gallium arsenide sample were below the limits of detection of 3 × 10?3, 10 × 10?3 and 1 × 10?3 atom/106 atoms, respectively. In all cases, calibration graphs were constructed from data obtained with aqueous solutions of appropriate salts.  相似文献   

3.
To the determination of trace amount of Cd(II) present in food and water samples, a selective and extractive spectrophotometric method were developed with 2,6‐diacetylpyridine‐bis‐4‐phenyl‐3‐thiosemicarbazone as a complexing agent. The yellowish orange colored metal complex, Cd(II)‐2,6‐DAPBPTSC with 1:1 (M:L) composition was extracted in to cyclohexanol at pH 9.5 and was shows maximum absorbance at λmax 390 nm. This method obeys Beer's law in the range of 1.12‐11.25 ppm with 0.972 correlation coefficient of Cd(II)‐2,6‐DAPBPTSC complex, which is indicates linearity between the two variables. The molar absorptivity and sandell's sensitivity were found to be 6.088 × 104 L mol?1 cm?1 and 0.0018 μg cm?2, respectively. The instability constant calculated from Asmus' method (1.447 × 10?4)at room temperature. The precision and accuracy of the method were checked by relative standard deviation (n = 5), 0.929 and its detection limit, 0.0060 μg mL?1. The interfering effects of various cations and anions were also studied. The proposed method was successfully applied to the determination of Cd(II) in foods and water samples, and was evaluated its performance in terms of Student ‘t’ test and Variance ‘f’ test, which indicates the significance of present method. The inter comparison of the experimental values, using atomic absorption spectrometer (AAS), was also repoted.  相似文献   

4.
Dispersive liquid–liquid microextraction (DLLME) technique was successfully used as a sample preparation method for graphite furnace atomic absorption spectrometry (GF AAS). In this extraction method, 500 μL methanol (disperser solvent) containing 34 μL carbon tetrachloride (extraction solvent) and 0.00010 g Salen(N,N′‐bis(salicylidene)ethylenediamine) (chelating agent) was rapidly injected by syringe into the water sample containing cadmium ions (interest analyte). Thereby, a cloudy solution formed. The cloudy state resulted from the formation of fine droplets of carbon tetrachloride, which have been dispersed, in bulk aqueous sample. At this stage, cadmium reacts with Salen(N,N′‐bis(salicylidene)‐ethylenediamine), and therefore, hydrophobic complex forms which is extracted into the fine droplets of carbon tetrachloride. After centrifugation (2 min at 5000 rpm), these droplets were sedimented at the bottom of the conical test tube (25 ± 1 μL). Then a 20 μL of sedimented phase containing enriched analyte was determined by GF AAS. Some effective parameters on extraction and complex formation, such as extraction and disperser solvent type and their volume, extraction time, salt effect, pH and concentration of the chelating agent have been optimized. Under the optimum conditions, the enrichment factor 122 was obtained from only 5.00 mL of water sample. The calibration graph was linear in the range of 2‐21 ng L?1 with a detection limit of 0.5 ng L?1. The relative standard deviation (R.S.D.s) for ten replicate measurements of 20 ng L?1 of cadmium was 2.9%. The relative recoveries of cadmium in tap, sea and rain water samples at a spiking level of 5 and 10 ng L?1 are 99, 94, 97 and 96%, respectively. The characteristics of the proposed method have been compared with cloud point extraction (CPE), on‐line liquid‐liquid extraction, single drop microextraction (SDME), on‐line solid phase extraction (SPE) and co‐precipitation based on bibliographic data. Therefore, DLLME combined with GF AAS is a very simple, rapid and sensitive method, which requires low volume of sample (5.00 mL).  相似文献   

5.
Development of a feasible method for studying the competitive interaction between a pair of antagonists is essential for understanding the antagonism of trace metals in biological systems. Herein, we report the application of CE on‐line coupled with ICP mass spectroscopy (CE‐ICP‐MS) to investigate the competitive binding of Zn2+ against Cd2+ for glutathione (GSH), which is related to the detoxification of Cd2+ in biological system, and introduce a method to evaluate the kinetics and thermodynamics for the competitive binding of Zn2+ against Cd2+ for GSH. The CE‐ICP‐MS hybrid technique allows easy and sensitive probing of the competitive binding of Zn2+ against Cd2+ for GSH and quantitative determination of the important thermodynamic and kinetic parameters of the competitive binding of Zn2+ against Cd2+ for GSH. Owing to the high sensitivity and element selectivity with multi‐elements detection capacity of ICP‐MS, we detailed the evaluation of the kinetics and thermodynamics describing the competition of Zn2+ against Cd2+ for GSH from the systematic data obtained by CE‐ICP‐MS. The competitive binding of Zn2+ against Cd2+ for GSH was demonstrated exothermic and thermodynamically favorable (ΔG=?7.2 kJ/mol) and driven entirely by a large favorable enthalpy decrease (ΔH=?15.1 kJ/mol) but with an unfavorable entropy decrease (ΔS=?25.6 J/mol/K). The kinetic data were fit to a second‐order equation with the reaction rate constant (k) of (2.18±0.10)×102 L/(mol·s) under the simulated physiological condition.  相似文献   

6.
8‐Hydroxy‐2′‐deoxyguanosine (8‐OHdG) detection by high performance liquid chromatography (HPLC) with amperometric detection was studied using a Au electrode modified with different dendrimer based thin films. Gold electrode is thiol‐modified, forming self‐assembled monolayers on which different generation PAMAM dendrimers with terminal functional groups ? COOH and ? NH2 have been attached using peptidic bonds. Results obtained in synthetic samples show low limits of detection and quantification for 8‐OHdG (1.2×10?9 and 3.7×10?9 M respectively), with matrix interference elimination, thus avoiding sample pretreatment. Best results are obtained with electrodes modified with aliphatic amino thiols and 3.5 and 4.5 generation carboxylated dendrimers (Au/AET/DG3.5 and Au/AET/DG4.5), demonstrating that these materials constitute a good alternative for 8‐OHdG determination in biological fluids.  相似文献   

7.
In this work, dual‐column capillary microextraction (CME) system consisting of N‐(2‐aminoethyl)‐3‐aminopropyltrimethoxysilane (AAPTS)‐silica coated capillary (C1) and 3‐mercaptopropyl trimethoxysilane (MPTS)‐silica coated capillary (C2) was developed for sequential separation/preconcentration of arsenite [As(III)], arsenate [As(V)], monomethylarsonic acid [MMA(V)] and dimethylarsinic acid [DMA(V)] in the extracts of human hair followed by electrothermal vaporization inductively coupled plasma mass spectrometry (ETV‐ICP‐MS) detection with iridium as permanent modifier. Various experimental parameters affecting the dual‐column microextraction of different As species had been investigated in detail. It was found that at pH 9, As(V) and MMA could be quantitatively retained by C1 and only As(III) could be quantitatively retained by C2. With the aid of valve switching, As(V)/MMA(V) retained on C1 and As(III) retained on C2 could be sequentially desorbed by 10 µl of 0.01 mol l?1 HNO3 [for As(V)], 0.1 mol l?1 HNO3 [for MMA(V)] and 0.2 mol l?1 HNO3‐3% thiourea (m/v) [for As(III)], respectively, the eluents were immediately introduced into the Ir‐coated graphite tubes for further ETV‐ICP‐MS detection. With two‐step ETV pyrolysis program, Cl? in the sample matrix could be in situ removed, and the total As in the human hair extracts or digested solution could be interference‐free, determined by ETV‐ICP‐MS. DMA(V) in the human hair extracts was obtained by subtraction of total As in the human hair extracts from other three As species. Under the optimized conditions, the detection limits (3 σ) of the method were 3.9 pg ml?1 for As(III), 2.7 pg ml?1 for As(V), 2.6 pg ml?1 for MMA(V) and 124 pg ml?1 for total As with the relative standard deviations less than 7.0% (C = 0.1 ng ml?1, n = 7), and the enrichment factor was 286, 262 and 260 for As(III), As(V) and MMA(V), respectively. The developed method was successfully applied for the speciation of arsenic in the extracts of human hair. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Hydrogen depth distributions in silicon, zinc oxide, and glass are of great interest in material research and industry. Time‐of‐flight SIMS has been used for hydrogen depth profiling for many years. However, some critical information, such as optimal instrumental settings and detection limits, is not easily available from previous publications. In this work, optimal instrumental settings and detection limits of hydrogen in silicon, zinc oxide, and common glass were investigated. The recommended experimental settings for hydrogen depth profiling using time‐of‐flight SIMS are: (i) keeping pressure in the analysis chamber as low as possible, (ii) using a cesium beam for sputtering and monitoring the H signal, (iii) employing monatomic ion analysis beams with the highest currents, and (iv) using interlace mode. In addition, monatomic secondary ions from a matrix are recommended as references to normalize the H signal. Detection limits of hydrogen are limited by the pressure of residual gases in the analysis chamber. The base pressure of the analysis chamber (with samples) is about 7 × 10?10 mbar in this study, and the corresponding detection limits of hydrogen in silicon, zinc oxide, and common glass are 1.3 × 1018 atoms/cm3, 1.8 × 1018 atoms/cm3, and 5.6 × 1018 atoms/cm3, respectively. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
《Electroanalysis》2002,14(24):1691-1698
Three different recently synthesized aza‐thioether crowns containing a 1,10‐phenanthroline sub‐unit (L1–L3) and a corresponding acyclic ligand (L4) were studied to characterize their abilities as silver ion ionophores in PVC‐membrane electrodes. Novel conventional silver‐selective electrodes with internal reference solution (CONISE) and coated graphite‐solid contact electrodes (SCISE) were prepared based on one of the 15‐membered crowns containing two donating S atoms and two phenanthroline‐N atoms (L1). The electrodes reveal a Nernstian behavior over wide Ag+ ion concentration ranges (1.0×10?5?1.0×10?1 M for CONISE and 5.0×10?8?4.0×10?2 M for SCISE) and very low limits of detection (8.0×10?6 M for CONISE and 3.0×10?8 M for SCISE). The potentiometric response is independent from pH of the solution in the pH range 3.0–8.0. The electrodes manifest advantages of low resistance, very fast response and, most importantly, good selectivities relative to a wide variety of other cations. The electrodes can be used for at least 2 months (for CONISE) and 4 months for (SCISE) without any appreciable divergence in potentials. The electrodes were used as an indicator electrode in the potentiometric titration of Ag+ ion and in the determination of silver in photographic emulsions and in radiographic and photographic films.  相似文献   

10.
New synthesized reagent 2,6‐diacetylpyridine bis‐4‐phenyl‐3‐thiosemicarbazone (2,6‐DAPBPTSC) is proposed as a sensitive and selective analytical reagent for the extractive spectrophotometric determination of cobalt(II). Cobalt(II) forms a reddish brown colored complex with 2,6‐DAPBPTSC, which is extracted into isoamylalcohol, under optimum conditions. The maximum absorption of the isoamylalcohol extract is measured at 400 nm. Beer's law is applied in the range 0.6‐6.0 ppm of cobalt(II). The molar absorptivity and Sandell's sensitivity of the complex is calculated as 2.2 × 104 L mol?1 cm?1 and 2.68 × 10?3 μg cm?2, respectively. An adequate linearity with a correlation coefficient value of 0.969 is obtained for the Co(II)‐2,6‐DAPBPTSC complex. The instability constant of the complex, calculated from Asmus' method is 3.75 × 10?4 The precision and accuracy of the method is checked with calculation of relative standard deviation (n = 5), 0.388 and the detection limit a value is 0.0028 μg mL?1. The method is successfully employed for the determination of cobalt(II) in real samples, such as vegetables, soil, water samples, standard alloy samples, and the performance of the present method was evaluated in terms of Student ‘t’ test and Variance ‘f’ test, which indicates the significance of the present method is an inter comparison of the experimental values, using atomic absorption spectrometer (AAS).  相似文献   

11.
Relative rate coefficients for the gas‐phase reaction of chlorine atoms (Cl) and hydroxyl radicals (OH) with 1,8‐cineole were determined by Fourier‐transform infrared (FTIR) spectroscopy between 285 and 313 K at atmospheric pressure. The temperature dependence of both reactions shows simple Arrhenius behaviour which can be represented by the following expressions (in units of cm3 molecule?1s?1): k(1,8‐cineole+OH)=(6.28±6.53)×10?8exp[(?2549.3±155.7)/T] and k(1,8‐cineole+Cl)=(1.35±1.07)×10?10exp[(?151.6±237.7)/T]. Major products of the titled reactions were identified by solid‐phase microextraction (SPME) coupled to a GC‐MS. Additionally, the first step of the reaction was theoretically studied by ab initio calculations and a reaction mechanism is proposed.  相似文献   

12.
It is important to develop high performances biodegradable polymers to eliminate the “white pollution” evoked by petroleum‐based polymer. Thermoplastic starch (TPS) with nano‐ellipse configuration was fabricated to reinforce the performances of poly (butylene adipate co‐terephthalate) (PBAT) biocomposites. Effects of tartaric acid (TA) (0.5% wt) on the structure of TPS and compatibility for PBAT were evaluated by Fourier‐transform infrared spectroscopy (FTIR), viscosity and rheological measurement, dynamic mechanical analysis (DMA) and scanning electron microscope (SEM), respectively. They revealed that TA reduced the molecular weight of starch and shear viscosity of TPS were beneficial for TPS dispersing in PBAT matrix with 184‐nm averaged diameter. PBAT/TPS‐TA (70:30 wt%) biocomposite films were blew with different blow‐up ratio. The morphology of films presented that nano‐TPS‐TA wrapped in the PBAT matrix and deformed from ball to capsule feature without agglomeration. Compared with those of PBAT film, the increment in elongation at break of PBAT/TPS‐TA film was 100%. The air permeability and UV‐VIS transmittance of PBAT/TPS‐TA films decreased from 6.92 × 10?9 to 3.72 × 10?9 cm3·cm·cm?2 s?1 Pa?1 and 47.6% to 23.5%, respectively. This study proposed a facile approach to fabricate low‐cost PBAT films with significant improved mechanical, optical, and air barrier properties for commercial application. Mechanism for nanoparticles of TPS‐TA motivated the elevated performances was proposed, synchronously.  相似文献   

13.
In this paper, voltammetric determination of hydrazine was investigated by 1‐amino‐2‐naphtol‐4‐sulfonic acid (ANSA) at the surface of carbon paste electrode (CPE) using cyclic voltammetry (CV) and double potential step chronoamperometry. Results showed that in pH 7.00, hydrazine participates in Michael addition reaction with ANSA and the anodic peak potential of hydrazine shifted to 726 mV less positive than CPE in absence of ANSA, this value is unique compared with other research works. Also, the value of rate constant for the oxidation of hydrazine was calculated 8.3 × 104 cm3 mol‐1 s‐1 and the diffusion coefficient of ANSA at the surface of CPE was determined 7.3 × 10‐7 cm2 s‐1. A linear correlation between Ip and hydrazine concentration in the ranges, from 5 × 10‐5 mol/L to 2.5 × 10‐2 mol/L with CV method was obtained and the detection limit was found as 4.3 × 10‐5 mol/L.  相似文献   

14.
Abstract

A method for the determination of As in siliceous materials from a fluoboric acid matrix by GFAAS is described. The basic analytical procedure also permits the measurement of major, minor and other trace elements by flame or graphite furnace AAS as appropriate. For As analysis, the incorporation of matrix modification with Ni and of corrective measures to overcome interference by Al, Na and Si are discussed. The validity of the method is demonstrated by the accurate analysis of four international standard reference materials and agreement with instrumental neutron activation analysis results for As in environmental samples. One application to the study of As geochemistry in lacustrine sediments is presented.  相似文献   

15.
An extraction‐spectrophotometric method for the determination of trace amounts of copper and cobalt based on their extraction into n‐pentanol with 0. carboxyphenylhydrazoethylacetoacetate (O.CPHEAA) was per formed. Copper was extracted from pH 6.0 – 8.0 and ionic strength 0.5 M – KCl. The maximum absorption of the extracted Cu(II) ‐ O.CPHEAA complex (1:1 & 1:2 species) occurs at 415 nm. The proposed method succeeded in as saying a concentration of 3–63 μg per 10 mL of n‐pentanol (? = 1.25 × 104L mol?1 cm?1). The method failed to ex tract cobalt ion into various organic sol vents over a pH range of 2–11. The suggested method is highly selective and sensitive according to a wide scheme of interference studied. Copper in some plant samples was accurately estimated using the suggested method. The obtained results and the results of the AAS method were consistent. The reproducibility test shows a relative standard deviation of 1%. Sandell sensitivity for A = 0.001 is 5 × 10?3 μg cm?2.  相似文献   

16.
《Electrophoresis》2017,38(3-4):469-476
As one of paralytic shellfish toxins, the saxitoxin (STX) in the aqueous environment can be accumulated by most shellfish, and thus harms human health through the food chain. Therefore, it is crucial to determine trace STX in seafood samples in order to ensure the safety of seafood consumption. In this study, we developed a novel indirect method for ultrasensitively determining trace STX in seafood by using CE‐ICP‐MS together with Eu3+ chelate labeling. We demonstrated that diethylenetriamine‐N ,N ,N ′,N ″,N ″‐pentaacetic acid (DTPA) can couple with STX and simultaneously chelate with Eu3+ to realize metallic labeling of STX, and thus realize the ultrasensitive quantification of trace STX with CE‐ICP‐MS. The proposed method has strong antiinterference ability, good stability, and extremely high sensitivity. It could be used to determine trace STX in seafood samples with an extremely low detection limit of 0.38 fmol (3.8×10−9 M, 100 nL sample injection) and a relative standard deviation (RSD, n = 5) <7%. The success of this study provides an alternative to precise quantification of ultra‐trace STX in seafood samples, and further expands the application of ICP‐MS.  相似文献   

17.
In this paper, a TCO/a‐Si(N+)/a‐Si(i)/c‐Si(P)/Al‐BSF(P+) structure hetero‐junction (HJ) cell model is developed. With AFORS‐HET V3.0, we investigate the influence of amorphous silicon (a‐Si) emitter and amorphous silicon (a‐Si)/crystalline silicon (c‐Si) interface defects on the HJ cell performance. Through modulating a‐Si(N+) emitter doping concentration and band offset at a‐Si/c‐Si interface, a maximum width value of 103 nm inversion layer is observed in the c‐Si(P) side. For 1 Ω.cm c‐Si (P) substrate, emitter doping of over 1 × 1020 cm?3 is necessary for achieving a high‐efficiency a‐Si/c‐Si HJ cell. Furthermore, defects at a‐Si(N+)/c‐Si(P) interface severely affect the open circuit voltage (Voc) and short circuit current density (Jsc) of the cell. Meanwhile, simulation indicates that Voc is more sensitive to interface defect density (Dit) than Jsc. A thin a‐Si(i) layer between a‐Si(N+) and c‐Si(P) does induce great improvement in Voc of TCO/a‐Si(N+)/a‐Si(i)/c‐Si(P)/Al‐BSF(P+) cell. As a result, high cell efficiency of 22.27% is achieved for a‐Si(N+)/c‐Si(P) HJ Cell with optimized parameters. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Radio‐frequency ionization (RFI) is a novel ionization method coupled to mass spectrometry (MS) for analysis of semi‐volatile and volatile organic compounds (VOCs). Despite the demonstrated capabilities of RFI MS for VOC analysis in both positive‐ and negative‐ion modes, mechanism of RFI is not completely understood. Improved understanding of the ion generation process in RFI should expand its utility in MS. Here, we studied the possibility of electron emission in RFI using both direct charged particle current measurements and indirect electron detection in a 9.4‐T Fourier transform‐ion cyclotron resonance (FT‐ICR) mass spectrometer. We show that RF‐generated electrons can be trapped in the ICR cell and, subsequently, reacted with neutral hexafluorobenzene (C6F6) molecules to generate C6F6●?. Intensity of observed C6F6●? species correlated with the number of trapped electrons and decreased as a function of electron quenching period. We also measured the electron attachment rate constant of hexafluorobenzene using a post‐RF electron trapping experiment. Measured electron attachment rate constant of hexafluorobenzene (1.19 (±0.53) × 10?9 cm3 molecule?1 s?1) for post‐RF FT‐ICR MS agreed with the previously reported value (1.60 (±0.30) × 10?9 cm3 molecule?1 s?1) from low‐pressure ICR MS measurements. Experimental results from direct and indirect electron measurements suggest that RFI process involves RF‐generated electrons under ultrahigh vacuum conditions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
A solid uncharged complex produced from 2‐aminocyclopentene‐1‐dithiocarboxylic acid (synthetic reagent) on naphthalene provides a very sensitive, selective and economical method for the preconcentration and determination of trace amounts of copper in drug and alloy samples. The 2‐aminocyclopentene‐1‐dithiocarboxylate of copper is retained quantitatively on microcrystalline naphthalene in the pH range 2.8–3.3. After filtration the solid mass consisting of copper complex‐naphthalene is dissolved with 4 mL of dimethylformamide (DMF). The absorbance is measured at 462 nm with a spectrophotometer against the reagent blank and molar absorptivity found to be 2.8 × 105 liter mol?1 cm?1. Beer's law is obeyed over the concentration range of 0.1–16.0 μg of copper in 4 mL of the dimethylformamide solution. Detection limit is 3 ng mL?1 [signal to noise ratio = 2]. Ten replicate determinations on a sample containing 1 μg of copper gave a relative standard deviation of 0.76%. The interference of a large number of anions and cations have been studied and the optimized conditions developed were utilized for determination of copper in various real samples.  相似文献   

20.
MOGHIMI Ali 《中国化学》2008,26(10):1831-1836
A novel, simple, sensitive and effective method has been developed for preconcentration of thallium on N,N’-bis(3-methylsalicylidene)-ortho-phenylenediamine (MSOPD) adsorbent in a pH range 5.0—10.0, prior to its spectrophotometric determination, based on the oxidation of bromopyrogallol red at λ=520 nm. This method makes it possible to quantitize thallium in a range of 3.6×10-9 to 2.0×10-5 mol/L, with a detection limit (S/N=3) of 1.42×10-9 mol/L. This procedure has been successfully applied to determine the ultra trace levels of thallium in the environmental samples, free from the interference of some diverse ions. The precision, expressed as relative standard deviation of three measurements, is better than 2.9%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号