首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Three novel Schiff base cadmium(II) complexes, derived from the end‐on (μ‐1,1‐N3) azide or end‐to‐end (μ‐1,3‐NCS) thio cyanate bridges and similar tridentate Schiff base ligands, have been synthesized under similar synthetic procedures and their crystal structures determined by X‐ray diffraction methods. They are the dinuclear double end‐on azide‐bridged [Cd2(L1)2(N3)2(μ‐1,1‐N3)2] ( 1 ), the dinuclear double end‐on azide‐bridged [Cd2(L2)2(N3)2(μ‐1,1‐N3)2] ( 2 ), and the dinuclear double end‐to‐end thiocyanate‐bridged [Cd2(L3)2(NCS)2(μ1,3‐NCS)2] ( 3 ), where L1, L2 and L3 are three similar tridentate Schiff bases obtained by condensation of 2‐pyridylaldehyde with N,N‐diethylethane‐1,2‐diamine, of 2‐pyridylaldehyde with N‐isopropylethane‐1,2‐diamine, and of 2‐pyridylaldehyde with N,N‐dimethylpropane‐1,3‐diamine, respectively. Each cadmium(II) centre in the complexes is in a distorted octahedral coordination. There is a crystallographic inversion centre in each of the complexes. The similar small ligands used as the secondary ligands in the preparation of the cadmium(II) complexes with similar Schiff bases can result in similar structures.  相似文献   

2.
Four novel Schiff base nickel(II) and copper(II) complexes, derived from the end‐on (μ1,1‐N3) azide, end‐to‐end (μ1,3‐NCS) thiocyanate, or phenolate oxygen bridges, have been synthesized and their crystal structures determined by X‐ray diffraction methods. They are the dinuclear double end‐on azide‐bridged [Ni2(L1)2(MeCN)2(μ1,1‐N3)2]·MeOH ( 1 ), the dinuclear double end‐on azide‐bridged [Ni2(L2)2(MeOH)2(μ1,1‐N3)2][Ni2(L2)2(OH2)2(μ1,1‐N3)2]·MeOH ( 2 ), the dinuclear double end‐to‐end thiocyanate‐bridged [Cu2(L3)2(μ1,3‐NCS)2] ( 3 ), and the dinuclear double phenolate O‐bridged [Cu2(L4)2(NCS)2] ( 4 ), where HL1, HL2, HL3 and HL4 are four tridentate Schiff bases obtained by the condensation of 3,5‐dibromosalicylaldehyde with N‐ethylethane‐1,2‐diamine, of 3,5‐dichlorosalicylaldehyde with N‐methylpropane‐1,3‐diamine, of 3‐bromo‐5‐chlorosalicylaldehyde with 2‐aminomethylpyridine, and of 5‐nitrosalicylaldehyde with 2‐aminomethylpyridine, respectively. Each nickel(II) atom in 1 and 2 is in an octahedral coordination, while each copper(II) atom in 3 and 4 is in a square pyramidal coordination. There exists crystallographic inversion centre symmetry in each of the complexes.  相似文献   

3.
The cadmium(II) complexes [CdL1(m‐nba)2] ( 1 ), [CdL1(p‐nba)2] · C2H5OH ( 2 ), [CdL2(p‐nba)2] · CH3OH ( 3 ), and [CdL2(p‐nbat)2] ( 4 ) containing the ligands L1 and L2 [L1 = 2,6‐bis(benzimidazol‐2‐yl)pyridine, L2 = bis(2‐benzimidazolylmethyl)amine] were synthesized and characterized (m‐nba, p‐nba, and p‐nbat are the anions of p‐nitrobenzoic acid, m‐nitrobenzoic acid, and p‐nitrobenzeneacetic acid, respectively). The complexes were investigated by X‐ray single crystal diffraction, elemental analysis as well as IR and fluorescence spectroscopy. Compounds 1 – 3 contain a distorted pentagonal bipyramidal coordination sphere with CdII coordinated by two carboxylate ligands in bidentate‐chelating mode, whereas complex 4 exhibits a distorted octahedral arrangement with one carboxylate ligand in bidentate‐chelating and the other in monodentate coordination mode. 1 and 2 form a 1D chain interplayed by hydrogen bonding and strong π–π stacking interactions. 3 and 4 vary from 1D chain into 2D single‐layer and double‐layer networks because of more extensive hydrogen bonding interactions. The complexes show emission maxima in the blue region in the solid state and emission bands are red‐shifted compared to those of the free ligands.  相似文献   

4.
Using the ligands N‐methylimidazole ( MeIm ), N‐ethylimidazole ( EtIm ), N‐propylimidazole ( PrIm ), and 1‐methyl‐1H‐1, 2, 4‐triazole ( MeTz ) three series with a total of 13 iron(II) complexes were isolated. The series comprise of the following complexes: (a) [Fe( MeIm )6](ClO4)2 ( 1 ), [Fe( EtIm )6](ClO4)2 ( 2 ), [Fe( PrIm )6](ClO4)2( 3 ), [Fe( MeTz )6](ClO4)2 ( 4 ), [Fe( MeIm )6](MeSO3)2 ( 5 ), [Fe( EtIm )6](MeSO3)2 ( 6 ), and [Fe( MeTz )6](BF4)2 ( 10 ); (b) [Fe( MeIm )4(MeSO3)2]( 7 ), [Fe( EtIm )4(MeSO3)2] ( 8 ), and [Fe( PrIm )4(MeSO3)2] ( 9 ); (c) [Fe( MeIm )4(NCS)2] ( 15 ), [Fe( EtIm )4(NCS)2] ( 16 ), and [Fe( MeTz )4(NCS)2] ( 17 ). Single crystal X‐ray diffraction studies were performed on 7 – 10 and 15 – 17 . Temperature dependent magnetic susceptibility measurements were performed on selective examples of all series, and confirmed them to be in the HS state over the range 6–300 K. DFT calculations were performed at BP86/def‐SV(P) and TPSSh/def2‐TZVPP level on all [Fe L 6]2+ complex cations and the neutral complexes 7 – 9 and 15 – 17 . Additionally the four homoleptic nickel(II) complexes [Ni L 6](ClO4)2 ( 11 : L = MeIm ; 12 : L = EtIm ; 13 : L = PrIm ; 14 : L = MeTz ) were synthesized and compounds 11 – 13 structurally characterized. UV/Vis/NIR spectroscopic measurements were carried out on all homoleptic iron(II) and nickel(II) complexes. The 10Dq values were determined to be in the range of 11547–11574 and 10471–10834 cm–1 for the iron(II) and nickel(II) complexes, respectively.  相似文献   

5.
A tetradentate N-donor ligand 1,4-bis[2-(2-pyridyl)benzimidazolato]butane (L) was prepared for construction of a coordination framework. Three one-dimensional coordination polymers {[M(II)L(NCS)2](DMF)2} n (M(II) = cadmium(II), 1, zinc(II), 2, manganese(II), 3) were obtained by reaction of metal ions and L in the presence of KSCN in DMF/water. The complexes are isostructural and consist of 1D zigzag [M(II)L(NCS)2] n chains and DMF molecules. Within the chains, the metal atoms are each octahedrally coordinated by four N atoms of L and two N atoms of the SCN? anions. Complexes 1 and 2 in the solid state at room temperature exhibit intense photoluminescence at 453 and 433 nm, respectively.  相似文献   

6.
Three copper(II) coordination polymers [Cu(mbtz)2(NCS)2]n ( 1 ), [Cu(mbtz)2Cl2]n ( 2 ) and [Cu(mbtz)(btec)0.5]n ( 3 ) (mbtz=1,3‐bis(1,2,4‐triazol‐1‐ylmethyl)benzene, btec=1,2,4,5‐benzenetetracarboxylate) were synthesized. In 1 and 2 , two mbtz ligands are wrapped around each other and are held together by Cu(II) atoms to form one‐dimensional double chain. In 3 , each btec ligand connects four Cu(II) atoms through its four carboxylate groups, resulting in a planar two‐dimensional [Cu(btec)0.5]n network. The Cu(II) atoms are further coordinated mbtz ligands to fulfil their coordination geometry and construct new [Cu(btec)0.5(mbtz)]n network. 2 and 3 further form the three‐dimensional network through the π···π stacking interactions between the mbtz ligands. The thermal stabilities of 1 , 2 and 3 were measured.  相似文献   

7.
Iron(II) complexes of the type [Fe(L)(NCS)2] with tetradentate ligands L are well known to show spin crossover properties. However, this behavior is quite sensitive in regard to small changes of the ligand system. Starting from the thoroughly investigated complex [Fe(tmpa)(NCS)2] [tmpa = tris(2‐pyridylmethyl)amine, also abbreviated as tpa in the literature] we modified the ligand by increasing systematically the chelate ring sizes from 5 to 6 thus obtaining complexes [Fe(pmea)(NCS)2], [Fe(pmap)(NCS)2], and [Fe(tepa)(NCS)2] [pmea = N,N‐bis[(2‐pyridyl)methyl]‐2‐(2‐pyridyl)ethylamine, pmap = N,N‐bis[2‐(2‐pyridyl)ethyl]‐(2‐pyridyl)methylamine, and tepa = tris[2‐(2‐pyridyl)ethyl]amine]. All complexes were structurally characterized and spin crossover properties were investigated using Mößbauer spectroscopy, magnetic measurements, and IR/Raman analyses. The results demonstrated that only the iron complexes with tmpa and pmea showed spin crossover properties, whereas the complexes with the ligands pmap and tepa only formed high spin complexes. Furthermore, DFT calculations supported these findings demonstrating again the strong influence of ligand environment. Herein the effect of increasing the chelate ring sizes in iron(II) isothiocyanato complexes with tetradentate tripyridyl‐alkylamine ligands is clearly demonstrated.  相似文献   

8.
The copper(II) complex [Cu2L21,3‐NCS)2]n · nMeOH [HL = 2‐(5‐chloro‐2‐hydroxybenzylideneamino)‐2‐ethylpropane‐1,3‐diol] was synthesized and characterized by elemental analysis, as well as FT‐IR, and UV/Vis spectroscopy. The structures of the ligand and the complex were confirmed by single‐crystal X‐ray diffraction analyses. The Schiff base ligand coordinates to the copper atoms through the phenolate oxygen and imino nitrogen atoms, and one hydroxyl oxygen atom. The copper atoms are in octahedral coordination. The complex is an active catalyst for the oxidation of cyclooctene and styrene with tert‐butylhydroperoxide as the oxidant under mild conditions.  相似文献   

9.
Cadmium(II) complexes, catena-poly[bis(thiocyanato-κN)bis(N-methylthiourea)cadmium(II)], [Cd(Metu)2(NCS)2]n (1) and dicyanidobis(N-methylthiourea)cadmium(II), [Cd(Metu)2(CN)2] (2) were prepared and their structures were determined by single crystal X-ray analysis. In 1, the cadmium(II) ion is bound to four sulfur atoms of bridging Metu ligands and two nitrogen atoms of thiocyanate adopting a distorted octahedral environment. In 2, the geometry around cadmium is distorted tetrahedral attained by two cyanide ions and two methylthiourea molecules bound through the sulfur atoms. The crystal structures of both complexes show intra and intermolecular hydrogen bonding interactions. The complexes were also characterized by IR and NMR spectroscopy and the spectroscopic data were discussed in terms of the nature of bonding.  相似文献   

10.
Hydrothermal reactions of cadmium precursors with 2, 2′‐bipyridine, fumaric acid or NaN3 in basified aqueous solutions gave rise to two cadmium complexes [Cd(bipy)(fum)(H2O)]n ( 1 ), and [Cd(bipy)(μ1, 1‐N3)2]n ( 2 ) (fum = fumarate dianion), which were characterized by X‐ray crystallography. Complex [Cd(bipy)(fum)(H2O)]n ( 1 ) crystallizes in the orthorhombic system, space group Pbca, with a = 9.0488(8), b = 16.246(3), c = 19.810(4) Å, and Z = 8 while complex [Cd(bipy)(μ1, 1‐N3)2]n ( 2 ) in the monoclinic system, space group C2/c, with a = 12.378(3), b = 14.788(3), c = 6.6139(13) Å, β = 91.49(3)°, and Z = 4. The photoluminescence spectra for compounds 1 and 2 have also been studied.  相似文献   

11.
New complexes containing the 1,4‐bis(pyridazin‐4‐yl)benzene ligand, namely diaquatetrakis[1,4‐bis(pyridazin‐4‐yl)benzene‐κN2]cadmium(II) hexaiodidodicadmate(II), [Cd(C14H10N4)4(H2O)2][Cd2I6], (I), and poly[[μ‐1,4‐bis(pyridazin‐4‐yl)benzene‐κ2N2:N2′]bis(μ‐thiocyanato‐κ2N:S)cadmium(II)], [Cd(NCS)2(C14H10N4)]n, (II), demonstrate the adaptability of the coordination geometries towards the demands of slipped π–π stacking interactions between the extended organic ligands. In (I), the discrete cationic [Cd—N = 2.408 (3) and 2.413 (3) Å] and anionic [Cd—I = 2.709 (2)–3.1201 (14) Å] entities are situated across centres of inversion. The cations associate via complementary O—H...N2′ hydrogen bonding [O...N = 2.748 (4) and 2.765 (4) Å] and extensive triple π–π stacking interactions between pairs of pyridazine and phenylene rings [centroid–centroid distances (CCD) = 3.782 (4)–4.286 (3) Å] to yield two‐dimensional square nets. The [Cd2I6]2− anions reside in channels generated by packing of successive nets. In (II), the CdII cation lies on a centre of inversion and the ligand is situated across a centre of inversion. A two‐dimensional coordination array is formed by crosslinking of linear [Cd(μ‐NCS)2]n chains [Cd—N = 2.3004 (14) Å and Cd—S = 2.7804 (5) Å] with N2:N2′‐bidentate organic bridges [Cd—N = 2.3893 (12) Å], which generate π–π stacks by double‐slipped interactions between phenylene and pyridazine rings [CCD = 3.721 (2) Å].  相似文献   

12.
Two complexes, cis‐[MnL2(NCS)2] ( 1 ) and cis‐[ZnL2(NCS)2] ( 2 ) with asymmetrical substituted triazole ligands [L = 3,4‐dimethyl‐5‐(2‐pyridyl)‐1,2,4‐triazole], were synthesized and characterized by elemental analysis, UV/Vis and FT‐IR spectroscopy as well as thermogravimetric analyses (TGA), powder XRD, and single‐crystal X‐ray diffraction. In the complexes, each L molecule adopts a chelating bidentate mode by the nitrogen atoms of pyridyl and triazole. Both complexes have a similar distorted octahedral [MN6] core (M = Mn2+ and Zn2+) with two NCS ions in the cis position.  相似文献   

13.
A pair of novel thiocyanate‐bridged polynuclear copper(II) complexes, [Cu2(BCP)2(NCS)2]n ( 1 ) and [Cu2(BCP)2(MeOH)(NCS)2]2 ( 2 ) [BCP = 4‐bromo‐2‐(cyclopropyliminomethyl)phenolate], have been obtained from an identical synthetic procedure and starting materials using solvents as the only independent variable. Complex 1 was synthesized and crystallized using EtOH as the solvent, while complex 2 was synthesized and crystallized using MeOH as the solvent. Both complexes show novel self‐assembled supramolecular structures in their crystals as elucidated by X‐ray analyses. The polymeric dinuclear complex 1 contains [Cu2(BCP)2(NCS)2] units as the building blocks, crystallizes in the Pbca space group. The monomeric tetranuclear complex 2 contains [Cu2(BCP)2(MeOH)(NCS)2] units as the building blocks, crystallizes in the P21/n space group.  相似文献   

14.
Cadmium acetate reacts with sulfamethoxazole (5‐methyl‐3‐isoxazolyl sulfanilamide) and with DMF / DMSO / pyridine to give the crystalline polymers [Cd(sulfamethoxazolato)2(L2)]n {L = DMF ( 1 ), DMSO ( 2 )} and [Cd(sulfamethoxazolato)2(Py)2]n·n(Py) ( 3 ). Complexes 1 , 2 and 3 confirm the tectonic character of the [Cd(sulfamethoxazolato)2(L)2] moieties and the remarkable ability of the {Cd(sulfamethoxazolato)4} fragments to be non selectively stabilized by monodentate ligands. In the polymeric assemblies of the title complexes the cadmium(II) atoms are linked through sulfamethoxazolato anions which alternate in their coordination with the isoxazolic N‐atoms and the aromatic amino groups. The chains of vicinal rings build tunnels along the crystallographic c axis.  相似文献   

15.
Two ligands, 2-{5,5-dimethyl-3-[2-(pyridin-3-yl)-ethenyl]cyclohex-2-enylidene}propanedinitrile (L1) and 2-{5,5-dimethyl-3-[2-(pyridin-2-yl)-ethenyl]cyclohex-2-enylidene}propanedinitrile (L2), were synthesized. By reaction of mercury thiocyanate with L1 and L2, respectively, coordination polymers [Hg(L1)(μ1,3-SCN)2]n (1), [Hg(L1)2(μ1,3-SCN)2]n (2), and [Hg(L2)(μ1,3-SCN)(SCN)]n (3) with different structures and topologies were obtained. In 1, the thiocyanate shows μ1,3-SCN bridging coordination, and adjacent Hg(II) ions are bridged by two μ1,3-SCN ions to form an infinite chain with the remaining position of five-coordinate Hg(II) occupied by L1. In 2, the thiocyanate has the same coordination as 1. However, Hg(II) has octahedral coordination with two L1 involved in coordination. An unusual feature of 3 is the presence of two types of thiocyanates, one has a S-terminal ligand and the other has a μ1,3-SCN bridge. The mercury(II) in 3 is four-coordinated by L2 and three thiocyanates. Luminescent properties and thermal stabilities of 1–3 were studied.  相似文献   

16.
The preparation and characterization of three metal(II) chlorido complexes with 1,2‐di(1H‐tetrazol‐1‐yl)ethane (dte) ( 1 ) as ligand is presented. The complexes have the following formula: [CoCl2(μ‐dte)(dte)2]n ( 2 ), [CuCl2(μ‐dte)2]n ( 3 ), and [Cd(μ‐Cl)2(μ‐dte)]n ( 4 ). Single crystal X‐ray diffraction of all three metal complexes was performed and the structures are discussed. All three central metal atoms are connected to polynuclear structures by the μ‐bridging ligand. Cobalt and copper are connected to one‐dimensional chains. The central cadmium(II) atoms are additionally connected by the chloride anions to a two‐dimensional network. Further, the cobalt(II) complex represents a special case with two terminal dte ligands.  相似文献   

17.
A new tridentate pyridyl Schiff base, N-isopropyl-N′-(1-pyridin-2-ylethylidene)ethane-1,2-diamine (L), was used to synthesize two dinuclear cadmium(II) complexes, [Cd2L2(μ 1,1-N3)2(N3)2] (1) and [Cd2L2(μ 1,3-NCS)2(NCS)2] (2). X-ray single crystal structure determination reveals that in both centrosymmetric complexes, the Cd atom is in a distorted octahedral coordination. In the crystal structures of 1 and 2, the dinuclear cadmium(II) complex molecules are linked, respectively, through intermolecular N–H···N and N–H···S hydrogen bonds to form infinite 1D chains. The preliminary fluorescence properties of the complexes were investigated.  相似文献   

18.
Based on the bis‐triazole ligand 2, 6‐bis(1, 2,4‐triazole‐4‐yl)pyridine (L), the triazole‐iron(II) complexes [Fe(L)2(dca)2(H2O)2] · 2H2O ( 1 ) (Nadca = sodium dicyanamide), {[Fe(μ2‐L)2(H2O)2]Cl2}n ( 2 ), and {[Fe(μ2‐L)2(H2O)2](ClO4)2 · L · H2O}n ( 3 ) were isolated by solvent diffusion methods. When iron(II) salts and Nadca were used, compound 1 was isolated, which contains mononuclear Fe(L)2(dca)2(H2O)2 units. When FeCl2 or FeClO4 were used, one‐dimensional (1D) cation iron(II) chains ( 2 ) and two‐dimensional (2D) cation iron(II) networks ( 3 ) were isolated indicating anion directing structural diversity. Moreover, variable‐temperature magnetic susceptibility data of 1 – 3 were recorded in the temperature range 2–300 K. The magnetic curve of complex 2 was fitted by using the classical spin Heisenberg chain model indicating anti‐ferromagnetic interactions (J = –5.31 cm–1). Obviously complexes 1 – 3 show no detectable thermal spin crossover behaviors, the lack of spin‐crossover behavior may be correlated with FeN4O2 coordination spheres in 1 – 3 .  相似文献   

19.
The detailed synthesis and characterization of four ruthenium(II) complexes [RuLL′(NCS)2] is reported, in which L represents a 2,2′‐bipyridine ligand functionalized at the 4,4′ positions with benzo[1,2‐b:4,5‐b′]dithiophene derivatives (BDT) and L′ is 2,2′‐bipyridine‐4,4′‐dicarboxylic acid unit (dcbpy) (NCS=isothiocyanate). The reaction conditions were adapted and optimized for the preparation of these amphiphilic complexes with a strong lipophilic character. The photovoltaic performances of these complexes were tested in TiO2 dye‐sensitized solar cell (DSSC) achieving efficiencies in the range of 3–4.5 % under simulated one sun illumination (AM1.5G).  相似文献   

20.
The dinuclear nickel(II) complex of the asymmetric ligand 1‐[N,N‐bis(2‐pyridylmethyl)amino]‐3‐[2‐(3,5dimethyl‐1H‐pyrazol‐1‐yl)ethoxy]‐2‐hydroxypropane (HL1) was prepared as a model for the active site of urease. The novel complex [Ni2(L1)(MeCOO)(ClO4)(EtOH)2](ClO4) · 0.5 Et2O ( 1 ) crystallizes in the triclinic space group P 1 with a = 11.639(2) Å, b = 12.571(3) Å, c = 16.341(3) Å, α = 92.29°, β = 106.54°, and γ = 113.73°. The nickel ions (c.n. 6) are bridged by the alkoxy donor substituent of the ligand and an acetate anion. The dinuclear nickel(II), cobalt(II), and zinc(II) complexes of the ligands 1‐[N,N‐bis(2‐benzimidazolylmethyl)amino]‐3‐[2‐(3,5‐dimethyl‐1 H‐pyrazol‐1‐yl)ethoxy]‐2‐hydroxypropane (HL2), N‐methyl‐N,N',N'‐tris(2‐benzimidazolylmethyl)‐2‐hydroxy‐1,3‐diaminopropane (HL3), and N,N,N',N'‐tetrakis(2‐benzimidazolylmethyl)‐2‐hydroxy‐1,3‐diaminopropane (HL4) were investigated for their activity towards the hydrolysis of the test substrate p‐nitrophenyl acetate (npa) in ethanol‐water (1 : 1). The second‐order rate constants for the cleavage of npa were determined for all complexes. The profile of the pH dependence indicates that a hydroxide initially binds to the metal ion. The bound nucleophile subsequently attacks the test substrate. The results are discussed in terms of a refined model for the structure activity relationships of the dinuclear active site of urease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号