首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Well‐defined heterotelechelic poly(styrene) carrying thymine/diaminopyridine (DAP) (Mn,SEC = 9300, PDI = 1.04) and Hamilton wedge (HW)/cyanuric acid (CA) (Mn,SEC = 8200, PDI = 1.04) bonding motifs are prepared via a combination of controlled/living radical polymerization and copper catalyzed azide/alkyne “click” chemistry and are subsequently self‐assembled as single chains to emulate—on a simple level—the self‐folding behavior of natural biomacromolecules. Hydrogen nuclear magnetic resonance (1H NMR) in deuterated dichloromethane and dynamic light scattering analyses provides evidence for the hydrogen bonding interactions between the α‐thymine and ω‐DAP as well as α‐CA and ω‐HW chain ends of the heterotelechelic polymers leading to circular entropy driven single chain self‐assembly. This study demonstrates that the choice of NMR solvent is important for obtaining well‐resolved NMR spectra of the self‐assembled structures. In addition, steric effects on the HW can affect the efficiency of the self‐assembly process. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

2.
A novel, soluble terephthalamide‐bridged ladderlike polysiloxane ( L ) was synthesized successfully for the first time by stepwise coupling polymerization. The process involved the hydrogen‐bonding self‐assembly of amido groups, which resulted in the formation of a more highly ordered polymeric structure. A novel monomer, bis(3‐methyldimethoxysilylpropyl) terephthalamide ( M ), was prepared by a hydrosilylation reaction in the presence of dicyclopentadienyl platinum dichloride as a catalyst. The structures of the monomer ( M ) and the polymer ( L ) were characterized by Fourier transform infrared, 1H NMR, 13C NMR, 29Si NMR, mass spectrometry, X‐ray diffraction, differential scanning calorimetry, and vapor pressure osmometry. All the characterization data indicated that the synthesized polymer ( L ) possessed an ordered ladderlike structure. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3161–3170, 2002  相似文献   

3.
The synthesis and melt rheology of supramolecular poly(isobutylene) polymers bearing statistically distributed hydrogen‐bonding moieties is reported, aiming at understanding the formation of the underlying supramolecular networks for self‐healing polymers. Two different hydrogen bonds were incorporated into a poly(isobutylene) (PIB) copolymer, one based on a (weak) pyridinium/pyridine interaction, the other based on a (stronger) 2,6‐diaminotriazine/thymine interaction. A direct copolymerization based on living cationic polymerization of isobutene and the comonomers 1 , 2 , and 4 in amounts of 1 mol % lead to the copolymers PIB‐ 1 , PIB‐ 2 , and PIB‐ 4 with a content of ~1 mol % of comonomer and molecular weights ranging from ~2000 to 19,000 g mol?1 (Mw/Mn ~ 1.2–1.5). Subsequent azide/alkyne “click” chemistry enabled the attachment of 2,6‐diaminotriazine‐ and thymine‐moieties to yield the copolymers PIB‐ 5 , PIB‐ 6 , and PIB‐ 7 . Proof of the statistical incorporation of ~1 mol % of hydrogen‐bonding moieties was achieved by 1H NMR spectroscopy and matrix‐assisted laser desorption ionization measurements. The true presence of a supramolecular network in PIB‐ 1 (pyridinium/pyridine interaction) as well as with 1/1 blends of PIBs interacting via the 2,6‐diaminotriazine/thymine interaction (PIB‐ 5 /PIB‐ 6 ) was proven via the increasing plateau modulus with increasing molecular weights (5.5k, 9.9k, 12.4k, 16k, and 19k). Dynamics of the hydrogen bonds in the melt state was investigated by determining the effective cluster lifetime ( τ ) observing a clear difference in the (weaker) pyridinium/pyridine interaction ( τ ~ 1 s) to the 2,6‐ (stronger) diamintriazine/thymine interaction ( τ ~ 100 s). The so‐generated materials will be useful as a basis for self‐healing polymers, as dynamics plays a major role in such polymers. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

4.
With a hydrogen‐bonding template, a novel soluble aryl amide‐bridged ladderlike polysiloxane, containing naphthyl as the side‐chain group, has been successfully synthesized via a stepwise coupling polymerization. It is proposed that the monomer, N,N′‐di(3‐naphthyldiethoxylsilyl‐propyl)‐[4,4′‐oxybis(benzyl amide)], prepared by Grignard and hydrosilylation reactions, undergoes self‐assembly first via amido hydrogen bonding and then via hydrolysis, followed by condensation under controlled reaction conditions to yield a high molecular weight, soluble, dark yellow polymer. The analytical results (Fourier transform infrared, 1H NMR, 29Si NMR, X‐ray diffraction, differential scanning calorimetry, and vapor pressure osmometry) show that the polymer possesses an ordered ladderlike architecture. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 636–644, 2003  相似文献   

5.
A series of nucleobased polymers and copolymers were synthesized through atom transfer radical polymerization (ATRP). Biocomplementary DNA‐ and RNA‐like supramolecular complexes are formed in dilute DMSO solution through nucleobase recognition. 1H NMR titration studies of these complexes in CDCl3 indicated that thymine‐adenine (T‐A) and uracil‐adenine (U‐A) complexes form rapidly on the NMR time scale with high association constants (up to 534 and 671 M–1, respectively) and result in significant Tg increase. WAXD and differential scanning calorimetry analyzes in the bulk state indicate the presence of highly physical cross‐linked structures and provide further details into the nature of the self‐assembly of these systems. Furthermore, this study is of discussion on the difference in the hydrogen bond strength between T‐A and U‐A base pairs within polymer systems, indicating that the strength of hydrogen bonds in RNA U‐A pairs is stronger than that in DNA T‐A base pairs. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6388–6395, 2009  相似文献   

6.
New ω‐alkenyl‐substituted ansa‐bridged bisindenyl zirconium complexes are prepared and tested as self‐immobilized catalysts for ethene polymerization. But, even at very high concentration of the tethered complexes and low pressure of ethene, there is no evidence of their insertion into the polyethene chain. A “cross polymerization” test, performed by copolymerizing the tethered complexes with ethene using rac‐Me2Si(2‐MeBenzInd)2ZrCl2 ( MBI ), does not lead to their incorporation into the polyethene chain. However, the corresponding ligand proves to be a suitable comonomer for ethene, and, through copolymerization promoted by MBI, innovative poly(ethene‐co‐2,2′‐bis[(1H‐inden‐3′‐yl)‐hex‐5‐ene) copolymers are prepared and characterized by 13C NMR. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

7.
We report the synthesis and characterization of a polythiophene block copolymer (P4) selectively functionalized with diaminopyrimidine moieties and a thymine tethered fullerene derivative (F1). Self‐assembly between P4 and F1 through “three‐point” complementary hydrogen bonding is studied by 1H NMR spectroscopy and differential scanning calorimetry. A large Stern‐Volmer constant (KSV) of 1.2 × 105 M?1 is observed from fluorescence quenching experiments, revealing strong complexation between these two components. Solar cells employing P4 and F1 at different weight ratios as active layers are fabricated and tested; corresponding thin film morphologies are studied in detail by optical imaging and atomic force microscopy. Correlations between polymer complex structures, film morphologies, and device performance are discussed. Thermal stability of benchmark poly(3‐hexylthiophene) bulk heterojunction solar cells is found to be improved by the addition of a few weight percent of P4/F1 complexes as compatibilizers. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3339–3350  相似文献   

8.
The radical polymerization of three monomers bearing nucleobases 1‐(4‐vinylbenzyl)thymine (VBT), 1‐(4‐vinylbenzyl)uracil (VBU) and 9‐(4‐vinylbenzyl)adenine (VBA) was investigated. The corresponding homopolymers could be prepared in high yields via conventional radical polymerization. However, the resulting polymers were found to be only soluble in a few polar solvents. On the other hand, copolymers of dodecyl methacrylate (DMA) with either VBT or VBA could be prepared via both free radical polymerization and atom transfer radical polymerization and could be dissolved in a large variety of organic solvents. Moreover, the formed complementary copolymers P(VBT‐co‐DMA) and P(VBA‐co‐DMA) were found to self‐assemble in dilute solutions in dioxane or chloroform via base recognition, as evidenced by a significant hypochromicity effect in UV spectroscopy. Nevertheless, at higher concentrations in chloroform, both dynamic light scattering and optical microscopy indicate that P(VBT‐co‐DMA), P(VBA‐co‐DMA), or P(VBT‐co‐DMA)/P(VBA‐co‐DMA) mixtures spontaneously self‐assemble into micron size spherical aggregates. 1H NMR and FTIR studies confirmed that the self‐assembly process is driven in all cases via H‐bond formation. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4805–4818, 2005  相似文献   

9.
Ethyl cellulose graft poly(poly(ethylene glycol) methyl ether methacrylate) (EC‐g‐P(PEGMA)) amphiphilic copolymers were synthesized via atom transfer radical polymerization (ATRP) and characterized by FTIR, 1H NMR, and gel permeation chromatography. Reaction kinetics analysis indicated that the graft copolymerization is living and controllable. The self‐assembly and thermosensitive property of the obtained EC‐g‐P(PEGMA) amphiphilic copolymers in water were investigated by dynamic light scattering, transmission electron microscopy, and transmittance. It was found that the EC‐g‐P(PEGMA) amphiphilic copolymers can self‐assemble into spherical micelles in water. The size of the micelles increases with the increase of the side chain length. The spherical micelles show thermosensitive properties with a lower critical solution temperature around 65 °C, which almost independent on the graft density and the length of the side chains. The obtained EC‐g‐P(PEGMA) graft copolymers have both the unique properties of poly(ethylene glycol) and cellulose, which may have the potential applications in biomedicine and biotechnology. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 46: 6907–6915, 2008  相似文献   

10.
Random donor‐acceptor (D‐A) supramolecular comb polymers were formed when hydroxyl functionalized donor and acceptor small molecules based on Oligo(phenylenevinylene) (named OPVCN‐OH ) and Perylenebisimide (named UPBI‐PDP ), respectively, were complexed with Poly(4‐vinyl pyridine) (P4VP). A series of random D‐A supramolecular comb polymers were formed by varying the ratios of UPBI‐PDP and OPVCN‐OH with P4VP. A 100% P4VP‐donor polymer complex [ P4VP(OPV1.00 )] and a 100% P4VP‐acceptor polymer complex [ P4VP(UPBI1.00 )] were also synthesized and characterized. Complex formation was confirmed by FT‐IR and 1H NMR spectroscopy. Solid state structural studies carried out using small angle X‐ray scattering and wide angle X‐ray diffraction experiments revealed altered packing of the D and A molecules in the complexes. Transmission electron microscopy images showed lamellar structures in the < 10 nm scale for the P4VP(OPV1.00 ), P4VP(UPBI1.00 ), and mixed P4VP (D‐A) complexes. The effect of the nanoscopic D‐A self‐assembly on the bulk mobility of the materials was probed using SCLC measurements. The mixed D‐A random complexes exhibited ambipolar charge transport characteristics with higher values for the average bulk hole mobility estimate. P4VP(OPV0.25 + UPBI0.75) exhibited an average hole mobility in the order of 10?2cm2 V?1 s?1 and electron mobility 10?5cmV?1 s?1. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2403–2412  相似文献   

11.
A new approach to the construction of self‐assembled structures is reported that is based on ion‐pair recognition. Towards this end, the calix[4]pyrrole naphthocrown‐4 hybrid structures 2 and 3 were prepared. These multitopic receptors contain recognition sites for both anions and cations. On the basis of solution‐phase 1H NMR spectroscopic analysis and solid‐state single‐crystal X‐ray diffraction structural studies, it was established that receptors 2 and 3 are able to bind specific ion pairs with high selectivity via different binding modes. In the case of CsF and CsCl, the ion‐pair complexes formed from receptors 2 and 3 were found to self‐assemble to produce either linear supramolecular polymeric crystalline solids or nanotube‐like cyclic hexamers depending on the specific choice of ion pairs and crystallization solvents. Proton NMR studies provided evidence for solution‐phase self‐association in organic media.  相似文献   

12.
Novel nickel(II) bisbenzimidazole complexes were prepared via a three‐step synthetic procedure consisting of aniline/diacid condensation, ligand N‐alkylation, and metal complexation. The complexes were characterized by X‐ray crystallography and found to possess a pseudotetrahedral geometry. Upon activation with methylaluminoxane, these nickel bisbenzimidazoles did not polymerize simple olefins (e.g., ethylene, propylene, and 1‐butene) but were found to carry out the rapid and efficient polymerization of norbornene. The polynorbornene products were characterized by gel permeation chromatography/light scattering, 13C NMR, and IR, and their Mark–Houwink and dn/dc parameters were determined. The molecular weights of the polynorbornenes were very high (weight‐average molecular weight = 587,000–797,000 g/mol). 13C NMR suggested that the polymerization occurred via vinyl addition (i.e., a 2,3‐linked polymer); no ring‐opened product was observed. Thermogravimetric analysis indicated that the polynorbornenes were stable up to 400 °C under nitrogen. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2095–2106, 2003  相似文献   

13.
A novel biodegradable amphiphilic copolymer with hydrophobic poly(ε‐caprolactone) branches containing cholic acid moiety and a hydrophilic poly(ethylene glycol) chain was synthesized. The copolymer was characterized by FTIR, 1H NMR, gel permeation chromatography (GPC), differential scanning calorimetry (DSC), polarizing light microscopy (PLM), and wide‐angle X‐ray diffraction (WAXD) analysis. The amphiphilic copolymer could self‐assemble into micelles in an aqueous solution. The critical micelle concentration of the amphiphilic copolymer was determined by fluorescence spectroscopy. A nanoparticle drug delivery system with a regularly spherical shape was prepared with high encapsulation efficiency. The in vitro drug release from the drug‐loaded polymeric nanoparticles was investigated. Because of the branched structure of the hydrophobic part of the copolymer and the relatively fast degradation rate of the copolymer, an improved release behavior was observed. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5256–5265, 2007  相似文献   

14.
In this study, we used click chemistry to synthesize a new macromolecular self‐assembling building blocks, linear polypeptide‐b‐polyhedral oligomeric silsesquioxane (POSS) copolymers, from a mono‐azido–functionalized POSS (N3‐POSS) and several alkyne‐poly(γ‐benzyl‐L ‐glutamate) (alkyne‐PBLG) systems. The incorporation of the POSS unit at the chain end of the PBLG moiety allowed intramolecular hydrogen bonding to occur between the POSS and PBLG units, thereby enhancing the α‐helical conformation in the solid state, as determined through Fourier transform infrared spectroscopy and wide‐angle X‐ray diffraction analyses. POSS‐b‐PBLG underwent hierarchical self‐assembly, characterized using small‐angle X‐ray scattering, to form a bilayer‐like nanostructure featuring α‐helical or β‐sheet conformations and POSS aggregates. Thermogravimetric analysis indicated that the thermal degradation temperature increased significantly after incorporation of the POSS moiety, which presumably formed an inorganic protection layer on the nanocomposite's surface. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

15.
We report the synthesis, characterization, microphase separation, field‐effect charge transport, and photovoltaic properties of regioregular poly(3‐hexylthiophene)‐b‐poly(3‐cyclohexylthiophene) (P3HT‐b‐P3cHT). Two compositions of P3HT‐b‐P3cHT (HcH63 and HcH77) were synthesized with weight‐average molecular weights of 155,500 and 210,800 and polydispersity indices of 1.45 and 1.57, respectively. Solvent‐casted HcH77 was found to self‐assemble into nanowires with a width of 12.5 ± 0.9 nm and aspect ratios of 50–120, as observed by TEM imaging. HcH77 and HcH63 annealed 280 °C were observed by small angle X‐ray scattering (SAXS) and wide angle X‐ray scattering (WAXS) to be microphase‐separated with characteristic length scales of 17.0–21.7 nm. The microphase‐separated domains were shown to be crystalline with interlayer backbone (100) d‐spacings of 1.69 and 1.40 nm, which correspond to the P3HT and P3cHT blocks, respectively. Field‐effect transistors fabricated from P3HT‐b‐P3cHT thin films showed a mobility of holes (0.0019 cm2/Vs) which is independent of thermal annealing. Bulk heterojunction solar cells based on HcH77/fullerene (PC71BM) blend thin films had a maximum power conversion efficiency of 2.45% under 100 mW/cm2 AM1.5 solar illumination in air. These results demonstrate that all‐conjugated block copolymers are suitable semiconductors for applications in field‐effect transistors and bulk heterojunction solar cells. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 614–626, 2010  相似文献   

16.
N‐Alkyl ammonium resorcinarene chlorides are stabilized by an intricate array of intra‐ and intermolecular hydrogen bonds that leads to cavitand‐like structures. Depending on the upper‐rim substituents, self‐inclusion was observed in solution and in the solid state. The self‐inclusion can be disrupted at higher temperatures, whereas in the presence of small guests the self‐included dimers spontaneously reorganize to 1:1 host–guest complexes. These host compounds show an interesting ability to bind a series of N‐alkyl acetamide guests through intermolecular hydrogen bonds involving the carbonyl oxygen (C?O) atoms and the amide (NH) groups of the guests, the chloride anions (Cl?) and ammonium (NH2+) cations of the hosts, and also through CH ??? π interactions between the hosts and guests. The self‐included and host–guest complexes were studied by single‐crystal X‐ray diffraction, NMR titration, and mass spectrometry.  相似文献   

17.
The preparation of polyolefin‐based stereoregular diblock copolymers by postpolymerization of ethenyl‐capped syndiotactic polypropylene‐based propylene/norbornene copolymer (sPP‐based P‐N copolymer) led to the successful generation of a structurally uniform stereoregular diblock copolymer for self‐assembly studies. The ethenyl‐capped prepolymer was prepared by conducting propylene/norbornene copolymerization in the presence of Me2C(Cp)(Flu)ZrCl2/MAO. Ozonolysis of ethenyl‐capped sPP‐based P‐N copolymer provided the formyl group end‐capped, end‐functionalized prepolymer with a quantitative functional group conversion ratio. Subsequently, connecting the formyl end‐group of the stereoregular prepolymer by coupling with living anionic polystyrene resulted in the high yield production of stereoregular diblock copolymer (sPP‐based P‐N‐block‐polystyrene), which is difficult to prepare by other methods. The resulting stereoregular diblock copolymer possesses precise chemical architecture to self‐organize into consistent nanostructures as evidenced by transmission electron microscopy and small angle X‐ray scattering. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4843–4856, 2008  相似文献   

18.
Dendron‐like poly(γ‐benzyl‐L ‐glutamate)/linear poly(ε‐caprolactone)/dendron‐like poly(γ‐benzyl‐L ‐glutamate) triblock copolymers having 2m + 1 PBLG branches (denoted as PBLG‐Dm‐PCL‐Dm‐PBLG, m = 0, 1, 2, and 3) were for the first time synthesized by utilizing ring‐opening polymerization (ROP) and click chemistry. The bifunctional azide‐terminated PCL (N3‐PCL‐N3) was click conjugated with propargyl focal point PAMAM‐typed dendrons Dm to generate Dm‐PCL‐Dm, which was then used as macroinitiator for the ROP of BLG‐NCA monomer to produce the targeted PBLG‐Dm‐PCL‐Dm‐PBLG triblock copolymers. Their molecular structures and physical properties were characterized in detail by FTIR, NMR, gel permeation chromatography, differential scanning calorimetry, and wide angle X‐ray diffraction (WAXD). The crystallinity of the central PCL segment within these copolymers is increasingly suppressed by the flanking PBLG wedges, whereas the PBLG segments gradually changed from a β‐sheet conformation to an α‐helix conformation with the increasing PBLG branches. These triblock copolymers formed thermoreversible organogels in toluene, and the dendritic topology of PBLG wedges controlled their critical gelation concentrations. The self‐assembled structure of organogels was further characterized by means of transmission electron microscopy, WAXD, and small‐angle X‐ray scattering. The fibers with flat ribbon morphology were clearly shown, and the gelation occurred through a self‐assembled nanoribbon mechanism. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 709–718, 2010  相似文献   

19.
Novel H‐bond donor copolymers were designed by a versatile “click type” grafting reaction of unprotected mercaptoalcohols onto poly(2,3,4,5,6‐pentafluorostyrene) (PPFS). As demonstrated by 19F NMR and Fourier transform infrared spectroscopy (FTIR) analyses, the reaction appears to be chemoselective as the SH groups solely react onto the para‐fluoro position of the PFS units. The nucleophilic substitution was successfully performed with two mercaptoalcohols bearing either one or two hydroxyl groups. By carefully selecting the experimental conditions, a library of copolymers with various degree of substitution up to 95% was obtained in a reasonable timescale through kinetic control. By turbidity analysis, the ability of these functional polymers to form in solution interpolymer complexes with poly(4‐vinyl pyridine) was shown to be tunable by adjusting the molecular characteristics. FTIR, X‐ray photoelectron spectroscopy, and Differential scanning calorimetry evidence that different types of blends (immiscible, partially or totally miscible, and complex) can be achieved, and that the driving force of the interaction originates from H‐bond. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

20.
In this article, supramolecular silicone elastomers with self‐healing function were first prepared by simple and controllable “salt‐forming vulcanization” of polyaminopropylmethylsiloxane with acids. Their structures and micrographs were verified by Fourier transform infrared spectra, Small‐angle X‐ray scattering experiments and atomic force microscope. The experimental results showed that the ion‐association complexes were formed during vulcanization, and the obtained elastomers displayed self‐healing and good mechanical properties even if the cross‐linking agent was excessed. The thermogravimetric analysis showed that the elastomers crosslinked by inorganic acid were stable under high temperature. Unexpectedly, bionic structures were observed in the elastomers, which further changed the hydrophobicity of the surfaces of the elastomers physically. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 903–911  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号