首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
A mechanistic study of the trans?cis isomerization of the azobenzene moiety in a side‐chain liquid‐crystal polymer system was carried out with six liquid‐crystalline polymethacrylates in which different electron‐withdrawing substituents were attached to the para‐positions of the azobenzene chromophores. Compared to the non‐nitro‐substituted azo polymers, the nitro‐substituted azo polymers exhibited two quite different behaviors: an extraordinarily high reaction rate of the thermal cis–trans isomerization and an unexpected composition of cis–trans isomers obtained from the photochemical trans–cis isomerization process. A potential energy profile for the isomerization process was established on basis of the structures of the proposed transition states and was employed to elucidate the reaction mechanism. The results confirmed that the nitro‐substituted azo polymer system proceeded via a rotation mechanism in either direction of the trans?cis isomerization reaction, whereas the non‐nitro‐substituted species were more likely to follow an inversion mechanism. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2296–2307, 2001  相似文献   

2.
The thermal cis–trans isomerization of cis‐transoidal polyphenylacetylene (PPA) synthesized with Noyori's catalyst [Rh(C?CPh)(norbornadiene)(PPh3)2] has been investigated under both ambient and inert atmospheres in solution and in bulk. In all cases, an intramolecular cyclization results in cis–trans isomerization, and subsequent chain cleavage produces 1,3,5‐triphenylbenzene. This reaction is accelerated by the presence of air, particularly when the reaction takes place in solution. Decreases in the cis content and molecular weight show that the intramolecular cyclization process takes place at 23 °C in solution. The mechanism of this reaction is identical to that reported previously for cis‐cisoidal and cis‐transoidal PPA synthesized with Ziegler–Natta catalysts. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3212–3220, 2002  相似文献   

3.
Copolymer containing new thermally reversible click chemistry‐assisted triazole‐substituted azobenzene and fulgimide units in the pendant F‐co‐A was prepared by free‐radical solution addition polymerization technique. The F and A were also prepared for comparison. The DSC analysis of F indicates that the polymer possessing the C‐form of fulgimide unit exhibited higher Tm than that of E‐form of the same polymer and revealed that the C‐form of fulgimide unit in F is highly ordered. The cis‐trans back isomerization behavior of the click chemistry‐assisted triazole‐substituted azobenzene unit in film A has thermal irreversibility, while in F‐co‐A it exhibited thermal reversibility. The UV‐exposed film of F‐co‐A heated around Tg leads to cis‐trans back isomerization of azobenzene unit and thermally stable C‐form of fulgimide which retains its conjugated structure where both the photochromic units are converted into planar conformations and exhibit high fluorescence properties. The fluorescence maxima of C‐form in F‐co‐A red shifted compared with F , because the substituted triazole ring in the azobenzene unit stabilized the C‐form of fulgimide unit. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7843–7860, 2008  相似文献   

4.
A series of copolyamides 12.y was synthesized either with y = 6, or 1,4‐cyclohexanedicarboxylic acid (1,4‐CHDA) residue, or a mixture of both. The influence of the synthetic route of 1,4‐CHDA containing polyamides on the obtained cis–trans ratio of the incorporated 1,4‐CHDA was investigated. The use of acid chlorides provided a synthetic route with full control of the cis–trans ratio of the 1,4‐CHDA residue during synthesis, whereas synthesis at elevated pressure and temperature caused isomerization. The content and cis–trans ratio of 1,4‐CHDA in the copolyamides were determined by solution 13C NMR spectroscopy. Increasing the degree of partial substitution of the adipic acid by 1,4‐CHDA resulted in an increase in Tm, even for low molar precentages of 1,4‐CHDA. This phenomenon points to isomorphous crystallization of both the 12.6 and 12.CHDA repeating units. The mps of the synthesized polyamides were independent of the initial cis–trans ratio of 1,4‐CHDA, provided that the samples were annealed at 300 °C before DSC analysis. The polyamides exhibited a different melting pattern depending on the 1,4‐CHDA content. At a low a 1,4‐CHDA content a net exothermic recrystallization occurred during melting, whereas at higher contents of 1,4‐CHDA this recrystallization occurs to a lesser extent, and two separate melting areas are observed. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 833–840, 2001  相似文献   

5.
The synthesis and characterization of a copolymer based on 4′‐(6‐acryloxy)hexyloxy‐4‐methoxyazobenzene (MAB6) and acrylic acid (AA) are reported. A reaction was carried out by free‐radical polymerization, yielding an MAB6 homopolymer and an AA–MAB6 copolymer with an MAB6 concentration of 16–80%. A nematic phase was observed in the copolymer when the MAB6 content was 44% or higher. Both nematic and smectic phases were observed in the MAB6 homopolymer. All of the polymers were investigated for trans–cis–trans isomerization in a solid film. The samples were irradiated with nonpolarized ultraviolet light (385 nm) before absorption measurements were taken with an ultraviolet–visible spectrometer. The copolymer and homopolymer exhibited a thermal cis–trans isomerization, which could be described by a double‐exponential relaxation process (fast and slow). The relaxation experiment suggested that the hydrogen bonding may have hindered the slow process but had no effect on the fast process. A film of a copolymer sample with a high MAB6 content could be optically aligned by the exposure of the sample to polarized light (385 nm). © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 4017–4024, 2003  相似文献   

6.
We report a poly(ethylene glycol)‐poly(L ‐alanine)‐azobenzene‐poly(L ‐alanine)‐poly(ethylene glycol) (PEG‐PA‐Z‐PA‐PEG) as a temperature and light sensitive polymer. The poly(ethylene glycol)‐poly(L ‐alanine) diblock copolymers with a flexible‐rigid block structure were coupled by an azobenzene group that undergoes a reversible configurational change between “trans” and “cis” upon exposure to UV and vis light. The single azobenzene molecule embedded in the middle of a block copolymer with a flexible (shell)‐rigid (core) structure significantly affected molecular assembly, micelle size, polypeptide secondary structure, and sol‐to‐gel transition temperature of the polymer aqueous solution, depending on its exposure to UV or vis light. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

7.
Concentration dependent morphology of 3‐armed poly(ethylene glycol)‐b‐poly(ε‐caprolactone) copolymer aggregates in aqueous system was investigated by atomic force microscopy (AFM). The AFM results show that, at a low concentration, 4 × 10?5 g/mL, spherical micelles occur, and unmicellized molecules are not distributed homogeneously in the copolymer aqueous solution. Unequal outspread clusters composed of wormlike aggregates are formed at a moderate copolymer concentration, 4 × 10?4 g/mL, those wormlike aggregates are orderly packed in the clusters. At a high concentration of 0.05 g/mL, the copolymer aqueous system is indeed a gel at room temperature, outspread clusters of wormlike aggregates join together to forma network structure. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1412–1418, 2008  相似文献   

8.
The stability of poly(phenylacetylene)s in solution was systematically studied. Cis–transoidal poly(phenylacetylene) prepared with a Rh catalyst readily underwent autoxidative degradation into oligomers, whereas a W‐based polymer with a trans‐rich geometrical structure degraded slowly under similar conditions. The degradation of W‐based poly(phenylacetylene) was independent of the solvents, whereas the degradation of the cis–transoidal material strongly depended on the solvents, and very rapid degradation was observed in toluene and CHCl3. A reduction in the degradation rate in the absence of oxygen and the appearance of carbonyl groups in an IR spectrum and aldehyde protons in a 1H NMR spectrum of the resulting oligomers indicated the direct participation of oxygen in the degradation where light was supposed to assist the degradation by producing radicals on the main chain. The cis content of cis–transoidal poly(phenylacetylene) was unchanged during the degradation, unlike for the acid‐catalyzed decomposition, in which the cis content decreased linearly as the molecular weight decreased. Ring‐substituted poly(phenylacetylene)s degraded slowly compared with poly(phenylacetylene), regardless of the kind of substituent, which suggests that steric factors affected the degradation rate. The use of radical scavengers such as 2,2,6,6‐tetramethylpiperidine‐1‐oxyl and diphenylpicrylhydrazil suppressed the decomposition. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3130–3136, 2001  相似文献   

9.
The reactivity of carboxy‐terminated poly(1‐vinylpyrrolidin‐2‐one) (PVP‐COOH) 40‐mers 1 with various small bi‐functionalized molecules has been investigated. A number of new differently functionalized PVP 3–11 have been successfully obtained demonstrating that the presence of the bulky PVP chain did not hamper the reactivity of the carboxy group. This would imply that in solution the carboxyl group is not buried inside the coil, but well exposed to the solvent, as further confirmed by a molecular dynamics conformational study. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1683–1698, 2008  相似文献   

10.
Copolymers of phenylacetylene (PA) and para‐nitrophenylacetylene (pNPA), named poly(PA‐copNPA), were obtained in different PA/pNPA ratios and different reaction conditions with Rh(I) catalysts. The structure of the copolymers was investigated with IR, laser Raman, 1H NMR, electron spin resonance (ESR), and diffuse reflective ultraviolet–visible (DRUV) light spectroscopies. The pristine polymers had a cis–transoidal structure as the predominant conformation with some trans sequences. Detailed ESR studies supported by computer simulation and conformation analysis have suggested that the trans sequences were due to pNPA sequences and that the cis‐C?C bond sequences of pNPA were associated with a stabilized cis radical formed by four to five of pNPA monomers. This particular stabilization was probably the reason for the higher reactivity of pNPA as compared with PA. These cis sequences were preferentially cleaved to generate π radicals. The compression and, to a minor extent, thermal treatment of poly(PA‐copNPA) samples induced a cis‐to‐trans isomerization, leading to a trans–transoidal form with a planar zigzag structure and with a conjugation length up to n = 24 repeat units, determined by DRUV and Raman experiments. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2365–2376, 2004  相似文献   

11.
This article reports the synthesis and characterization of a new type of copolymer consisting of acrylamide and trans‐4‐methacroyloxyazobenzene and their gel. Free‐radical polymerization initiated with 2,2′‐azobisisobutyronitrile was used to conduct the synthesis although N,N′‐methylene bisacrylamide was used as a crosslinking agent for the gel synthesis. Despite the insolubility of the different monomers in a single solvent, a certain ratio of water/tetrahydrofuran (THF) enabled the propagating species to stay in the solution and thus to facilitate chain growth. The solubility, Fourier transform infrared spectra, and solid‐state 13C NMR investigations revealed that two monomers in the copolymer were chemically bonded. The compositions of the incorporated acrylamide and azobenzene in the copolymer and the gel were determined by NMR spectroscopy. Because the potential actuating behavior of such materials was due to the volume change involved in reversible solvent uptake, the sorption and evaporation of the gel were also investigated and showed that the gel could absorb about 460% water, which corresponded to a polymer content of the weight gel of 18% and was compatible with thermogravimetric analysis of a saturated gel that revealed about 83 wt % of a swollen gel was lost within 12 h. Finally, photoinduced trans–cis isomerization kinetics of the copolymer was investigated in a 30:70 mixture of water and THF against irradiation time. A photostationary state was reached within 5.5 min with a corresponding conversion of 70% of the trans isomer to the cis form. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2886–2896, 2004  相似文献   

12.
A versatile approach to the synthesis of novel polyamidoamine (PAMAM) side‐chain dendritic polyester (SCDPE) possessing azobenzene motifs in the polymeric core is described and displayed reversible cis–trans (E/Z) isomerization upon exposure to UV light. A polymerization reaction was conducted in solution using ester‐terminated PAMAM dendritic diol ( 1a , G 3.5) and azobenzene dicarboxylic acid chloride in the presence of triethylamine. PAMAM dendritic diol 1a as well as SCDPE ( 1 ) were thoroughly characterized by means of IR and NMR (1H and 13C) spectroscopies. The intrinsic viscosity of 1 at 36 °C in CHCl3 was found to be 0.38 dl/g. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 4182–4188, 2001  相似文献   

13.
Three kinds of photoresponsive polymethacrylates containing different bisazo chromophores were prepared with atom transfer radical polymerization and characterized with proton nuclear magnetic resonance, gel permeation chromatography, and ultraviolet–visible spectra. These polymers had similar molecular weights, molecular weight distributions, glass‐transition temperatures, and absorption coefficients. The irradiation of these polymer films with a linearly polarized laser could induce birefringence because of the reorientation of the bisazo chromophores through trans–cis–trans isomerization cycles of double azo bonds, and the corresponding mechanism was also examined. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4237–4247, 2004  相似文献   

14.
Azobenzene‐modified polyesters and poly(ester amide)s fitted with chiral, atropisomeric binaphthylene segments were prepared by a series of low‐temperature polycondensation reactions carried out in polar solvent media. When compared with their polyaramide counterparts studied earlier, these materials had significantly improved solubility behaviors and were readily dissolved by a wide range of organic solvents. In solution, each of these constructs underwent photoinduced oscillations in optical rotatory power when subjected to multiple UV‐light/visible‐light illumination cycles that drove trans?cis isomerization reactions along their polymer chains. Light‐regulated chiroptical perturbations were dependent on polymer backbone structures and were further modulated by well‐coordinated temperature fluctuations and by the nature of the solvent medium employed. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 207–218, 2006  相似文献   

15.
This article concerns the hydrosilylation polyaddition of 1,4‐bis(dimethylsilyl)benzene ( 1 ) with 4,4′‐diethynylbiphenyl, 2,7‐diethynylfluorene ( 2b ), and 2,6‐diethynylnaphthalene with RhI(PPh3)3 catalyst. Trans‐rich polymers with weight‐average molecular weights (Mw's) ranging from 19,000 to 25,000 were obtained by polyaddition in o‐Cl2C6H4 at 150–180 °C, whereas cis‐rich polymers with Mw's from 4300 to 34,000 were obtained in toluene at 0 °C–r.t. These polymers emitted blue light in 4–81% quantum yields. The cis polymers isomerized into trans polymers upon UV irradiation, whereas the trans polymers did not. The device having a layer of polymer trans‐ 3b obtained from 1 and 2b demonstrated electroluminescence without any dopant. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2774–2783, 2004  相似文献   

16.
Novel star‐like polymeric materials with high cis content could be obtained by using α‐norbornenyl macromonomers and highly stable macroinitiators derived from an active norbornene derivative [5‐(2‐bromo‐2‐methylpropionylaminomethyl)bicyclo[2.2.1]hept‐2‐ene (NBBrMPAM)], which was synthesized by the reaction of norbornene methylene amine and 2‐bromo‐2‐methylpropionyl bromide. The α‐norbornenyl macromonomer (NBPMMA), which is polymethyl methacrylate containing norbornenyl end group, was prepared by atom transfer radical polymerization (ATRP) using NBBrMPAM as an initiator. Star‐like polynorbornene with high cis microstructure (cis/trans = 72/28) was obtained directly by ring‐opening metathesis polymerization of NBPMMA macromonomer having number molecular weight (Mn ) as low as 6.39 × 103. Random ring‐opening metathesis copolymerization of NBPMMA and norbornene derivative containing carbazole group (NBCbz) was carried out at 25 °C by using Ru catalyst [(Cy3P)2Cl2Ru = CHPh, Cy = cyclohexyl, Ph = phenyl]. High cis (cis/trans = 63/37) organo‐soluble star‐like random poly(NBPMMA‐co‐NBCbz) was successfully obtained with high number‐average molecular weight (Mn ) of 4.76 × 104 and molecular weight distribution polydispersity index of 1.78. Organo‐soluble comb‐shaped copolymers with MMA could be successfully obtained using ATRP macroinitiator [poly(HNBBrMPAM)] in diluted macroinitiator solution with a concentration less than 3.64 × 10?2 mol.L?1. This is the first ever attempt to prepare novel star‐like organo‐soluble polymeric materials with high cis microstructure via the combination of ring‐opening metathesis polymerization and ATRP. Multimodification could be considered to be carried out by using the functional bromo group at the end of side chains. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3382–3392, 2006  相似文献   

17.
The preparation of a series of novel homopolymers and copolymers containing bisazobenzene chromophores with side‐on structure in the side chains via atom transfer radical polymerization (ATRP) were presented. UV–vis spectra of the thin films of these polymers under irradiation of 488 nm Ar+ laser suggested that the photoisomerization of the bisazobenzene chromophores happened mainly on one of the two azo groups in the bisazobenzene chromophores with similar probability due to their side‐on structure. Good photoalignment behaviors of these polymers were proved by photoinduced birefringence measurements because side‐on structure permitted the two azo groups in the bisazobenzene chromophores both participated in the trans–cis–trans photoisomerization cycles equally to induce the whole chromophore reorientation. Furthermore, the reorientation axis located at the middle of chromophore decreased the sweep volume during photoalignment. The impetus for this study was to evaluate the photoisomerization and photoalignment process of side‐on bisazobenzene‐containing polymers and to find possible applications in the photosensitive devices. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3460–3472, 2007  相似文献   

18.
Unsaturated groups were introduced into the main chains of poly(butylene succinate) (PBS) by the condensation polymerization of 1,4‐butanediol with succinic acid and maleic acid (MA). The resulting aliphatic polyesters were subjected to chain extension via the unsaturated groups with benzoyl peroxide (BPO), BPO/ethylene glycol dimethacrylate (DF), or BPO/triallyl cyanurate (TF). During the condensation polymerization, some of the cis‐structured maleate was isomerized into the trans‐structured fumarate. The trans‐structured fumarate participated in the chain‐extension reaction with BPO more than the cis‐structured maleate. However, the trans/cis ratio remained practically unchanged when bridging molecules such as DF and TF were used along with BPO. Chain extension of PBS containing 5.7 mol % MA units (PBSM57) resulted in gel formation. Chain extension with BPO/TF made more gels in PBSM57 than chain extension with the other crosslinking agents. Chain extension increased the glass‐transition temperature, decreased the melting temperature and crystallinity, and improved mechanical properties such as elongation and tensile strength. The results of the modified Sturm tests showed that the biodegradability of the unsaturated aliphatic polyesters decreased greatly because of the chain extension. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2240–2246, 2000  相似文献   

19.
The ability to pack guest molecules into charged dendronized polymers (denpols) and the possibility to release these guest molecules from subsequently densely aggregated denpols in a load–collapse–release cascade is described. Charged denpols, which constitute molecular objects with a persistent, well‐defined envelope and interior, are capable of incorporating large amounts of amphiphilic guest molecules. Simultaneously, multivalent ions can coordinate to the surfaces of charged denpols, leading to counterion‐induced aggregation of the already guest‐loaded host structures. Thus, although the local guest concentration in denpol‐based molecular transport might already be initially high due to the dense guest packing inside the dendritic denpol scaffolding, the “local” guest concentration can nonetheless be further increased by packing (through aggregation) of the host–guest complexes themselves. Subsequent release of guest compounds from densely aggregated dendronized polymers is then possible (e.g., through increasing the solution concentration of imidazolium‐based ions). Augmented with this release possibility, the concept of twofold packing of guests, firstly through hosting itself and secondly through aggregation of the hosts, gives rise to a load–collapse–release cascade that strikingly displays the high potential of dendronized macromolecules for future molecular transport applications.  相似文献   

20.
A series of novel temperature‐ and pH‐responsive graft copolymers, poly(L ‐glutamic acid)‐g‐poly(N‐isopropylacrylamide), were synthesized by coupling amino‐semitelechelic poly(N‐isopropylacrylamide) with N‐hydroxysuccinimide‐activated poly(L ‐glutamic acid). The graft copolymers and their precursors were characterized, by ESI‐FTICR Mass Spectrum, intrinsic viscosity measurements and proton nuclear magnetic resonance (1H NMR). The phase‐transition and aggregation behaviors of the graft copolymers in aqueous solutions were investigated by the turbidity measurements and dynamic laser scattering. The solution behavior of the copolymers showed dependence on both temperature and pH. The cloud point (CP) of the copolymer solution at pH 5.0–7.4 was slightly higher than that of the solution of the PNIPAM homopolymer because of the hydrophilic nature of the poly(glutamic acid) (PGA) backbone. The CP markedly decreased when the pH was lowered from 5 to 4.2, caused by the decrease in hydrophilicity of the PGA backbone. At a temperature above the lower critical solution temperature of the PNIPAM chain, the copolymers formed amphiphilic core‐shell aggregates at pH 4.5–7.4 and the particle size was reduced with decreasing pH. In contrast, larger hydrophobic aggregates were formed at pH 4.2. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4140–4150, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号