首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The reaction of Te(OH)6 with Ph3SnOH in ethanol leads to the formation of trans‐[(Ph3SnO)4Te(OH)2] ( 1 ). Compound 1 crystallizes triclinic in the space group P\bar{1} with a = 996.6(2) pm, b = 1365.4(3) pm, c = 1368.2(3) pm and α = 71.15(2)°, β = 71.48(2)°, γ = 74.81(3)° (at 220 K). The molecular structure of 1 consists of a tellurium atom, which is coordinated nearly octahedrally by four Ph3SnO units and two hydroxyl groups that are trans to each other. The Te–O bond lengths are in the range of 190.5(2) and 193.7(2) pm. Treatment of 1 with methanol under reflux yields trans‐[(Ph3SnO)2Te(OMe)4] ( 2 ). Compound 2 crystallizes triclinic in the space group P\bar{1} with a = 1012.8(1) pm, b = 1422.4(2) pm, c = 1618.1(2) pm, and α = 100.44(1)°, β = 107.92(1)°, γ = 110.66(1)° (at 220 K). 2 forms centrosymmetric molecules in which the tellurium atom is surrounded nearly octahedrally by four methoxy groups and two trans arranged Ph3SnO units. The Te–O bond lengths of 187.9(3)–194.5(3) pm are similar to those observed in 1 .  相似文献   

2.
Cluster Synthesis by Photolysis of R3PAuN3. VIII. Synthesis and Crystal Structure of [(Ph3PAu)5Mo(CO)4]PF6 · CH2Cl2 and (Ph3PAu)3Co(CO)3 Photolysis of a mixture of Ph2PAuN3 and Mo(CO)6 in THF yields [(Ph3PAu)5Mo(CO)4]+ (1), which can be crystallized from CH2Cl2/diisopropylether as orange 1 · PF6 · CH2Cl2 with the space group P21/c and a = 1681.4(5), b = 2215.6(12), c = 2761.5(9) pm, β = 91.54(3)°, Z = 4. The Au5Mo center of cluster 1 forms a capped trigonal bipyramid with the Mo atom in equatorial position and almost equal Mo? Au distances between 279.9(5) and 284.6(7) pm to all five Au atoms. The Au? Au distances range from 272.2(4) to 301.3(4) pm. The Mo(CO)4 group causes three v(C0) at 1975, 1915 and 1890cm?1. Reaction of Ph3PAuCo(CO)4 with Ph3PAuPF6 affords the known cluster cation [(Ph3PAu)4Co(CO)3]+ in high yield. It can be degraded with C1? to the neutral cluster (Ph3PAu)3Co(CO)3 (2). 2 forms air stable, yellow crystals with the space group P21/n and a = 1359.4(4), b = 2041.0(5), c = 1853.2(6)pm, β = 91.47(1)°, Z = 4. The Au3Co core of 2 has a tetrahedral structure with distances Co? Au between 250.4(1) and 254.0(2) pm and Au? Au between 279.5(1) and 285.1(1) pm. v(C0) are observed at 1963, 1905 and 1891 cm?1. Reaction of 2 with [(Ph3PAu)4Co(CO)3]+ yields the condensed cluster [(Ph3PAu)6AuCo2(CO)6]+.  相似文献   

3.
Syntheses and Crystal Structures of [(Ph3As)2CCN–MnBr3], [(Ph3As)2CCN–CoBr3], and [(Ph3As)2CCN]+CuBr2 The di(arsa)acetonitrilium bromide [(Ph3As)2CCN]Br reacts with the anhydrous dibromides of manganese and cobalt in acetonitrile to form the molecular complexes [(Ph3As)2CCN–MBr3] [M = ( 1 ), Co( 2 )] with zwitterionic structures. With copper(I)bromide, however, the ionic compound [(Ph3As)2CCN]+CuBr2 ( 3 ) is formed. All complexes are characterized by IR spectroscopy and by crystal structure analyses. 1 and 2 crystallize isotypically with each other in the space group P 1 with two formula units per unit cell. The MBr3 fragments in the molecular complexes are connected to the N atom of the [(Ph3As)2CCN]+ cation showing bond angles C–N–Mn of 156.9° and C–N–Co of 161°, and distances Mn–N of 215.6 pm and Co–N of 201 pm. In 3 , on the other hand, (space group C2/c, Z = 4) the ions [(Ph3As)2CCN]+ and the linear Br–Cu–Br ion are to be found concurrent but separate.  相似文献   

4.
Synthesis and Structure of [(Ph3PAu)6Co(CO)2](PF6) and [(Ph3PAu)7Co(CO)2](PF6)2 By the reaction of (Ph3PAu)4Co[(CO)3]+ with OH? in the presence of excess Ph3PAuCl the larger cluster cations [(Ph3PAu)6Co(CO)2]+ ( 1 ) and [(Ph3PAu)7Co(CO)2]2+ ( 2 ) can be built up with 1 being the main product. 1 crystallizes with PF?6 as counterion in the monoclinic space group C2/c with a = 3008.3(6); b = 1339.1(2); c = 2909.4(6) pm; β = 103.08(1)°; Z = 4. The inner core of the cluster cation 1 with the symmetry C2 has the form of a bicapped trigonal bipyramid with the heteroatom in equatorial position, and distances Au? Au between 280.4(1) and 288.4(1) pm and Co? Au between 254.9(1) and 257.1(2) pm. 2 · (PF6)2 crystallizes in the triclinic space group P1 with a = 2155.7(1); b = 1720.6(1); c = 3543.6(1) pm; α = 91.89(1)°; β = 97.51(1); γ = 89.92(1)°; Z = 4. The unit cell contains two symmetry independent cluster cations 2 of about the same geometry. The cluster skeleton Au7Co can be described as fragment of an icosahedron formed by seven gold atoms with the Co atom in its center. The Au? Au distances range from 274.8(3) to 332.6(3) pm, and the Co? Au distances are 256.8(6) to 264.7(5) pm. The bonding in 1 and 2 is discussed.  相似文献   

5.
Inhaltsübersicht. Die Titelverbindung entsteht neben CuN3 · PPh3 bei der Einwirkung von Natriumazid auf CuCl2 und Triphenylphosphan in siedendem Acetonitril bei Anwesenheit von 15-Krone-5 als Lösungsvermittler für NaN3. (Ph3PNPPh3)2[Cu(N3)4] bildet schwarze Kristalle, die wir durch das IR-Spektrum und durch eine röntgenographische Strukturanalyse charakterisiert haben. Raumgruppe Pbca, Z = 4, (4245 beobachtete unabhängige Reflexe, R = 7,2%), Gitter-abmessungen (20°C):a = 1980, 1;b = 1618,8; c = 2014,3 pm. Die Verbindung besteht aus Kationen [Ph3PNPPh3]+ und Anionen [Cu(N3)4]2– der Symmetrie Ci, in denen das Cu-Atom planar von den α-N-Atomen der Azidgruppen mit Cu–N-Abständen von 197,2(4) und 189,5(4) pm umgeben ist. Synthesis and Crystal Structure of (Ph3PNPPh3)2[Cu(N3)4] The title compound is prepared besides CuN3 · PPh3 by the reaction of sodium azide with CuCl2 and PPh3 in boiling acetonitrile in the presence of 15-crown-5. (Ph3PNPPh3)2[Cu(N3)4] forms black crystals, which have been characterized by their IR spectrum as well as by an X-ray structure determination. Space group Pbca, Z = 4 (4245 observed independent reflexions, R = 0.072), lattice dimensions (20°C): A = 1980.1; b = 1618.8; c = 2014.3 pm. The compound consists of Ph3PNPPh3+ cations and anions [Cu(N3)4]2– with symmetry C1, in which the copper atom is planarly surrounded by the four nitrogen atoms of the azide groups with bond lengths Cu–N of 197.2(4) and 189.5(4) pm, respectively.  相似文献   

6.
Cluster Synthesis by Photolysis of Azido Complexes of Platinum and Gold. Syntheses and Crystal Structures of [(Ph3PAu)6(AuCl)3Pt(CO)], [(dppe)PtCo2(CO)7] and [(Ph3PAu)4Pt(dppe)](PF6)2 Photolysis of a mixture of Ph3PAuN3, Ph3PAuCl and (Ph3P)2Pt(N3)2 in THF yields after chromatographic separation with CH2Cl2/EtOH as eluens the cluster [(Ph3PAu)6(AuCl)3Pt(CO)] ( 1 ). It crystallizes in the triclinic space group P1 with the lattice parameters a = 2 139.3(4), b = 2 457.1(4), c = 2 561.9(1) pm, α = 79.74(9)°, β = 80.06(6)°, γ = 66.05(5)°, Z = 4. The nine gold atoms form a fragment of an icosahedron with the platinum atom in its center. Upon photolysis of (dppe)Pt(N3)2 with Co2(CO)8 in THF one m?2-CO ligand of the cobalt carbonyl is substituted by a (dppe)Pt group. The resulting cluster [(dppe)PtCo2(CO)7] ( 2 ) crystallizes monoclinically in the space group P21/n with a = 1 303.9(3), b = 1 768.1(8), c = 1 461.4(4) pm, β = 102.81(1)°, Z = 4. Photolysis of 2 with excess Ph3PAuN3 affords the clusters [(Ph3PAu)4Pt(dppe)]2+ ( 3 ), and [(Ph3PAu)6AuCo2(CO)6]+. 3 crystallizes with PF as counterions in the triclinic space group P1 with a = 1 369.1(4), b = 1 505.0(4), c = 2 773.0(8) pm, α = 84.74(1)°, β = 87.37(2)°, γ = 65.94(2)°, Z = 2. The Au4Pt skeleton of 3 forms a trigonal bipyramid with the platinum atom in equatorial position.  相似文献   

7.
Synthesis and Crystal Structure of (C5H5)Mo(CO)3(AuPPh3) and [(C5H5)Mo(CO)2(AuPPh3)4]PF6 CpMo(CO)3(AuPPh3) is obtained by the reaction of Li[CpMo(CO)3] with Ph3PAuCl at ?95°C in CH2Cl2. It crystallizes in the monoclinic space group C2/c with a = 2625.1(7), b = 883.2(1), c = 2328.4(7) pm, β = 116.39(1)° und Z = 8. In the complex the AuPPh3 group is coordinated to the CpMo(CO)3 fragment with a Au? Mo bond of 271,0 pm. The Mo atom thus achieves a square pyramidal coordination with the center of the Cp ring in apical position. CpMo(CO)3(AuPPh3) reacts under uv irradiation with an excess of Ph3PAuN3 to afford the cluster cation [CpMo(CO)2(AuPPh3)4]+. It crystallizes as [CpMo(CO)2(AuPPh3)4]PF6 · 2 CH2Cl2 in the orthorhombic space group P212121 with a = 1553.9(1), b = 1793.8(2), c = 2809.8(7) pm und Z = 4. The five metal atoms form a trigonal bipyramidal cluster skeleton with the Mo atom in equatorial position. The Mo? Au distances range from 275.5 to 280.8 pm, and the Au? Au distances are between 281.2 and 285.6 pm.  相似文献   

8.
Synthesis of Phenylnitrene Complexes with N-Trimethylsilylaniline. II. Characterization and Crystal Structure of the Rhenium(V) Complexes mer-[Re(NPh)Cl3(NH2Ph)(Ph3P)] and trans-[Re(NPh)(OMe)Cl2(Ph3P)2] Reaction of [ReOCl3(Ph3P)2] with N-trimethylsilylaniline yields mer-[Re(NPh)Cl3(Ph3P)2], which reacts under air with excess of N-trimethylsilylaniline to form [Re(NPh)Cl3 · (NH2Ph)(Ph3P)]. Crystallization from CH2Cl2/MeOH affords [Re(NPh)(OMe)Cl2(Ph3P)2] as an additional product. [Re(NPh)Cl3(NH2Ph)(Ph3P)] crystallizes in the monoclinic space group P21/n with a = 1 192.3(3); b = 1 918.9(3); c = 1 266.3(3) pm; β = 101.71(1)°; Z = 4. The rhenium atom has a distorted octahedral environment with the Cl atoms in meridional positions. The phenyl nitrene ligand is coordinated with an almost linear arrangement Re? N1? C40 = 166.8(6)° and with a bond distance Re?N = 170.5(6) pm. [Re(NPh)(OMe)Cl2(Ph3P)2] · 1/2CH2Cl2 crystallizes in the triclinic space group P1 : a = 1 103.1(4); b = 1 227.9(4); c = 1 711.3(5) pm; α = 70.48(3)°; β = 72.71(3)°; γ = 80.03(3)°; Z = 2. The rhenium atom exhibits a distorted octahedral coordination with the Cl atoms and the phosphine ligands in trans positions. As a consequence of the competition of the nitrene ligand and the trans-coordinated methoxy group the Re?;N bond length is slightly lengthened to 173.2(7) pm, while the Re? O bond length of 193.4(6) pm is short. The bond angles Re? N? C70 and Re? O? C80 are 173.3(7)° and 139.1(7)°, respectively.  相似文献   

9.
Synthesis and Structure of (Ph3PAu)3Mn(CO)4 Photolysis of (Ph3PAu)Mn(CO)5, Ph3PAuN3 and Ph3PAuNCO yields (Ph3PAu)3Mn(CO)4 ( 1 ). 1 crystallizes in the monoclinic space group P21/n with a = 1 031.3(1); b = 3 095.2(3), c = 3 386.3(3) pm; β = 97.58(3)°; Z = 8. The crystal structure contains two symmetry independent clusters 1 of the same geometry. Their inner core MnAu3 forms a rhombus with distances Mn? Au of about the same lengths between 258.4(4) and 262.0(4) pm. The distances Au? Au range from 276.6(2) to 281.3(2) pm. The bonding in 1 is discussed and compared with those of (Ph3PAu)3Co(CO)3 having the same total number of electrons but a tetrahedral framework.  相似文献   

10.
Synthesis and Spectroscopic Characterisation of some Pentacarbonyltungsten(0) Complexes with Mono‐ and Bicyclic Phosphirane Ligands: Crystal Structure of [{(Me3Si)2HCPC(H)H–C(H)Ph}W(CO)5] The tungsten(0) complex [{(Me3Si)2HCPC(Ph)=N}W(CO)5] ( 1 ) reacts upon heating with alkene derivatives 2 , 6 , 8 , and 10 in toluene to form benzonitrile and the complexes [{(Me3Si)2HCPC(R1,R2)–C(R3,R4}W(CO)5] ( 4 , 7 a , b , 9 a , b , 11 a , b ) ( 4 (trans): R1,R3 = Ph, R2,R4 = H, 7 a , b (cis, meso and rac): R1,R3 = Ph, R2,R4 = H, 9 a , b (RR und SS): R1 = Ph, R2,R3,R4 = H, 11 a , b : R1=R3 = (CH2)4, R2,R4 = H). Spectroscopic and mass spectrometric data are discussed. The structure of the complex 9 a was determined by X‐ray single crystal structure analysis showing characteristic data for the phosphirane ring such as a narrow angle at phosphorus (49,2(2)°), different P–C distances (P–C(6) 182,1(5) and P–C(7) 185,2(4) pm) and 152,9(6) pm for the basal C–C bond.  相似文献   

11.
The reaction of Ph3SnCl, (R4N)2[Mo6O19] and (R4N)OH in a molar ratio of 6:1:10 leads to the formation of (R4N)[(Ph3Sn)MoO4] (R = nPr ( 1 ), nBu ( 2 )). Compounds 1· CH3CN and 2 have been charactarized by IR spectroscopy and single crystal X‐ray diffraction. 1· CH3CN forms orthorhombic crystals, space group P212121 with a = 1339.9(2), b = 1508.9(2), c = 1733.2(3) pm. 2 crystallizes in the monoclinic space group P21 with a = 1342.6(2), b = 2280.3(4), c = 1344.0(2) pm, β = 118.34(1). Both compounds 1 and 2 consist of isolated R4N+ cations and polymeric $\rm^{1}_{\infty}$ [(Ph3Sn)MoO4] chains with an alternating arrangement of Ph3Sn+ and MoO42– groups. Treatment of (Ph3Sn)2MoO4 with bis(ethylenediamine)copper(II) succinate yields [Cu(en)2(Ph3Sn)2(MoO4)2] ( 3 ). The zinc derivative [Zn(en)2(Ph3Sn)2(MoO4)2] ( 4 ) is obtained similarly by reaction of (Ph3Sn)2MoO4 with bis(ethylenediamine)zinc(II) formiate. Compounds 3· 2DMF · EtOH and 4· 2DMF · EtOH crystallize in the monoclinic space group P21/n with a = 1998.0(2), b = 1313.3(1), c = 2181.6(2) pm, β = 90.97(1)° for 3 and a = 2015.4(1), b = 1316.7(1), c = 2157.0(1) pm, β = 90.40(1)° for 4 . Like in the cases of 1 and 2, polymeric $\rm^{1}_{\infty}$ [(Ph3Sn)MoO4] chains are observed. The [M(en)2]2+ units (M = Cu, Zn) act as linkers between the $\rm^{1}_{\infty}$ [(Ph3Sn)MoO4] chains to give 2D layer structures with (6, 3) net topology.  相似文献   

12.
The Reaction of Ph3AsCl2 with Acetonitrile. Crystal Structures of [Ph3AsNC(Me)C(AsPh3)CN]+Cl and of the Palladium Molecular Complex [Ph3AsNC(Me)C(AsPh3)CN–PdCl3] In the presence of potassium hydride the reaction of Ph3AsCl2 with acetonitrile leads to [Ph3AsNC(Me) · C(AsPh3)CN]+Cl ( 1 ), which is characterized by its infrared spectrum and by a crystal structure analysis. 1 can be explained as an insertion reaction of acetonitrile into an ylidic As–C bond of the primarily formed [(Ph3As)2CCN]Cl. 1 : Space group P1, Z = 2, lattice dimensions at –70 °C: a = 991.9(1), b = 1255.2(1), c = 1381.3(1) pm, α = 81.64(1)°, β = 80.12(1)°, γ = 78.17(1)°; R1 = 0.051. 1 reacts with palladium(II) chloride to give the molecular complex [Ph3AsNC(Me)C(AsPh3)CN–PdCl3] ( 2 ) with zwitterionic structure. The fragment {PdCl3} is terminally bonded at the nitrogen atom of the CCN group of the cation of 1 in a linear arrangement CCNPd. 2 · CH3CN: Space group P21, Z = 2, lattice dimensions at –90 °C: a = 1079.2(1), b = 1261.5(1), c = 1560.9(1) pm; β = 110.20(1)°; R1 = 0.0283.  相似文献   

13.
Synthesis, Crystal Structure, and Properties of the Complexes [(H2O)Cl4Os≡N‐IrCl(C5Me5)(AsPh3)], [(Ph3Sb)Cl4Os≡N‐IrCl(C5Me5)(SbPh3)], [(Ph3Sb)2Cl3Os≡N‐IrCl(COD)] and [{(Me2PhP)2(CO)Cl2Re≡N}2ReNCl2(PMe2Ph)] The dinuclear complexes [(H2O)Cl4Os≡N‐IrCl(C5Me5)(AsPh3)]·H2O ( 1 ·H2O), [(Ph3Sb)Cl4Os≡N‐IrCl(C5Me5)(SbPh3)] ( 2 ), and [(Ph3Sb)2Cl3Os≡N‐IrCl(COD)] ( 3 ) result from the reaction of the nitrido complexes [(Ph3As)2OsNCl3] and [(Ph3Sb)2OsNCl3] with the iridium compounds [IrCl2(C5Me5)]2 and [IrCl(COD)]2 in dichloromethane. 1 crystallizes as 1 ·H2O in form of green platelets in the monoclinic space group Cm and a = 1105.53(6); b = 1486.76(9); c = 2024.88(10) pm, β = 97.191(4)°, Z = 4. The formation of 1 in air involves a ligand exchange, and the coordination of a water molecule in trans position to the Os‐N triple bond. The resulting complex fragments [(H2O)Cl4Os≡N] and [IrCl(C5Me5)(AsPh3)] are connected by an asymmetric nitrido bridge Os≡N‐Ir. The nitrido bridge is characterised by an Os‐N‐Ir bond angle of 173.7(7)°, and distances Os‐N = 168(1) pm and Ir‐N = 191(1) pm. 2 crystallizes in clumped together brown platelets with the space group and a = 1023.3(3), b = 1476.2(3), c = 1872.5(6) pm, α = 74.60(2), β = 73.84(2), γ = 76.19(2)°, Z = 2. In 2 the asymmetric nitrido bridge Os≡N‐Ir joins the two complex fragments [(Ph3Sb)Cl4Os≡N] and [IrCl(C5Me5)(SbPh3)], which are formed by a ligand exchange reaction. 3 forms dark green crystals with the triclinic space group and a = 1079.4(1), b = 1172.3(1), c = 1696.7(2) pm, α = 101.192(9),β = 92.70(1), γ = 92.61(1)°, Z = 2. The distances in the almost linear nitrido bridge (Os≡N‐Ir = 175.3(7)°) are Os‐N = 171(1) pm and Ir‐N = 183(1) pm. The reaction of [ReNCl2(PMe2Ph)3] with [Mo(CO)3(NCMe)3] unexpectedly affords the trinuclear complex [{(Me2PhP)2(OC)Cl2Re≡N}2ReNCl2(PMe2Ph)] ( 4 ) as the main product. It forms triclinic brown crystals with the composition 4 ·2THF and the space group (a = 1382.70(7), b = 1498.58(7), c = 1760.4(1) pm, α = 99.780(7), β = 99.920(7), γ = 114.064(6)°, Z = 2). In the trinuclear complex, the central fragment, [ReNCl2(PMe2Ph)] is joined in trans position to two nitrido complexes [(Me2PhP)2(CO)Cl2Re≡N], giving an almost linear Re≡N‐Re‐N≡Re arrangement. The bond angles and distances in the nitrido bridges are Re‐N‐Re = 167.8(3)°, Re‐N = 171.1(8) pm and 204.2(8) pm; and Re‐N‐Re = 168.1(4)°, Re‐N = 170.9(9) and 203.5(9) pm respectively. As expected, the Re‐N bond length to the terminal nitrido ligand on the central Re atom is much shorter at 161.2(9) pm than the triple bonds of the asymmetric bridges.  相似文献   

14.
The Crystal Structures of (NBu4)[(Ph3Sn)3(MoO4)2] and (NBu4)[(Ph3Sn)3(MoO4)2]·CH3CN: Organotin Molybdates with Novel 3D Networks The reaction of (NBu4)2[Mo6O19] with Ph3SnCl and NBu4OH in acetonitrile as solvent leads to the formation of (NBu4)[(Ph3Sn)3(MoO4)2] ( 5 ). 5 and (NBu4)[(Ph3Sn)3(MoO4)2]· CH3CN 6 have been characterized by single crystal structure analysis at 220 K. 5 crystallizes monoclinic with a = 1429.5(4) pm, b = 2292.2(3) pm, c = 2269.7(5) pm, β = 107.42(3)°, space group Cc, 6 crystallizes orthorhombic with a = 1820.5(1) pm, b = 1848.6(2) pm and c = 2143.9(1) pm, space group P212121. The crystal structures of 5 and 6 consist of isolated (NBu4)+ cations and anionic 3D networks of Ph3SnO2 trigonal bipyramides and MoO4 tetrahedra which are linked by common oxygen atoms.  相似文献   

15.
Asymmetrically Substituted Iminium Salts [Et3PNAsPh3]X and their Reactions with Acetonitrile. Crystal Structures of [Et3PNAsPh3]X (X = Cl, Br), [(Ph3As)2CCN]Br, and [(Ph3As)2CCN(SnBr5)] The asymmetrically substituted iminium salts [Et3PNAsPh3]X with X = Cl, Br are formed in the reaction of Me3SiNPEt3 with Ph3AsX2 at 180 °C in the melt. The products crystallize from acetonitrile as colourless, moisture-sensitive crystals, which crystallize isotypicly in the space group P21/c with four formula units in the unit cell. In the cations short PN distances of 159.7 pm and short AsN distances of 172.7 pm are to be found along with PNAs bond angles of 135.8°. With acetonitrile they react in the presence of potassium hydride forming the acetonitrile derivatives [(Ph3As)2CCN]X. The crystal structure analysis of the bromide shows an ionic structure with a linear CCN group of the cation and an As–C–As bond angle of 126.9°. [(Ph3As)2CCN]Br reacts with tin tetrabromide to form the complex [(Ph3As)2CCN(SnBr5)] with a zwitterionic structure and a bond angle CNSn of 144.0°.  相似文献   

16.
Synthesis and Crystal Structure of [{(tBu2P)2InCl}2] The reaction of InCl3 with tBu2PSiMe3 leads to [{(tBu2P)2InCl}2] ( 1 ). 1 crystallizes in the space group P21/c. The lattice constants (at 216 K) are: a = 945.9(5) pm, b = 1 604.1(9) pm, c = 1 636.8(8) pm, β = 100.55(4)°. 1 contains a planar In2P2 ring. Each In atom is coordinated by two bridging tBu2P groups, a terminal tBu2P group and a terminal Cl atom. The coordination geometry of the In atoms is roughly tetrahedral.  相似文献   

17.
Bifunctionalized 1 H‐Phosphirene and g1‐1‐Phosphaallene Tungsten Complexes The tungsten(0) complex [{(Me3Si)2HCPC(Ph)=N}W(CO)5] 1 reacts upon heating with acetylene derivatives 2 a–d in toluene to form benzonitrile and the complexes [{(Me3Si)2HCPC(R)=COEt} · W(CO)5] 5 a–d ( 5 a : R = SiMe3; 5 b : R = SiPh3; 5 c : R = SnMe3; 5 d : R = SnPh3) and [{(Me3Si)2HCP=C=C(OEt)R} · W(CO)5] 6 a, b ( 6 a : R = SnMe3; 6 b : R = SnPh3), which have been isolated by chromatography; complexes 5 c and 6 a have been characterized as mixtures. Spectroscopic and mass spectrometric data are discussed. The crystal structure of the compound 5 a was determined by X‐ray single crystal structure analysis ( 5 a : space group P21/n, Z = 4, a = 977.6(2) pm, b = 1814.6(4) pm, c = 1628.0(4) pm, β = 93.95(2)°).  相似文献   

18.
Reaction of SePh2 with N‐Chlorosuccinimide. Crystal Structures of [SeCl2Ph2] and [SeCl2Ph2(succinimide)2] SePh2 reacts with N‐chlorosuccinimide in acetonitrile solution to give [SeCl2Ph2] ( 1 ) and [SeCl2Ph2(succinimide)2] ( 2 ) as colourless crystals, which can be separated by fractional crystallization. According to X‐ray single crystal determinations both compounds contain [SeCl2Ph2] molecules with ψ‐trigonal‐bipyramidal coordination at the selenium atom, the chloro ligands being in apical positions. In 2 the dimeric unit (HNC4O2H4)2 is linked with its [SeCl2Ph2] unit via a weak C–H···O hydrogen bond. 1 : Space group Pbcn, Z = 4, lattice dimensions at 193 K: a = 1350.6(1), b = 573.3(1), c = 1503.3(2) pm, R1 = 0.0326. 2 : Space group I2/a, Z = 4, lattice dimensions at 193 K: a = 1363.9(1), b = 557.7(1), c = 2781.3(1) pm, β = 101.01(1)°, R1 = 0.0286.  相似文献   

19.
Syntheses and Crystal Structures of [μ‐(Me3SiCH2Sb)5–Sb1,Sb3–{W(CO)5}2] and [{(Me3Si)2CHSb}3Fe(CO)4] – Two Cyclic Complexes with Antimony Ligands cyclo‐(Me3SiCH2Sb)5 reacts with [(THF)W(CO)5] (THF = tetrahydrofuran) to form cyclo‐[μ‐(Me3SiCH2Sb)5–Sb1,Sb3–{W(CO)5}2] ( 1 ). The heterocycle cyclo‐ [{(Me3Si)2CHSb}3Fe(CO)4] ( 2 ) is formed by an insertion reaction of cyclo‐[(Me3Si)2CHSb]3 and [Fe2(CO)9]. The crystal structures of 1 and 2 are reported.  相似文献   

20.
Phosphoraneiminato Complexes of Iodine. Syntheses and Crystal Structures of Ph3PNIO2 and Ph3PNSiMe3 · I2 Ph3PNIO2 has been prepared as yellow crystals by the reaction of Ph3PNSiMe3 with I2O5 in boiling acetonitrile, whereas the molecular complex Ph3PNSiMe3 · I2 is formed as brown crystals by the reaction of Ph3PNSiMe3 with iodine in acetonitrile solution. Both complexes were characterized by crystal structure determinations. Ph3PNIO2: Space group P21/n, Z = 4, 2 858 observed unique reflections, R = 0.039. Lattice dimensions at 19°C: a = 972.8(2), b = 1 743.4(3), c = 1 073.7(2) pm, β = 115.46(3)°. The compound forms monomeric molecules with pyramidal geometry at the iodine atom. The bond angle PNI (126.9°) is unusually small; the PN bond length of 159.2 pm corresponds with a double bond. Ph3PNSiMe3 · I2: Space group P1 , Z = 2, 3 560 observed unique reflections, R = 0.033. Lattice dimensions at 19°C: a = 941.2(2), b = 1 041.7(2), c = 1 287.4(3) pm, α = 78.34(1)°, β = 72.00(2)°, γ = 86.08(2)°. The compound forms monomeric molecules, in which the I2 molecule and the nitrogen atom of the phosphoraneimine molecule realize a linear N? I? I axis with a bond length N? I of 243.2 pm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号