首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The oriented crystallization of poly(vinylidene fluoride) (PVDF) in stretched films of a PVDF/nylon 11 blend was investigated. At low crystallization temperature the c‐axis of the PVDF α‐form was oriented to the orientation axis of the nylon 11 matrix, but c‐axis orientation gradually changed to a‐axis orientation upon increasing the crystallization temperature. Under all crystallization conditions studied, considerable amounts of PVDF in its β‐form with c‐axis orientation were produced as well.

Phase morphology of a stretched film of PVDF/nylon 11 blend observed with confocal laser scanning microscopy.  相似文献   


2.
A novel nucleating agent (TBC8‐t), self‐assembled with ptert‐butylcalix[8]arene (TBC8) and toluene, was used to manipulate the crystallization behavior of poly(L ‐lactic acid) (PLLA). Toluene molecules were used to adjust the crystallization structure of TBC8. Differential scanning calorimetry results show that the crystallization peak temperature (Tc) and crystallization rate (ΔHc/time) of PLLA nucleated with TBC8‐t are 132.3 °C and 0.24 J/gs, respectively, which are much higher than that with conventional nucleating agent‐talc (Tc = 119.3 °C, ΔHc/time = 0.13 J/gs). The results of polarized optical microscopy demonstrate that TBC8‐t could greatly enhance the crystallization rate of PLLA by increasing the nucleation rate rather than crystal growth rate. Along with an improvement of the crystallization rate, the crystalline morphology of PLLA is also affected by TBC8‐t. The addition of TBC8‐t transforms most of the original spherulite crystals into sheaf‐like crystals. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1235–1243, 2010  相似文献   

3.
Nanostructured poly(vinylidene fluoride) (PVDF)/polyamide 11 (PA11) blends have been melt‐processed using a high‐shear extruder. Uniaxially oriented blended films were fabricated by hot rolling to prepare ferroelectic films. The effects of rolling temperature and draw ratio on the crystal forms of both PVDF and PA 11 were investigated by means of Fourier transform infrared spectra (FTIR) and wide‐angle X‐ray diffraction (WAXD). It was shown that hot rolling in the range of 25–110 °C results in the crystal form transformation from the nonpolar α‐form into the polar β‐form for PVDF. The content and orientation function of β‐crystallites are strongly dependent upon the rolling temperature and the draw ratio. The highest content of well‐oriented β‐crystallites was achieved with a draw ratio of 4.0 upon rolling at 80 °C. At the same time, the content of the α‐form of PA11 in the blend was also found to decrease by hot rolling. The ferroelectric properties (DE hysteresis) of the oriented blended films were measured. The remanent polarization of the PVDF/PA11 = 90/10 blend is as high as 91 mC/m2, which is about 1.2 times higher than that of pure PVDF. The DE hysteresis curves and the temperature dependence of the piezoelectric stress coefficients of the high‐shear‐processed sample suggested that the formation of nano‐dispersed structures resulted in the improvement of the remanent polarization and thermal characteristics at a temperature higher than 80 °C. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2707–2714, 2007  相似文献   

4.
Films of poly(L ‐lactide‐co‐D ‐lactide) [P(LLA‐DLA); 95/5] and poly(L ‐lactide) [i.e., poly(L ‐lactide acid) (PLLA)] were prepared by crystallization from the melt, and a comparative study of the crystallization effects on the alkaline and proteinase K catalyzed hydrolysis of the films was carried out. The hydrolyzed films were investigated with gravimetry, differential scanning calorimetry, polarimetry, and gel permeation chromatography, and the results were compared with those reported for amorphous‐made specimens. The alkaline hydrolyzability of the P(LLA‐DLA) (95/5) and PLLA films was determined solely by the initial crystallinity (Xc) and was not affected by the content of the incorporated D ‐lactide (DLA) unit in the polymer chain; this was in marked contrast to the fact that the enzymatic hydrolyzability depended on not only the initial Xc value but also the DLA unit content. The alkaline hydrolysis rate of the P(LLA‐DLA) (95/5) and PLLA films and the enzymatic hydrolysis rate (REH) of the P(LLA‐DLA) (95/5) films decreased linearly as the initial Xc value increased. This meant that the hydrolyzability of the restricted amorphous regions was very similar to that of the free amorphous regions. In contrast, REH of the PLLA films decreased nonlinearly with the initial Xc value, and this nonlinear dependence was caused by the fact that in the PLLA films the restricted amorphous regions were much more hydrolysis‐resistant than the free amorphous regions. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1064‐1075, 2005  相似文献   

5.
The crystal unit‐cell structures and the isothermal crystallization kinetics of poly(L ‐lactide) in biodegradable poly(L ‐lactide)‐block‐methoxy poly(ethylene glycol) (PLLA‐b‐MePEG) diblock copolymers have been analyzed by wide‐angle X‐ray diffraction and differential scanning calorimetry. In particular, the effects due to the presence of MePEG that is chemically connected to PLLA as well as the PLLA crystallization temperature TC are examined. Though we observe no variation of both the PLLA and MePEG crystal unit‐cell structures with the block ratio between PLLA and MePEG and TC, the isothermal crystallization kinetics of PLLA is greatly influenced by the presence of MePEG that is connected to it. In particular, the equilibrium melting temperature of PLLA, T, significantly decreases in the diblock copolymers. When the TC is high so that the crystallization is controlled by nucleation, because of the decreasing T and thereafter the nucleation density with decreasing PLLA molecular weight, the crystallinity of PLLA also decreases with a decrease in the PLLA molecular weight. While, for the lower crystallization temperature regime controlled by the growth mechanism, the crystallizability of PLLA in copolymers is greater than that of pure PLLA. This suggests that the activation energy for the PLLA segment diffusing to the crystallization site decreases in the diblocks. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2438–2448, 2006  相似文献   

6.
Blends of amorphous poly(DL‐lactide) (DL‐PLA) and crystalline poly(L‐lactide) (PLLA) with poly(methyl methacrylate) (PMMA) were prepared by both solution/precipitation and solution‐casting film methods. The miscibility, crystallization behavior, and component interaction of these blends were examined by differential scanning calorimetry. Only one glass‐transition temperature (Tg) was found in the DL‐PLA/PMMA solution/precipitation blends, indicating miscibility in this system. Two isolated Tg's appeared in the DL‐PLA/PMMA solution‐casting film blends, suggesting two segregated phases in the blend system, but evidence showed that two components were partially miscible. In the PLLA/PMMA blend, the crystallization of PLLA was greatly restricted by amorphous PMMA. Once the thermal history of the blend was destroyed, PLLA and PMMA were miscible. The Tg composition relationship for both DL‐PLA/PMMA and PLLA/PMMA miscible systems obeyed the Gordon–Taylor equation. Experiment results indicated that there is no more favorable trend of DL‐PLA to form miscible blends with PMMA than PLLA when PLLA is in the amorphous state. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 23–30, 2003  相似文献   

7.
The liquid–liquid phase‐separation (LLPS) behavior of poly(n‐methyl methacrylimide)/poly(vinylidene fluoride) (PMMI/PVDF) blend was studied by using small‐angle laser light scattering (SALLS) and phase contrast microscopy (PCM). The cloud point (Tc) of PMMI/PVDF blend was obtained using SALLS at the heating rate of 1 °C min?1 and it was found that PMMI/PVDF exhibited a low critical solution temperature (LCST) behavior similar to that of PMMA/PVDF. Moreover, Tc of PMMI/PVDF is higher than its melting temperature (Tm) and a large temperature gap between Tc and Tm exists. At the early phase‐separation stage, the apparent diffusion coefficient (Dapp) and the product (2Mk) of the molecules mobility coefficient (M) and the energy gradient coefficient (k) arising from contributions of composition gradient to the energy for PMMI/PVDF (50/50 wt) blend were calculated on the basis of linearized Cahn‐Hilliard‐Cook theory. The kinetic results showed that LLPS of PMMI/PVDF blends followed the spinodal decomposition (SD) mechanism. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1923–1931, 2008  相似文献   

8.
In this study, novel biodegradable materials were successfully generated, which have excellent mechanical properties in air during usage and storage, but whose structure easily disintegrates when immersed in water. The materials were prepared by melt blending poly(L ‐lactic acid) (PLLA) and poly(butylene adipate‐co‐terephthalate) (PBAT) with a small amount of oligomeric poly(aspartic acid‐co‐lactide) (PAL) as a degradation accelerator. The degradation behavior of the blends was investigated by immersing the blend films in phosphate‐buffered saline (pH = 7.3) at 40 °C. It was shown that the PAL content and composition significantly affected morphology, mechanical properties, and hydrolysis rate of the blends. It was observed that the blends containing PAL with higher molar ratios of L ‐lactyl [LA]/[Asp] had smaller PBAT domain size, showing better mechanical properties when compared with those containing PAL with lower molar ratios of [LA]/[Asp]. The degradation rates of both PLLA and PBAT components in the ternary blends simultaneously became higher for the blends containing PAL with higher molar ratios of [LA]/[Asp]. It was confirmed that the PLLA component and its decomposed materials efficiently catalyze the hydrolytic degradation of the PBAT component, but by contrast that the PBAT component and its decomposed materials do not catalyze the hydrolytic degradation of the PLLA component in the blends. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

9.
Poly(ethylene naphthalene‐2,6‐dicarboxylate) has been uniaxially stretched at different draw ratios and at two different temperatures below and above its glass transition (Tg ~ 120 °C) respectively, at 100 and 160 °C. Crystallinity has been evaluated from calorimetric analyses and compared to the values deduced by FTIR spectroscopic data. As expected, the obtained results are quite similar and show that films stretched at lower temperature (100 °C) are more crystalline than those stretched at 160 °C. Optical anisotropy associated with orientation has been evaluated by birefringence and show that films stretched at 100 °C are more birefringent than those stretched at 160 °C as a result of a higher chain relaxation above Tg. Polarized FTIR was also performed to evaluate the individual orientation of amorphous and crystalline phases by calculating dichroic ratios R and orientation functions 〈P2(cos θ)〉 and also show that amorphous and crystalline phases are more oriented in the case of films stretched below Tg. Nevertheless, the orientation of the amorphous phase is always weaker than that of the crystalline phase. Films stretched at 100 °C show a rapid increase in orientation (and crystallinity) with draw ratio and 〈P2(cos θ)〉 reaches a limit value when draw ratio becomes higher than 3.5. Films drawn at 160 °C are less oriented and their orientation is increasing progressively with draw ratio without showing a plateau. A careful measurement of the IR absorbance was necessary to evaluate the structural angles of the transition moments to the molecular chain axis. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1950–1958, 2007  相似文献   

10.
Temperature dependences of spherulite morphology and crystal orientation of poly(vinylidene fluoride) (PVDF) were systematically investigated via a combinatorial method. The method created a temperature gradient ranging from 130 to 200 °C. Results show that the preferential orientation of the crystallites changes with the crystallization temperature. The crystallization at 169 °C gives the most highly developed crystalline state of PVDF crystalline form II (α form), in which the spherulite size is maximal, and the crystallite sizes are also the longest, about 200 nm along the b axes. Besides, the a‐axis is almost parallel to the film normal. It indicates that the crystallization rate is the highest in the b‐axis direction. The perferential orientation at higher temperatures may be attributed to the confined 2D growth of the PVDF spherulites in the thin film, whereas the spherulites grow in the 3D mode at lower temperatures. The crystallization behavior revealed in the method is consistent with the results of melt isothermal crystallization experiments. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 253–261  相似文献   

11.
We present a study of isotropic and uniaxially oriented binary blend films comprising ≤1 wt % of the conjugated polymer poly(9,9‐dioctylfluorene) (PFO) dispersed in both ultra‐high molecular weight (UHMW) and linear‐low‐density (LLD) polyethylene (PE). Polarized absorption, fluorescence and Raman spectroscopy, scanning electron microscopy, and X‐ray diffraction are used to characterize the samples before and after tensile deformation. Results show that blend films can be prepared with PFO chains adopting a combination of several distinct molecular conformations, namely glassy, crystalline, and the so‐called β‐phase, which directly influences the resulting optical properties. Both PFO concentration and drawing temperature strongly affect the alignment of PFO chains during the tensile drawing of the blend films. In both PE hosts, crystallization of PFO takes place during drawing; the resulting ordered chains show optimal optical anisotropy. Our results clarify the PFO microstructure in oriented blends with PE and the processing conditions required for achieving the maximal optical anisotropy. © 2014 The Authors. Journal of Polymer Science Part B: Polymer Physics Published by Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 22–38  相似文献   

12.
Salt‐containing membranes based on polymethacrylates having poly(ethylene carbonate‐co‐ethylene oxide) side chains, as well as their blends with poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVDF‐HFP), have been studied. Self‐supportive ion conductive membranes were prepared by casting films of methacrylate functional poly(ethylene carbonate‐co‐ethylene oxide) macromonomers containing lithium bis(trifluorosulfonyl)imide (LiTFSI) salt, followed by irradiation with UV‐light to polymerize the methacrylate units in situ. Homogenous electrolyte membranes based on the polymerized macromonomers showed a conductivity of 6.3 × 10?6 S cm?1 at 20 °C. The preparation of polymer blends, by the addition of PVDF‐HFP to the electrolytes, was found to greatly improve the mechanical properties. However, the addition led to an increase of the glass transition temperature (Tg) of the ion conductive phase by ~5 °C. The conductivity of the blend membranes was thus lower in relation to the corresponding homogeneous polymer electrolytes, and 2.5 × 10?6 S cm?1 was recorded for a membrane containing 10 wt % PVDF‐HFP at 20 °C. Increasing the salt concentration in the blend membranes was found to increase the Tg of the ion conductive component and decrease the propensity for the crystallization of the PVDF‐HFP component. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 79–90, 2007  相似文献   

13.
Gel films of poly(vinylidene fluoride) (PVDF) consisting of α‐form crystals were drawn uniaxially by solid‐state coextrusion to extrusion draw ratios (EDR) up to 9 at an optimum extrusion temperature of 160 °C, about 10°C below the melting temperature (Tm). The development of an oriented structure and mechanical and electrical properties on coextrusion drawing were studied as a function of EDR. Wide‐angle X‐ray diffraction patterns showed that the α crystals in the original gel films were progressively transformed into oriented β‐form crystals with increasing EDR. At the highest EDR of 9 achieved, the drawn product consisted of a highly oriented fibrous morphology with only β crystals even for the draw near the Tm. The dynamic Young's modulus along the draw direction also increased with EDR up to 10.5 GPa at the maximum EDR of 9. The electrical properties of ferroelectricity and piezoelectricity were also markedly enhanced on solid‐state coextrusion. The DE square hysteresis loop became significantly sharper with EDR, and a remanent polarization Pr of 100 mC/m2 and electromechanical coupling factor along the thickness direction kt of 0.27 were achieved at the maximum EDR of 9. The crystallinity value of 73–80% for the EDR 9 film, estimated from these electrical properties, compares well with that calculated by the ratio of the crystallite size along the chain axis to the meridional small‐angle X‐ray scattering (SAXS) long period, showing the average thickness of the lamellae within the drawn β film. These results, as well as the appearance of a strong SAXS maximum, suggest that the oriented structure and properties of the β‐PVDF are better explained in terms of a crystal/amorphous series arrangement along the draw axis. Further, the mechanical and electrical properties obtained in this work are the highest among those ever reported for a β‐PVDF, and the latter approaches those observed for the vinylidene fluoride and trifluoroethylene copolymers. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1371–1380, 2001  相似文献   

14.
Porous poly(ε‐caprolactone) (PCL) films were prepared by the removal of poly(L ‐lactide) (PLLA) from phase‐separated PLLA/PCL blend films using the selective Proteinase K™‐catalyzed hydrolysis of PLLA and subsequent elution of its water‐soluble oligomers and monomer into the surrounding hydrolysis media. Polarimetry, gravimetry, and differential scanning calorimetry (DSC) confirmed the complete removal of PLLA molecules from the blend films within 5 d of the Proteinase K‐catalyzed hydrolysis and therefore the formation of porous PCL films when the initial PLLA content [XPLLA(0)(w/w) = PLLA/(PCL + PLLA)] of the blend films was in the range 0.3–0.5. The fragmentation of the blend film with XPLLA(0) = 0.7 occurred when the Proteinase K‐catalyzed hydrolysis was continued for longer than 5 d. These findings exhibited that both the PLLA‐rich and PCL‐rich phases were continuous in the blend films for XPLLA(0) ranges of 0.3–0.7 and of 0.3–0.5, respectively, and that the PCL‐rich phase became dispersed when XPLLA(0) was increased to 0.7. The dependence of enzymatic hydrolysis rate on XPLLA(0) strongly suggests that the Proteinase K‐catalyzed hydrolysis of the blend films occurs at the interfaces of PLLA‐rich and PCL‐rich phases as well as at the film surfaces.  相似文献   

15.
The effects of molecular orientation on the crystallization and polymorphic behaviors of syndiotactic polystyrene (sPS) and sPS/poly(2,6‐dimethyl‐1,4‐phenylene oxide) (PPO) blends were studied with wide‐angle X‐ray diffraction (WAXD) and differential scanning calorimetry. The oriented amorphous films of sPS and sPS/PPO blends were crystallized under constraint at crystallization temperatures ranging from 140 to 240°C. The degree of crystallinity was lower in the cold‐crystallized oriented film than in the cold‐crystallized isotropic film. This was in contrast to the case of the cold crystallization of other polymers such as poly(ethylene terephthalate) and isotactic polystyrene, in which the molecular orientation induced crystallization and accelerated crystal growth. It was thought that the oriented mesophase was obtained in drawn films of sPS and that the crystallization of sPS was suppressed in that phase. The WAXD measurements showed that the crystal phase was more ordered in an sPS/PPO blend than in pure sPS under the same annealing conditions. The crystalline order recovered in the cold‐crystallized sPS/PPO blends in comparison with the cold‐crystallized pure sPS because of the decrease in the mesophase content. The crystal forms depended on the crystallization temperature, blend composition, and molecular orientation. Only the α′‐crystalline form was obtained in cold‐crystallized pure sPS, regardless of molecular orientation, whereas α′, α″, and β′ forms coexisted in the cold‐crystallized sPS/PPO blends prepared at higher crystallization temperatures (200–240°C). The β′‐form content was much lower in the oriented sPS/PPO blend than in the isotropic blend sample at the same temperature and composition. It was concluded that the oriented mesophase suppressed the crystallization of the stable β′ form more than that of the metastable α′ and α″ forms during the cold crystallization of sPS/PPO blends. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1665–1675, 2003  相似文献   

16.
《先进技术聚合物》2018,29(7):2121-2133
Polylactide (PLA)/poly(butylene succinate) (PBS) blend films modified with a compatibilizer and a plasticizer were hot‐melted through a twin screw extruder and prepared by hydraulic press. Toluene diisocyanate (TDI) and polylactide‐grafted‐maleic anhydride (PLA‐g‐MA) were used as compatibilizers, while triethyl citrate and tricresyl phosphate acted as plasticizers. The effects of the type and content of compatibilizer and plasticizer on the mechanical characteristics, thermal properties, crystallization behavior, and phase morphology of the PLA/PBS blend films were investigated. Reactive compatibilization at increasing levels of TDI improved the compatibility of the PLA and PBS, affecting the toughness of the films. As evidenced by scanning electron microscope, the addition of TDI enhanced the interfacial adhesion of the blends, leading to the appearance of many elongated fibrils at the fracture surface. Furthermore, PLA/PBS blending with both TDI and PLA‐g‐MA led to an acceleration of the cold crystallization rate and an increment of the degree of crystallinity ( ). Toluene diisocyanate could be a more effective compatibilizer than PLA‐g‐MA for PLA/PBS blend films. The synergistic combination of compatibilizer and plasticizer brought a significant improvement in elongation at break and tensile‐impact toughness of the PLA/PBS blends, compared with neat PLA. Their failure mode changed from brittle to ductile due to the improved compatibility and molecular segment mobility of the PLA and PBS phases. Differential scanning calorimeter results revealed that the plasticizers triethyl citrate and tricresyl phosphate changed the thermal behavior of Tcc and Tm, affecting α′ and α crystal formations. However, these plasticizers only slightly improved the thermal stability of the films.  相似文献   

17.
Chain configuration influences phase behavior of blends of poly(methyl methacrylate) (PMMA) of different tactic configurations (syndiotacticity, isotacticity, or atacticity) with poly(L ‐lactic acid) (PLLA). Blends system of sPMMA/PLLA is immiscible with an asymmetry‐shaped UCST at ~250 °C. The phase behavior of the sPMMA/PLLA blend is similar to the aPMMA/PLLA blend that has been already proven in the previous work to exhibit similar UCST temperatures (230–250 °C) and asymmetry shapes in the UCST diagrams. On the other hand, the iPMMA/PLLA blend remains immiscible up to thermal degradation without showing any transition to UCST upon heating. The blend system with UCST, that is, sPMMA/PLLA, can be frozen in a state of miscibility by quenching to rapidly solidify from the homogeneous liquid at UCST, where the Tg‐composition relationship for the sPMMA/PLLA blend fits well with the Gordon‐Taylor Tg model with k = 0.15 and the blend's T leads to χ12 = ?0.26 for the UCST‐quenched sPMMA/PLLA blend. Both parameters (k and χ) as characterized for the frozen miscible blend suggest a relatively weak interaction between the two constituents (sPMMA and PLLA) in the blends. The interaction strength is likely not strong enough to maintain a thermodynamic miscibility when the blend is at ambient temperature or any lower temperatures below UCST. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2355–2369, 2008  相似文献   

18.
Solid-state coextrusion has been used to prepare uniaxially drawn films from isotropic poly(ethylene 2,6-naphthalate) (PEN) of a minimum degree of crystallinity (ca. 5%) both below and above its glass transition temperature Tg. The onset of cold crystallization (Tc) of the drawn films has been studied as a function of the extrusion temperature (ET) and the draw ratio (EDR). It has been shown that Tc decreases markedly on draw, as much as 95°C, and, at constant draw ratio Tc goes through a minimum in the Tg region. For undrawn PEN, annealing below 153°C has no significant effect on Tc. To evaluate the crystallization rate constant (k) and the activation energy (Ea) of the drawn specimens, a nonisothermal DSC procedure has been used. With increasing EDR, k increases markedly and Ea goes down over threefold compared with the undrawn polymer. At high ET, strain-induced crystallization has also been shown to play an important role in lowering Ea for cold crystallization. Thermal shrinkage above Tm indicates a high elastic recovery, underlining the efficiency of deformation, ca. 93%, achieved by solid-state coextrusion.  相似文献   

19.
Effects of top confinement and diluent poly(ethylene oxide) (PEO) on poly(l ‐lactic acid) (PLLA) crystal morphology have been investigated. When crystallized at 120 °C, uncovered neat PLLA sample exhibits higher growth rate ringless spherulites; while the covered sample exhibits lower growth rate ring‐banded spherulites. As PEO is introduced into PLLA, the morphology also undergoes significant changes. For the same Tc,PLLA = 120 °C, the PEO/PLLA blend with PEO composition greater than 25% exhibits ring‐banded patterns even in uncovered sample. However, in much greater PEO composition (>80 wt %), uncovered samples exhibit ring bands diverging into dendritic patterns, while top covered samples tend to maintain the spiral ring‐band patterns. Both PEO inclusion in PLLA and top cover on films impose growth kinetic alterations. Additionally, the top glass cover tends to prevent the lower surface tension PLLA to be accumulated on the surface, resulting in the formation of ring‐band pattern. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1160–1170  相似文献   

20.
Oriented poly(vinylidene fluoride) (PVDF) films with β‐form crystals have been commonly prepared by cold drawing of a melt‐quenched film consisting of α‐form crystals. In this study, we have successfully produced highly oriented PVDF thin films (20 µm thick) with β‐crystals and a high crystallinity (55–76%), by solid‐state coextrusion of a gel film to eight times the original length at an established optimum extrusion temperature of 160°C, some 10°C below the melting temperature. The resultant drawn films had a highly oriented (orientation function fc = 0.993) fibrous structure, showing high mechanical properties of an extensional elastic modulus of 8.3 GPa and tensile strength of 0.84 GPa, along the draw direction. Such highly oriented and crystalline films exhibited excellent ferroelectric and piezoelectric properties. The square hysteresis loop was significantly sharper than that of a conventional sample. The sharp switching transient yielded the remnant polarization Pr of 90 mC/m2, and the electromechanical coupling factor kt was 0.24 at room temperature. These values are about 1.5 times greater than those of a conventional β‐PVDF film. Thus, solid‐state coextrusion near the melting point was found to be a useful technique for the preparation of highly oriented and highly crystalline β‐PVDF films with superior mechanical and electrical properties. The morphology of the extrudate relevant to such properties is discussed. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2549–2556, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号