首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
An indirect simple and rapid cloud point extraction is proposed for separation and preconcentration of sulfadiazine and its determination by flow injection‐flame atomic absorption spectroscopy (FI‐FAAS). The sulfadiazine from 35 mL of solution was readily converted to silver sulfadiazine upon addition of silver nitrate (9.7 × 10‐5 mol/L). Then, Triton X‐114 a non ionic surfactant was added and the solution was heated to 60 °C. At this stage, two separate phases was formed and silver sulfadiazine enters the surfactant rich phase of non‐ionic micelles of Triton X‐114. The surfactant‐rich phase (~50 μL) was then separated and diluted to 300 μL with acidic methanol. The concentration of silver in the surfactant‐rich phase which is proportional to the concentration of sulfadiazine in sample solution was determined by FI‐FAAS. The parameters affecting extraction and separation were optimized. Under the optimum conditions (i.e. pH 2‐10, silver concentration (9.7 × 10 ‐5 mol/L), Triton X‐114 (0.075% v/v) and temperature 60 °C) a preconcentration factor of 117 and a relative standard deviation of 4.9% at 37 μg L‐1 of sulfadiazine was obtained. The method was successfully applied to analysis of milk, urine and tablet samples and accuracy was determined by recovery experiments.  相似文献   

2.
We have studied the phase behavior of homologous series of diglycerol fatty acid esters (Qn‐D, for n=10, 12, 14, and 16, where n represents the carbon number in the alkyl chain length of amphiphile) in aqueous solution as a function of temperature and surfactant concentration. The different equilibrium phases present over a wide range of composition and temperature studied were characterized by means of visual observation under normal and polarized light, and x‐ray scattering techniques at small (SAXS) and wide angle (WAXS) regions. In diglycerol monocaprate (Q10‐D) and diglycerol monolaurate (Q12‐D)/H2O systems, lamellar liquid crystal (Lα) phase is present in the surfactant rich region and it swallows an appreciable amount of water. The amount of water swallowed by the Lα phase was determined by plotting the interlayer spacing, d, as a function of reciprocal of the surfactant weight fraction Ws . In the dilute regions, dispersion of Lα phase in water is observed over a wide range of temperature. At higher temperatures, the Lα phase melts to isotropic two‐liquid phases in water rich region whereas to isotropic reverse micellar solution (Om) in surfactant rich region. The Lα‐Om transition temperature is increased on increasing the hydrocarbon chain length of the surfactant from Q10‐D to Q12‐D. There is surfactant solid phase in equilibrium with water up to 25°C in diglycerol monomyristate (Q14‐D)/H2O system and the solid phase could solubilize 25 wt% water. The melting temperature of solid phase is practically constant in a wide range of compositions. Both the solid present region and the extent of water solubilization are increased in diglycerol monopalmitate (Q16‐D)/H2O system. At lower surfactant concentrations, excess water appears and dispersion of solid in water is formed. The structure of the solid is identified by WAXS measurement and it is confirmed to α‐solid. Normal vesicular aggregates are formed in Lα+W regions in the Q14‐D/H2O system at 25°C.  相似文献   

3.
Complementary techniques had to be applied to investigate the binary system tetradecanedioic acid (C14H26O4)–hexadecanedioic acid (C16H30O4), because all the forms observed have the same space group (P21/c; Z = 2). We studied the polymorphism of the two single compounds and of their mixtures by X‐ray powder diffraction, differential‐scanning calorimetry (DSC), infrared spectroscopy (IR), scanning electron microscopy (SEM), and thermo‐optical microscopy (TOM). The two diacids were found to be isopolymorphic. At low temperature, they crystallize in the same ordered C‐form, and, on heating, adopt the ordered Ch‐form, 1° below their melting point. In contrast to similar compounds (unbranched alkanes, alkanols, and fatty acids), the solid–solid and solid–liquid phase‐transition temperatures decrease with increasing chain length. At low temperature, a new monoclinic form, Ci, appears as a result of the disorder of composition in the mixed samples. There are two [C + Ci]‐type solid–solid domains. On heating, the solid domains are related to solid–liquid domains by a peritectic invariant for compositions rich in C14H26O4, and by a eutectic invariant for compositions rich in C16H30O4. At higher temperature, there appears a second peritectic invariant for compositions rich in C14H26O4, together with a metatectic invariant for compositions rich in C16H30O4. All the solid forms observed in this binary system are isostructural. Nevertheless, the equilibrium between them is complex near the melting point, and their miscibility in the solid state is reduced.  相似文献   

4.
We have investigated the phase behavior of diglycerol monomyristate (DGM) in a variety of organic solvents over a wide range of temperatures and compositions. At lower temperature, there exists a surfactant solid, which solubilize different amounts of oils depending on the oil nature. The melting temperature of the solid phase is virtually constant in a wide range of composition. In all the systems, a lamellar liquid crystal (Lα) is formed in surfactant‐rich regions at intermediate temperatures between the solid‐melt and isotropic two‐ or single‐phase regions. In the dilute regions reverse vesicles are formed in the Lα+O regions mainly in the case of linear hydrocarbon type oils. In the aromatic and cyclic aliphatic oils, there are isotropic solutions at 25°C. However, there is dispersion of α‐solid in the case of liner hydrocarbon oils. Two liquid‐phase regions above the Lα phase are observed in the case of tetradecane and hexadecane. In the shorter chain oil systems, such as octane and decane, no two liquid‐phase appear above Lα region. That is the two liquid‐phase region is largely dependent on the chain length of the oils, and becomes wider in longer hydrocarbon oil.  相似文献   

5.
Recent theoretical calculations predict that megabar pressure stabilizes very hydrogen‐rich simple compounds having new clathrate‐like structures and remarkable electronic properties including room‐temperature superconductivity. X‐ray diffraction and optical studies demonstrate that superhydrides of lanthanum can be synthesized with La atoms in an fcc lattice at 170 GPa upon heating to about 1000 K. The results match the predicted cubic metallic phase of LaH10 having cages of thirty‐two hydrogen atoms surrounding each La atom. Upon decompression, the fcc‐based structure undergoes a rhombohedral distortion of the La sublattice. The superhydride phases consist of an atomic hydrogen sublattice with H?H distances of about 1.1 Å, which are close to predictions for solid atomic metallic hydrogen at these pressures. With stability below 200 GPa, the superhydride is thus the closest analogue to solid atomic metallic hydrogen yet to be synthesized and characterized.  相似文献   

6.
A novel cellulose tris(N‐3,5‐dimethylphenylcarbamate) (CDMPC) chiral stationary phase (CSP) was prepared by coating CDMPC on TiO2/SiO2, which was prepared by coating titania nanoparticles on silica through a self‐assemble technique. At first, 2‐hydroxyl‐phenyl acetonitrile and α‐phenylethanol were separated on this new CSP to evaluate the chiral separation ability. Then, two pesticides, matalaxyl and diclofop‐methyl were separated. The influence of the mobile phase composition on the enantioselectivity was discussed, and the repeatability and stability of the CSP were studied too.  相似文献   

7.
A miscibility and phase behavior study was conducted on poly(ethylene glycol) (PEG)/poly(l ‐lactide‐ε‐caprolactone) (PLA‐co‐CL) blends. A single glass transition evolution was determined by differential scanning calorimetry initially suggesting a miscible system; however, the unusual Tg bias and subsequent morphological study conducted by polarized light optical microscopy (PLOM) and atomic force microscopy (AFM) evidenced a phase separated system for the whole range of blend compositions. PEG spherulites were found in all blends except for the PEG/PLA‐co‐CL 20/80 composition, with no interference of the comonomer in the melting point of PEG (Tm = 64 °C) and only a small one in crystallinity fraction (Xc = 80% vs. 70%). However, a clear continuous decrease in PEG spherulites growth rate (G) with increasing PLA‐co‐CL content was determined in the blends isothermally crystallized at 37 °C, G being 37 µm/min for the neat PEG and 12 µm/min for the 20 wt % PLA‐co‐CL blend. The kinetics interference in crystal growth rate of PEG suggests a diluting effect of the PLA‐co‐CL in the blends; further, PLOM and AFM provided unequivocal evidence of the interfering effect of PLA‐co‐CL on PEG crystal morphology, demonstrating imperfect crystallization in blends with interfibrillar location of the diluting amorphous component. Significantly, AFM images provided also evidence of amorphous phase separation between PEG and PLA‐co‐CL. A true Tg vs. composition diagram is proposed on the basis of the AFM analysis for phase separated PEG/PLA‐co‐CL blends revealing the existence of a second PLA‐co‐CL rich phase. According to the partial miscibility established by AFM analysis, PEG and PLA‐co‐CL rich phases, depending on blend composition, contain respectively an amount of the minority component leading to a system presenting, for every composition, two Tg's that are different of those of pure components. © 2013 Wiley Periodicals, Inc. J. Polym. Sci. Part B: Polym. Phys. 2014 , 52, 111–121  相似文献   

8.
Summary: The effects of viscosity asymmetry of the components on morphology and dynamics of phase‐separating AB fluids are investigated numerically based on a modified Model H. For critical mixtures, in the early stage of phase separation the co‐continuous morphology with droplets of A in B and B in A is observed. In the late stage of phase separation, the viscosity asymmetry leads to morphological change from co‐continuous structure to completely dispersed structure where the less viscous component forms droplet. The pathway of this transformation is accompanied by the breakdown of balance of volume fraction between droplets with different viscosity. Domain growth is characterized by a crossover from a faster growth at intermediate time under the influence of hydrodynamics to Lifshitz–Slyozov behavior at late times. For off‐critical mixture, viscosity asymmetry only plays an important role for domain growth in the intermediate stage of phase separation and the domain growth depends on whether the more viscous phase is dispersed or continuous, and the late stage of domain growth follows Lifshitz–Slyozov power law independent of which phase is dispersed.

Result for the evolution of phase‐separating domains for critical fluid mixtures = 0.5 for t = 1 500 with viscosity asymmetry: ηA = 0.8, ηB = 0.2. A‐rich regions and B‐rich regions are represented by white and black, respectively.  相似文献   


9.
In this study, we investigate polylactic acid (PLA) crystallization under in situ biaxial extension in a nonsolvent‐induced phase separation foaming process. Our ternary system consists of PLA, dichloromethane (DCM) as solvent and hexane as nonsolvent. For the first time, the formation of a shish‐kebab crystalline morphology is observed in such a solution‐based foaming process in certain solid–liquid phase separated systems. The formation of shish‐kebabs is described based on the coil‐stretch transition concept. The rapid biaxial deformation caused by macropore growth uniaxially stretches the long chains that are tied with at least two single crystals which eventually leads to the formation of shish structures throughout the polymer‐rich phase. The kebab lamellae then form perpendicularly on the shish cores. The scanning electron microscopy (SEM) observations and our interpretation of the crystallization phenomena are confirmed by differential scanning calorimetry (DSC) analysis. The observation of various crystalline morphologies, particularly shish‐kebabs, and the elucidation of their formation mechanisms contribute to the understanding of phase separation and pore growth as well as crystallization in such polymer–solvent–nonsolvent systems. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1055–1062  相似文献   

10.
Here, task‐specific ionic liquid solid‐phase extraction is proposed for the first time. In this approach, a thiourea‐functionalized ionic liquid is immobilized on the solid sorbent, multiwalled carbon nanotubes. These modified nanotubes packed into a solid‐phase extraction column are used for the selective extraction and preconcentration of ultra‐trace amounts of lead(II) from aqueous samples prior to electrothermal atomic absorption spectroscopy determination. The thiourea functional groups act as chelating agents for lead ions retaining them and so, give the selectivity to the sorbent. Elution of the retained ions can be performed using an acidic thiourea solution. The effects of experimental parameters including pH of the aqueous solution, type and amount of eluent, and the flow rates of sample and eluent solutions on the separation efficiency are investigated. The linear dependence of absorbance of lead on its concentration in the initial solution is in the range of 0.5–40.0 ng/mL with the detection limit of 0.13 ng/mL (3sb/m, n = 10). The proposed method is applicable to the analysis of red lipstick, pine leaves, and water samples for their lead contents.  相似文献   

11.
Efficient charge separation and light absorption are crucial for solar energy conversion over solid photocatalysts. This paper describes the construction of Pt@TiO2@In2O3@MnOx mesoporous hollow spheres (PTIM‐MSs) for highly efficient photocatalytic oxidation. TiO2–In2O3 double‐layered shells were selectively decorated with Pt nanoparticles and MnOx on the inner and outer surfaces, respectively. The spatially separated cocatalysts drive electrons and holes near the surface to flow in opposite directions, while the thin heterogeneous shell separates the charges generated in the bulk phase. The synergy between the thin heterojunctions and the spatially separated cocatalysts can simultaneously reduce bulk and surface/subsurface recombination. In2O3 also serves as a sensitizer to enhance light absorption. The PTIM‐MSs exhibit high photocatalytic activity for both water and alcohol oxidation.  相似文献   

12.
The compatibility behavior of polyetherether ketone (PEEK) with poly(ether sulfone) (PES) has been reexamined using differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and extrudate swell measurements. The blends were prepared by both melt‐blending and solution‐blending techniques. The phase behavior of blends is strongly affected by the blending technique used. Blends prepared by solution‐blending are compatible in the entire composition range on the basis of the single composition‐dependent glass transitions and exhibit lower critical solution temperature (LCST) behavior. LCST was near 340 °C around which the crystalline melting point of PEEK exists. Near LCST melting‐induced movement of molecular chains disturbs the initial homogeneous state of the solution blends and leads to a phase‐separated state that is thermodynamically more stable in the absence of strong specific interactions between the homopolymers. Contrary to the solution‐blended samples, melt‐blended samples were in the phase‐separated state even at a lower processing temperature of 300 °C. Two glass transitions corresponding to a PEEK‐rich and a PES‐rich phase were found for all compositions. From the measured glass transition of phase‐separated blends, weight fractions of PES and PEEK dissolved in each phase were determined using the Fox equation. Compatibility is greater in the PEEK‐rich compositions than in the PES‐rich compositions. PEEK dissolves more in PES‐rich phases than does PES in the PEEK‐rich phase. Variation of the specific heat increment (ΔCp) at the glass transition with composition also supports these inferences. Solution‐blended samples, quenched from 380 °C, also indicated similar behavior but were slightly more compatible. The aforementioned results are consistent with those inferred from SEM studies and extrudate swell measurements that show a greater compatibility in PEEK‐rich compositions than in PES‐rich compositions. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1407–1424, 2002  相似文献   

13.
A procedure for zinc flotation separation from fresh water prior to its determination by atomic absorption spectrometry (AAS) has been developed. Hexamethyleneammonium hexamethylenedithiocarbamate (HMA-HMDTC) added to the first precipitate collector of hydrated Fe(III) oxide (Fe2O3· xH2O) gives the second precipitate collector of Fe(HMDTC)3. After addition of a surfactant, the precipitate of collectors is separated from the water phase by a stream of air bubbles, dissolved by strong acid and the solution then tested by AAS. The experimental parameters (amount of collector used, pH, ionic strength, type of foaming reagent, ζ potential, induction time etc.) affecting the flotation efficiency were optimized. At a pH of 6, Zn is separated quantitatively (98.5%) by addition of 5 mg Fe(III) and 3 mL 0.1 mol/L HMA-HMDTC to the sample. Results are compared with those obtained by ammonium tetramethylenedithiocarbamate.  相似文献   

14.
RP‐HPLC coupled with fluorescence detection for separation of carbon nanoparticles (CNP) synthesized with microwave‐assisted pyrolysis of citric acid and 1,2‐ethylenediamine is presented. The influence of methanol content and pH of mobile phase on the separation of CNP has been investigated. Under optimal mobile phase and elution gradient conditions, the effect of mole ratio of amine to carboxylic groups (NH2/COOH) in the initial reagents on CNP product is studied. At NH2/COOH = 0.67, the strongest fluorescence CNP sample is obtained. The separated CNP fractions are collected and further characterized by UV‐visible absorption and photoluminescence (PL) spectroscopy, CE, transmission electron microscopy (TEM), and MALDI‐TOF MS. The absorption and PL emission bands of the fractions are bathochromatically shifted with the elution order of CNP on RP‐HPLC. The TEM images prove that CNP are eluted from the smallest to the largest. The MS data show that CNP undergo fragmentations, closely relating to their surface‐attached carboxylic acid and amide/amine moieties. This work highlights the merit of RP‐HPLC coupled with fluorescence detection, TEM, and MS for isolation and characterization of individual CNP species present in a CNP sample.  相似文献   

15.
This article reports thermoset blends of bisphenol A‐type epoxy resin (ER) and two amphiphilic four‐arm star‐shaped diblock copolymers based on hydrophilic poly(ethylene oxide) (PEO) and hydrophobic poly(propylene oxide) (PPO). 4,4′‐Methylenedianiline (MDA) was used as a curing agent. The first star‐shaped diblock copolymer with 70 wt % ethylene oxide (EO), denoted as (PPO‐PEO)4, consists of four PPO‐PEO diblock arms with PPO blocks attached on an ethylenediamine core; the second one with 40 wt % EO, denoted as (PEO‐PPO)4, contains four PEO‐PPO diblock arms with PEO blocks attached on an ethylenediamine core. The phase behavior, crystallization, and nanoscale structures were investigated by differential scanning calorimetry, transmission electron microscopy, and small‐angle X‐ray scattering. It was found that the MDA‐cured ER/(PPO‐PEO)4 blends are not macroscopically phase‐separated over the entire blend composition range. There exist, however, two microphases in the ER/(PPO‐PEO)4 blends. The PPO blocks form a separated microphase, whereas the ER and the PEO blocks, which are miscible, form another microphase. The ER/(PPO‐PEO)4 blends show composition‐dependent nanostructures on the order of 10?30 nm. The 80/20 ER/(PPO‐PEO)4 blend displays spherical PPO micelles uniformly dispersed in a continuous ER‐rich matrix. The 60/40 ER/(PPO‐PEO)4 blend displays a combined morphology of worm‐like micelles and spherical micelles with characteristic of a bicontinuous microphase structure. Macroscopic phase separation took place in the MDA‐cured ER/(PEO‐PPO)4 blends. The MDA‐cured ER/(PEO‐PPO)4 blends with (PEO‐PPO)4 content up to 50 wt % exhibit phase‐separated structures on the order of 0.5–1 μm. This can be considered to be due to the different EO content and block sequence of the (PEO‐PPO)4 copolymer. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 975–985, 2006  相似文献   

16.
An analytical method for the simultaneous determination of 13 mycotoxins in feed by magnetic dispersive solid‐phase extraction combined with ultra‐high performance liquid chromatography and tandem mass spectrometry was developed. The samples were extracted with acetonitrile/water (80:20, v/v, containing 3% acetic acid), and separated by centrifugation after salting‐out, and then treated with magnetic adsorbents to remove interferences. The separation of target mycotoxins was performed on an ACQUITY UPLC HSS T3 column using a mobile phase consisting of 1 mmol/L ammonium acetate with 0.1% formic acid and methanol by gradient elution. Good linearities for the 13 mycotoxins were achieved with correlation coefficients over 0.99, and the recoveries of mycotoxins were in the range of 89.3–112.6% at spiking at levels of 5, 20, and 100 μg/kg, with relative standard deviations of 0.9–10.4%. Based on the functional magnetic materials (MDN@Fe3O4, PSA@Fe3O4, ZrO2@Fe3O4) applied in dispersive solid‐phase extraction, the pretreatment process is more convenient and it is beneficial to reduce the experimental cost by reusing the recycled magnetic materials. It is a simple, rapid, and environmentally friendly analytical method for the determination of mycotoxins in feed.  相似文献   

17.
We present results of the direct observation, in real‐space, of the phase separation of high molecular weight polystyrene and poly(methyl methacrylate) from ortho‐xylene using our newly developed technique of high speed stroboscopic interference microscopy. Taking a fixed concentration (3 wt % in o‐xylene) at a fixed composition (1:4 by weight) and by varying the rotational rate during the spin‐coating process, we are able to observe the formation of a range of phase separated bicontinuous morphologies of differing length‐scales. Importantly, we are able to show that the mechanism by which the final phase separated structure is formed is through domain coarsening when rich in solvent, before vitrification occurs and fixes the phase separated structure. The ability to directly observe morphological development offers a route toward controlling the length‐scale of the final morphology through process control and in situ feedback, from a single stock solution. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B Polym. Phys. 2013, 51, 875–881  相似文献   

18.
Thermally induced phase separation (TIPS) has been developed to prepare porous membranes. The porous structures are mainly dependent on diluents adopted in the TIPS process. We obtained two typical morphologies of poly(vinylidene fluoride) (PVDF) membranes using cyclohexanone (CO) and propylene carbonate (PC) as diluents, respectively. SEM observation displays that porous spherulites are formed from PVDF/CO system, whereas smooth particles result from PVDF/PC system. The TIPS processes of these two systems have been investigated in detail by optical microscope observation and temperature‐dependent FTIR combined with two‐dimensional infrared correlation analysis. Rapid crystallization of PVDF can be seen around 110 °C in the PVDF/CO system, which is consistent with the results of temperature‐dependent FTIR spectra. The spectral evolution indicates a transform of PVDF from amorphous to α‐phase after 110 °C. The νs(C?O) band at 1712 cm?1 narrows and the νs(C? F) band at 1188 cm?1 shifts to 1192 cm?1 before crystallization, which implies the destruction of interaction between PVDF and CO. In contrast, the PVDF/PC system shows slow crystallization with all‐trans conformation assigned to β‐phase and γ‐phase below 60 °C but no obvious change of polymer?diluent interaction. We propose two mechanisms for the different phase behaviors of PVDF/CO and PVDF/PC systems: a solid?liquid phase separation after destruction of polymer?diluent interaction in the former, and a liquid?liquid phase separation process coupled with rich‐phase crystallization in the later. This work may provide new insight into the relationship among morphologies, crystal forms, and phase separation processes, which will be helpful to adjust membrane structure. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013, 51, 1438–1447  相似文献   

19.
A second type of cation (Mg2+, Ca2+) was introduced into BaF2 by low‐temperature atomic beam deposition. The structure evolution from low‐temperature (–150 °C) amorphous deposits to high‐temperature (< 1000 °C) annealed crystalline phases was studied by in‐situ transmission electron microscopy and X‐ray diffraction. Amorphous (Ba0.5, Ca0.5)F2 crystallizes in a first step to metastable solid solution phase (fluorite‐type), which then decomposes into the pure phases of CaF2 and BaF2 at higher temperature. The crystallization behavior of amorphous (BaxMg1–x)F2 is completely different. When the Mg/Ba atomic ratio is around 1:1, the mixture transforms to the ternary compound BaMgF4 at annealing, and no decomposition occurs by further heating up to 1000 °C. When the Ba concentration is below 15 % in atomic ratio (x < 0.15), the mixture forms a solid solution phase (rutile type) with the lattice expanded by +1 % compared to rutile type MgF2. The difference between the phase evolutions of the two mixture systems is discussed.  相似文献   

20.
A highly efficient Z‐scheme photocatalytic system constructed with 1D CdS and 2D CoS2 exhibited high photocatalytic hydrogen‐evolution activity of 5.54 mmol h?1 g?1 with an apparent quantum efficiency of 10.2 % at 420 nm. More importantly, its interfacial charge migration pathway was unraveled: The electrons are efficiently transferred from CdS to CoS2 through a transition atomic layer connected by Co–S5.8 coordination, thus resulting in more photogenerated carriers participating in surface reactions. Furthermore, the charge‐trapping and charge‐transfer processes were investigated by transient absorption spectroscopy, which gave an estimated charge‐separation yield of approximately 91.5 % and a charge‐separated‐state lifetime of approximately (5.2±0.5) ns in CdS/CoS2. This study elucidates the key role of interfacial atomic layers in heterojunctions and will facilitate the development of more efficient Z‐scheme photocatalytic systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号