首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 950 毫秒
1.
Two types of multiarm star block copolymers: (polystyrene)m‐poly(divinylbenzene)‐poly(methyl methacrylate)n, (PS)m‐polyDVB‐(PMMA)n and (polystyrene)m‐poly(divinylbenzene)‐poly(tert‐butyl acrylate)k, (PS)m‐polyDVB‐(PtBA)k were successfully prepared via a combination of cross‐linking and Diels–Alder click reactions based on “arm‐first” methodology. For this purpose, multiarm star polymer with anthracene functionality as reactive periphery groups was prepared by a cross‐linking reaction of divinyl benzene using α‐anthracene end functionalized polystyrene (PS‐Anth) as a macroinitiator. Thus, obtained multiarm star polymer was then reacted with furan protected maleimide‐end functionalized polymers: PMMA‐MI or PtBA‐MI at reflux temperature of toluene for 48 h resulting in the corresponding multiarm star block copolymers via Diels–Alder click reaction. The multiarm star and multiarm star block copolymers were characterized by using 1H NMR, SEC, Viscotek triple detection SEC (TD‐SEC) and UV. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 178–187, 2009  相似文献   

2.
The synthesis of multiarm star block (and mixed‐block) copolymers are efficiently prepared by using Cu(I) catalyzed azide‐alkyne click reaction and the arm‐first approach. α‐Silyl protected alkyne polystyrene (α‐silyl‐alkyne‐PS) was prepared by ATRP of styrene (St) and used as macroinitiator in a crosslinking reaction with divinyl benzene to successfully give multiarm star homopolymer with alkyne periphery. Linear azide end‐functionalized poly(ethylene glycol) (PEG‐N3) and poly (tert‐butyl acrylate) (PtBA‐N3) were simply clicked with the multiarm star polymer described earlier to form star block or mixed‐block copolymers in N,N‐dimethyl formamide at room temperature for 24 h. Obtained multiarm star block and mixed‐block copolymers were identified by using 1H NMR, GPC, triple detection‐GPC, atomic force microscopy, and dynamic light scattering measurements. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 99–108, 2010  相似文献   

3.
Two samples of ABCD 4‐miktoarm star quarterpolymer with A = polystyrene (PS), B = poly(ε‐caprolactone) (PCL), C = poly(methyl methacrylate) (PMMA) or poly(tert‐butyl acrylate) (PtBA), and D = poly(ethylene glycol) (PEG) were prepared using click reaction strategy (Cu(I)‐catalyzed Huisgen [3 + 2] reaction). Thus, first, predefined block copolymers of different polymerization routes, PS‐b‐PCL with azide and PMMA‐b‐PEG and PtBA‐b‐PEG copolymers with alkyne functionality, were synthesized and then these blocks were combined together in the presence of Cu(I)/N,N,N′,N″,N″‐pentamethyldiethylenetriamine as a catalyst in DMF at room temperature to give the target 4‐miktoarm star quarterpolymers. The obtained miktoarm star quarter polymers were characterized by GPC, NMR, and DSC measurements. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1218–1228, 2008  相似文献   

4.
Multiarm star triblock terpolymers were obtained by using two different click reactions sequentially: Cu(I) catalyzed azide–alkyne and Diels–Alder. The synthetic strategy is described as follows: (poly(methyl methacrylate))n‐(polystyrene)m‐poly(divinyl benzene)) ((PMMA)n‐(PS)m‐polyDVB) multiarm star diblock copolymer was first obtained from an azide–alkyne click reaction of (alkyne‐PS)m‐polyDVB multiarm star polymer with α‐anthracene‐ω‐azide PMMA (anth‐PMMA‐N3), followed by a Diels–Alder click reaction of the anthracene groups at the star periphery with α‐maleimide poly (tert‐butyl acrylate) (PtBA‐MI) or α‐maleimide poly(ethylene glycol) (PEG‐MI) leading to target (PtBA)k‐(PMMA)n‐(PS)m‐polyDVB and (PEG)p‐(PMMA)n‐(PS)m‐polyDVB multiarm star triblock terpolymers. The hydrodynamic diameter of individual multiarm star triblock terpolymers were measured by dynamic light scattering (DLS) to be ~24–27 nm in consistent with the atomic force microscopy (AFM) images on silicon substrates. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1557–1564, 2010  相似文献   

5.
Hetero‐arm star ABC‐type terpolymers, poly(methyl methacrylate)‐polystyrene‐poly(tert‐butyl acrylate) (PMMA‐PS‐PtBA) and PMMA‐PS‐poly(ethylene glycol) (PEG), were prepared by using “Click” chemistry strategy. For this, first, PMMA‐b‐PS with alkyne functional group at the junction point was obtained from successive atom transfer radical polymerization (ATRP) and nitroxide‐mediated radical polymerization (NMP) routes. Furthermore, PtBA obtained from ATRP of tBA and commercially available monohydroxyl PEG were efficiently converted to the azide end‐functionalized polymers. As a second step, the alkyne and azide functional polymers were reacted to give the hetero‐arm star polymers in the presence of CuBr/N,N,N′,N″,N″‐pentamethyldiethylenetriamine ( PMDETA) in DMF at room temperature for 24 h. The hetero‐arm star polymers were characterized by 1H NMR, GPC, and DSC. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5699–5707, 2006  相似文献   

6.
Dendritic 2‐ and 4‐arm PMMA‐based star polymers with furan‐protected maleimide at their focal point, (PMMA)2n‐MI and (PMMA)4n‐MI were efficiently clicked with the peripheral anthracene functionalized multiarm star polymer, (α‐anthryl functionalized‐polystyrene)m‐poly(divinyl benzene) ((α‐anthryl‐PS)m‐polyDVB) through the Diels–Alder reaction resulting in corresponding multiarm star block copolymers: (PMMA)2n‐(PS)m‐polyDVB and (PMMA)4n‐(PS)m‐polyDVB, respectively. Molecular weights (Mw,TDGPC), hydrodynamic radius (Rh), and intrinsic viscosity (η) of the multiarm star polymers were determined using three‐detection GPC (TD‐GPC). The high efficiency of this methodology to obtain such sterically demanding macromolecular constructs was deduced using 1H‐NMR and UV–vis spectroscopy. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

7.
A number of diblock copolymers were successfully prepared by Diels–Alder reaction, between maleimide‐ and anthracene‐end functionalized poly (methyl methacrylate) (PMMA), polystyrene (PS), poly(tert‐butyl acrylate) (PtBA), and poly(ethylene glycol) (PEG) in toluene, at 110 °C. For this purpose, 2‐bromo‐2‐methyl‐propionic acid 2‐(3,5‐dioxo‐10‐oxa‐4‐azatricyclo[5.2.1.02,6]dec‐8‐en‐4‐yl)‐ethyl ester, 2 , 9‐anthyrylmethyl 2‐bromo‐2‐methyl propanoate, 3 , and 2‐bromo‐propionic acid 2‐(3,5‐dioxo‐10‐oxa‐4‐azatricyclo[5.2.1.02,6]dec‐8‐en‐4‐yl)‐ethyl ester, 4 , were used as initiators in atom transfer radical polymerization, in the presence of Cu(I) salt and pentamethyldiethylenetriamine (PMDETA), at various temperatures. On the other hand, PEG with maleimide‐ or anthracene‐end functionality was achieved by esterification between monohydroxy PEG and succinic acid monoathracen‐9‐ylmethyl ester, 1 , or 4‐maleimido‐benzoyl chloride. Thus‐obtained PMMA‐b‐PS, PEG‐b‐PS, PtBA‐b‐PS, and PMMA‐b‐PEG block copolymers were characterized by 1H NMR, UV, and GPC. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1667–1675, 2006  相似文献   

8.
We employed for the first time double click reactions: Cu(I) catalyzed azide‐alkyne 1,3‐dipolar cycloaddition and Diels–Alder (4 + 2) reactions for the preparation of H‐shaped polymer possessing pentablocks with different chemical nature (H‐shaped quintopolymer) using one‐pot technique. H‐shaped quintopolymer consists of poly(ethylene glycol) (PEG)‐poly(methylmethacrylate) (PMMA) and poly(ε‐caprolactone) (PCL)‐polystyrene (PS) blocks as side chains and poly (tert‐butylacrylate) (PtBA) as a main chain. For the preparation of H‐shaped quintopolymer, PEG‐b‐PMMA and PCL‐b‐PS copolymers with maleimide and alkyne functional groups at their centers, respectively, were synthesized and simply reacted in one‐pot with PtBA with α‐anthracene‐ω‐azide end functionalities in N,N‐dimethylformamide (DMF) using CuBr/N,N,N′,N″,N″‐pentamethyldiethylenetriamine (PMDETA) as catalyst at 120 °C for 48 h. The precursors and the target H‐shaped quintopolymer were characterized comprehensively by 1H NMR, UV, FTIR, GPC, and triple detection GPC. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3409–3418, 2009  相似文献   

9.
Well‐defined linear α‐anthracene‐ω‐maleimide functionalized polystyrene (l‐Anth‐PS‐MI) and linear α‐alkyne‐ω‐maleimide functionalized poly(tert‐butyl acrylate) (l‐alkyne‐PtBA‐MI) homopolymers, and linear α‐anthracene‐ω‐maleimide functionalized PS‐b‐PtBA (l‐Anth‐PS‐b‐PtBA‐MI) and linear α‐anthracene‐ω‐maleimide functionalized PS‐b‐poly(ε‐caprolactone) (PCL) (l‐Anth‐PS‐b‐PCL‐MI) block copolymers were obtained via combination of atom transfer radical polymerization (ATRP)/ring opening polymerization (ROP) and azide‐alkyne click reaction strategy. Subsequently, these linear homo and block copolymers were efficiently clicked via Diels‐Alder reaction to give their corresponding cyclic homo and block copolymers at reflux temperature of toluene for 48 h under 7–4 × 10?5 M conditions. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

10.
In this work, novel star‐hyperbranched block copolymers containing four polystyrene arms and hyperbranched polyglycidol at the end of each arm (sPS‐b‐HPG) have been synthesized. The polystyrene arms were prepared through atom transfer radical polymerization of styrene starting from a four‐arm initiator. The hydroxyl‐terminated PS star polymers served as precursors for the cationic ring‐opening polymerization of glycidol using BF3·OEt2 as the catalyst. The chemical structures of these block copolymers were characterized by using 1H and 13C NMR. DSC analysis indicated that the star‐hyperbranched block copolymers exhibited two distinct glass transition temperatures corresponding to the linear PS and the HPG segments, respectively. The addition of LiClO4 increased the Tg of HPG segments at low concentrations, however, decreased the Tg at high concentrations. The Tg of PS segments was not affected by the addition of salts at all. Furthermore, the interaction of sPS‐b‐HPG with LiBr was studied by using viscosity analysis based on the Jones–Dole equation. The star‐like PS core strengthened the interaction of sPS‐b‐HPG with Li ions that could facile the inhomogeneous distribution of Li cations and anions in different phases, which is important in polymeric electrolytes for lithium chemical power sources. The ionic conductivity of one sPS‐b‐HPG/LiClO4 electrolyte was measured to be higher than that of HPG/LiClO4 electrolyte. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 949–958, 2009  相似文献   

11.
Two samples of dendrimer‐like miktoarm star terpolymers: (poly(tert‐butyl acrylate))3‐(polystyrene‐poly(ε‐caprolactone))3 (PtBA)3‐(PS‐PCL)3, and (PS)3‐(PtBA‐poly(ethylene glycol)3 were prepared using efficient Cu catalyzed Huisgen cycloaddition (click reaction). As a first step, azido‐terminated 3‐arm star polymers PtBA and PS as core (A) were synthesized by atom transfer radical polymerization (ATRP) of tBA and St, respectively, followed by the conversion of bromide end group to azide. Secondly, PS‐PCL and PtBA‐PEG block copolymers with alkyne group at the junction as peripheral arms (B‐C) were obtained via multiple living polymerization mechanisms such as nitroxide mediated radical polymerization (NMP) of St, ring opening polymerization (ROP) of ε‐CL, ATRP of tBA. Thus obtained core and peripheral arms were linked via click reaction to give target (A)3‐(B‐C)3 dendrimer‐like miktoarm star terpolymers. (PtBA)3‐(PS‐PCL)3 and (PS)3‐(PEG‐PtBA)3 have been characterized by GPC, DSC, AFM, and SAXS measurements. (PtBA)3‐(PS‐PCL)3 did not show any self‐organization with annealing due to the miscibility of the peripheral arm segments. In contrast, the micro‐phase separation of the peripheral arm segments in (PS)3‐(PtBA‐PEG)3 resulted in self‐organized phase‐separated morphology with a long period of ~ 13 nm. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5916–5928, 2008  相似文献   

12.
Anthracene‐functionalized oxanorbornene monomer and oxanorbornenyl polystyrene (PS) with ω‐anthracene end‐functionalized macromonomer were first polymerized via ring‐opening metathesis polymerization using the first‐generation Grubbs' catalyst in dichloromethane at room temperature and then clicked with maleimide end‐functionalized polymers, poly(ethylene glycol) (PEG)‐MI, poly(methyl methacrylate) (PMMA)‐MI, and poly(tert‐butyl acrylate) (PtBA)‐MI in a Diels–Alder reaction in toluene at 120 °C to create corresponding graft copolymers, poly(oxanorbornene)‐g‐PEG, poly(oxanorbornene)‐g‐PMMA, and graft block copolymers, poly(oxanorbornene)‐g‐(PS‐b‐PEG), poly(oxanorbornene)‐g‐(PS‐b‐PMMA), and poly(oxanorbornene)‐g‐(PS‐b‐PtBA), respectively. Diels–Alder click reaction efficiency for graft copolymerization was monitored by UV–vis spectroscopy. The dn/dc values of graft copolymers and graft block copolymers were experimentally obtained using a triple detection gel permeation chromatography and subsequently introduced to the software so as to give molecular weights, intrinsic viscosity ([η]) and hydrodynamic radius (Rh) values. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

13.
In this article, we describe the synthesis of PEG‐b‐polyester star block copolymers via ring‐opening polymerization (ROP) of ester monomers initiated at the hydroxyl end group of the core poly(ethylene glycol) (PEG) using HCl Et2O as a monomer activator. The ROP of ε‐caprolactone (CL), trimethylene carbonate (TMC), or 1,4‐dioxan‐2‐one (DO) was performed to synthesize PEG‐b‐polyester star block copolymers with one, two, four, and eight arms. The PEG‐b‐polyester star block copolymers were obtained in quantitative yield, had molecular weights close to the theoretical values calculated from the molar ratio of ester monomers to PEG, and exhibited monomodal GPC curves. The crystallinity of the PEG‐b‐polyester star block copolymers was determined by differential scanning calorimetry and X‐ray diffraction. Copolymers with a higher arm number had a higher tendency toward crystallization. The crystallinity of the PEG‐b‐polyester star block copolymers also depended on the nature of the polyester block. The CMCs of the PEG‐b‐PCL star block copolymers, determined from fluorescence measurements, increased with increasing arm number. The CMCs of the four‐arm star block copolymers with different polyester segments increased in the order 4a‐PEG‐b‐PCL < 4a‐PEG‐b‐PDO < 4a‐PEG‐b‐PLGA < 4a‐PEG‐b‐PTMC, suggesting a relationship between CMC and star block copolymer crystallinity. The partition equilibrium constant, Kv, which is an indicator of the hydrophobicity of the micelles of the PEG‐polyester star block copolymers in aqueous media, increased with decreasing arm number and increasing crystallinity. A key aspect of the present work is that we successfully prepared PEG‐b‐polyester star block copolymers by a metal‐free method. Thus, unlike copolymers synthesized by ROP using a metal as the monomer activator, our copolymers do not contain traces of metals and hence are more suitable for biomedical applications. Moreover, we confirmed that the PEG‐b‐polyester star block copolymers form micelles and hence may be potential hydrophobic drug delivery vehicles. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2084–2096, 2008  相似文献   

14.
Well‐defined linear furan‐protected maleimide‐terminated poly(ethylene glycol) (PEG‐MI), tetramethylpiperidine‐1‐oxyl‐terminated poly(ε‐caprolactone) (PCL‐TEMPO), and azide‐terminated polystyrene (PS‐N3) or ‐poly(N‐butyl oxanorbornene imide) (PONB‐N3) were ligated to an orthogonally functionalized core ( 1 ) in a two‐step reaction mode through triple click reactions. In a first step, Diels–Alder click reaction of PEG‐MI with 1 was performed in toluene at 110 °C for 24 h to afford α‐alkyne‐α‐bromide‐terminated PEG (PEG‐alkyne/Br). As a second step, this precursor was subsequently ligated with the PCL‐TEMPO and PS‐N3 or PONB‐N3 in N,N‐dimethylformamide at room temperature for 12 h catalyzed by Cu(0)/Cu(I) through copper‐catalyzed azide‐alkyne cycloaddition and nitroxide radical coupling click reactions, yield resulting ABC miktoarm star polymers in a one‐pot mode. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

15.
The star block copolymers with polystyrene‐block‐poly(ethylene oxide) (PS‐b‐PEO) as side chains and hyperbranched polyglycerol (HPG) as core were synthesized by combination of atom transfer radical polymerization (ATRP) with the “atom transfer nitroxide radical coupling” (“ATNRC”) reaction. The multiarm PS with bromide end groups originated from the HPG core (HPG‐g‐(PS‐Br)n) was synthesized by ATRP first, and the heterofunctional PEO with α‐2,2,6,6‐tetramethylpiperidinyl‐1‐oxy group and ω‐hydroxyl group (TEMPO‐PEO) was prepared by anionic polymerization separately using 4‐hydroxyl‐2,2,6,6‐tetramethylpiperidinyl‐1‐oxy (HTEMPO) as parents compound. Then ATNRC reaction was conducted between the TEMPO groups in PEO and bromide groups in HPG‐g‐(PS‐Br)n in the presence of CuBr and pentamethyldiethylenetriamine (PMDETA). The obtained star block copolymers and intermediates were characterized by gel permeation chromatography, nuclear magnetic resonance spectroscopy, fourier transform‐infrared in detail. Those results showed that the efficiency of ATNRC in the preparation of multiarm star polymers was satisfactory (>90%) even if the density of coupling cites on HPG was high. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6754–6761, 2008  相似文献   

16.
A novel six‐arm star block copolymer comprising polystyrene (PS) linked to the center and π‐conjugated poly (3‐hexylthiophene) (P3HT) was successfully synthesized using a combination of atom transfer radical polymerization (ATRP) and click reaction. First, star‐shaped PS with six arms was prepared via ATRP of styrene with the discotic six‐functional initiator, 2,3,6,7,10,11‐hexakis(2‐bromoisobutyryloxy)triphenylene. Next, the terminal bromides of the star‐shaped PS were substituted with azide groups. Afterward, the six‐arm star block copolymer PS‐b‐P3HT was prepared using the click coupling reaction of azide‐terminated star‐shaped PS with alkynyl‐terminated P3HT. Various techniques including 1H NMR, Fourier‐transform infrared and size‐exclusion chromatography were applied to characterize the chemical structures of the intermediates and the target block copolymers. Their thermal behaviors and optical properties were investigated using differential scanning calorimetry and UV–vis spectroscopy. Moreover, atomic force microscopy (AFM) was utilized to observe the morphology of the star block copolymer films. In comparison with two linear diblock copolymer counterparts, AFM results reveal the effect of the star block copolymer architecture on the microphase separation‐induced morphology in thin films. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

17.
In this study, graft copolymers with regular graft points containing polystyrene (PS) backbone and poly(methyl methacrylate) (PMMA), poly(tert‐butyl acrylate) (PtBA), or poly (ethylene glycol) (PEG) side chains were simply achieved by a sequential double polymer click reactions. The linear α‐alkyne‐ω‐azide PS with an anthracene pendant unit per chain was produced via atom transfer radical polymerization of styrene initiated by anthracen‐9‐ylmethyl 2‐((2‐bromo‐2‐methylpropanoyloxy)methyl)‐2‐methyl‐3‐oxo‐3‐(prop‐2‐ynyloxy) propyl succinate. Subsequently, the azide–alkyne click coupling of this PS to create the linear multiblock PS chain with pendant anthracene sites per PS block, followed by Diels–Alder click reaction with maleimide end‐functionalized PMMA, PtBA, or PEG yielded final PS‐g‐PMMA, PS‐g‐PtBA or PS‐g‐PEG copolymers with regular grafts, respectively. Well‐defined polymers were characterized by 1H NMR, gel permeation chromatography (GPC) and triple detection GPC. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

18.
Synthesis of cysteine‐terminated linear polystyrene (PS)‐b‐poly(ε‐caprolactone) (PCL)‐b‐poly(methyl methacrylate) (PMMA)/or poly(tert‐butyl acrylate)(PtBA)‐b‐poly(ethylene glycol) (PEG) copolymers was carried out using sequential quadruple click reactions including thiol‐ene, copper‐catalyzed azide–alkyne cycloaddition (CuAAC), Diels–Alder, and nitroxide radical coupling (NRC) reactions. N‐acetyl‐L ‐cysteine methyl ester was first clicked with α‐allyl‐ω‐azide‐terminated PS via thiol‐ene reaction to create α‐cysteine‐ω‐azide‐terminated PS. Subsequent CuAAC reaction with PCL, followed by the introduction of the PMMA/or PtBA and PEG blocks via Diels–Alder and NRC, respectively, yielded final cysteine‐terminated multiblock copolymers. By 1H NMR spectroscopy, the DPns of the blocks in the final multiblock copolymers were found to be close to those of the related polymer precursors, indicating that highly efficient click reactions occurred for polymer–polymer coupling. Successful quadruple click reactions were also confirmed by gel permeation chromatography. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

19.
The Diels‐Alder reaction as a click reaction strategy is applied to the preparation of well‐defined polycarbonate (PC)‐block copolymers. A well‐defined α‐anthracene‐terminated polycarbonate (PC‐anthracene) is prepared using 9‐anthracene methanol as an initiator in the ring opening polymerization of benzyl 5‐methyl‐2‐oxo‐1,3‐dioxane‐5‐carboxylate in CH2Cl2 at room temperature for 5 h. Next, a well‐defined α‐furan protected maleimide‐terminated‐poly(ethylene glycol) (PEG11‐MI or PEG37‐MI), ‐poly(methyl methacrylate) (PMMA26‐MI), and ‐poly(ε‐caprolactone) (PCL27‐MI) were clicked with the PC‐anthracene at reflux temperature of toluene to yield their corresponding PC‐based block copolymers (PC‐b‐PEG, PC‐b‐PMMA, and PC‐b‐PCL). The homopolymer precursors and their block copolymers were characterized by using the GPC, NMR and UV analysis. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

20.
The tadpole‐shaped copolymers polystyrene (PS)‐b‐[cyclic poly(ethylene oxide) (PEO)] [PS‐b‐(c‐PEO)] contained linear tail chains of PS and cyclic head chains of PEO were synthesized by combination of Glaser coupling with living anionic polymerization (LAP) and ring‐opening polymerization (ROP). First, the functionalized polystyrene‐glycerol (PS‐Gly) with two active hydroxyl groups at ω end was synthesized by LAP of St and the subsequent capping with 1‐ethoxyethyl glycidyl ether and then deprotection of protected hydroxyl group in acid condition. Then, using PS‐Gly as macroinitiator, the ROP of EO was performed using diphenylmethylpotassium as cocatalyst for AB2 star‐shaped copolymers PS‐b‐(PEO‐OH)2, and the alkyne group was introduced onto PEO arm end for PS‐b‐(PEO‐Alkyne)2. Finally, the intramolecular cyclization was performed by Glaser coupling reaction in pyridine/Cu(I)Br/N,N,N′,N″,N″‐pentamethyldiethylenetriamine system under room temperature, and tadpole‐shaped PS‐b‐(c‐PEO) was formed. The target copolymers and their intermediates were well characterized by size‐exclusion chromatography, proton nuclear magnetic resonance spectroscopy, and fourier transform infrared spectroscopy in details. The thermal properties was also determined and compared to investigate the influence of architecture on properties. The results showed that tadpole‐shaped copolymers had lower Tm, Tc, and Xc than that of their precursors of AB2 star‐shaped copolymers. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号