首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Texture evolution in rolled (400°C) and annealed (450°C) Mg–1% Mn-based alloys containing different levels of Ce was examined. It was found that Ce refines the as-cast and rolled/annealed grain structure. The overall intensity of the basal texture decreases with Ce additions in both the rolled and subsequently annealed condition. A strong relationship was found between maximum intensity (M) of rolling and annealing textures and the as-cast effective grain size, d?′, i.e. M?∝?e0.4 d ?′ (R 2?=?0.8), which was attributed to the role of plastic compatibility stresses which lead to grain boundary deformation altering the balance of deformation modes. Contributions from Ce solute effects and lattice parameter changes are also discussed.  相似文献   

2.
3.
Variations of Vickers hardness were observed in Al–Mg–Mn alloy and Al–Mg–Mn–Sc–Zr alloy at different ageing times, ranging from a peak value of 81.2 HV at 54 ks down to 67.4 HV at 360 ks, below the initial hardness value, 71.8 HV at 0 ks for the case of Al–Mg–Mn–Sc–Zr alloy. Microstructures of samples at each ageing stage were examined carefully by transmission electron microscopes (TEMs) both in two-dimensions and three-dimensions. The presence of different types, densities, and sizes of particles were observed dispersed spherical Al3Sc1−xZrx and also block-shaped Al3Sc precipitates growing along <1 0 0>Al with facets {1 0 0} and {1 1 0} of the precipitates. TEM analysis both in two-dimensions and three-dimensions, performed on various samples, confirmed the direct correlation between the hardness and the density of Al3Sc.  相似文献   

4.
There are many studies to improve the properties of Cu–Al–Mn shape memory alloys, such as high transformation temperatures, ductility and workability. Most of them have been performed by adding a quaternary component to the alloy. In this study, the effect of trace Mg addition on transformation temperatures and microstructures of three different quaternary Cu–Al–Mn–Mg alloys has been investigated using thermal analysis, optical microscopy and XRD techniques. The transformation temperatures are within the range of 120–180 °C, and they have not changed significantly on decreasing the Mn content, replacing with Mg. The fine precipitates have been observed in the alloys with the Mg content up to 1.64 at%. Calculated entropy change and XRD analysis reveal that the alloys with high Al content have mainly 18R-type structure which could be responsible for good ductility and workability.  相似文献   

5.
Quantitative analysis of the precipitate species and solute distribution was carried out on Al–Mg–Si–Cu alloy 6061 aged to peak hardness using a conventional T6 heat treatment and the so-called T6I6 heat treatments. In this latter, a dwell period at reduced temperature (65°C) is introduced into the T6 ageing cycle (at 177°C or 150°C) which modifies the microstructure and results in the simultaneous improvement of both tensile properties and fracture toughness. Analysis of three-dimensional atom probe data reveals that the superior mechanical properties of the T6I6/177 temper are achieved by a combined effect of a greater consumption of solute atoms by precipitates, an increased number density of fine precipitates and the presence of greater fractions of the effective strengthening precipitates in the final microstructure. Three types of precipitates were found to be characteristic of the peak aged conditions: β′′ precipitates, Guinier–Preston zones and Mg–Si(–Cu) co-clusters. The composition of the strengthening precipitates was found to vary over a wide range for the different heat treatment schedules, corresponding to a variation in the number density of stable nuclei, without any accompanying change in their morphology. All precipitates were found to contain substantial quantities of aluminium. The results also indicate that the strengthening precipitates are preferentially formed from Si-rich nuclei that contain Cu atoms, as opposed to Cu-free nuclei.  相似文献   

6.
In order to improve the glass-forming ability (GFA) of Nd–Fe–B ternary alloys to obtain fully amorphous bulk Nd–Fe–B-based alloy, the effects of Mo and Y doping on GFA of the alloys were investigated. It was found that the substitution of Mo for Fe and Y for Nd enhanced the GFA of the Nd–Y–Fe–Mo–B alloys. It was also revealed that the GFA of the samples was optimized by 4 at.% Mo doping and increased with the Y content. The fully amorphous structures were all formed in the Nd $_{6-{x}}$ Y $_{{x}}$ Fe $_{68}$ Mo $_{4}$ B $_{22}$ (x $=$ 1–5) alloy rods with 1.5 mm-diameter. After subsequent crystallization, the devitrified Nd $_{3}$ Y $_{3}$ Fe $_{68}$ Mo $_{4}$ B $_{22}$ alloy rod exhibited a uniform distribution of grains with a coercivity of 364.1 kA/m. The crystallization behavior of Nd $_{3}$ Y $_{3}$ Fe $_{68}$ Mo $_{4}$ B $_{22}$ BMG was investigated in isothermal situation. The Avrami exponent n determined by JAM plot is lower than 2.5, implying that the crystallization is mainly governed by a growth of particles with decreasing nucleation rate.  相似文献   

7.
An experimental analysis is presented to correlate the secondary dendrite arm spacing λ 2 and dendrite tip radius R with growth rate V and Mg content C 0-Mg of Al–Cu–Mg ternary alloys. Under constant temperature gradient G (4.84±0.13 K mm−1), a series of directional solidification experiments were performed at five different growth rates V (16.7–83.3 μm/s) and five different Mg contents C 0-Mg in Al–5 wt.% Cu–(0.5–5) wt.% Mg alloys. Solid–liquid interface was investigated from the longitudinal sections of the quenched samples, and λ 2 and R were measured on the dendrite tips. The dependencies of λ 2 and R on V and C 0-Mg were determined. The experimental results showed that the values of λ 2 and R decrease as V and C 0-Mg increase at a constant G. The present exponent values related to V are found to be slightly lower than the values of the theoretical models and previous experimental works; however, C 0-Mg exponent values are found to be much lower than the theoretical models and previous experimental works. The ratio of the secondary dendrite arm spacing to the dendrite tip radius is 2.09±0.15, in good agreement with the scaling law. At a constant C 0-Mg, the values of VR 2 were found to slightly increase with the ascending V. However, as C 0-Mg increases, the values of VR 2 decrease.  相似文献   

8.
Stable composition of Iron Neodymium Boron nanoparticles are formed by a chemical method. Conventional borohydride reduction method was used. The particles are in the size range of 30–100 nm. Silica coating was applied to stabilize and prepare the particles for in vitro applications such as cell separation and diagnostics. Morphology of particles has been studied along with the structure and magnetic properties.  相似文献   

9.
A new Bi-doped Mg–Al–silicate glass is suggested and investigated. It can be fabricated by moderate-temperature routine technology. The characteristic relaxation time of 300–800 μs in combination with the high quantum yield (up to 85%) and wide excitation spectrum makes this glass a promising laser material. The obtained quadratic dependence of the visible absorption intensity is an argument in favor of the hypothesis that the absorption and infrared luminescence in Bi-doped glasses are caused by Bi2 dimers.  相似文献   

10.
《中国物理 B》2021,30(6):67503-067503
We investigate the effects of post-sinter annealing on the microstructure and magnetic properties in B-lean Nd–Fe–B sintered magnets with different quantities of Nd–Ga intergranular additions. The magnet with fewer Nd–Ga additions can enhance 0.2 T in coercivity, with its remanences nearly unchanged after annealing. With the further increase of the Nd–Ga addition, the annealing process leads coercivity to increase 0.4 T, accompanied by a slight decrease of remanence. With the Nd–Ga addition further increasing and after annealing, however, the increase of coercivity is basically constant and the change of remanence is reduced. Microstructure observation indicates that the matrix grains are covered by continuous thin grain boundary phase in the magnets with an appropriate Nd–Ga concentration after the annealing process. However, the exceeding Nd–Ga addition brings out notable segregation of grain boundary phase, and prior formation of part RE6 Fe13 Ga phase in the sintered magnet. This prior formation results in a weaker change of remanence after the annealing process.Therefore, the diverse changes of magnetic properties with different Nd–Ga concentrations are based on the respective evolution of grain boundary after the annealing process.  相似文献   

11.
An effect of alloying element content on mechanical properties and precipitate formation in Mg–RE alloys was studied for Mg–8Gd–4Y–1Zn–0.4Zr (wt%) and Mg–10Gd–5Y–1.8Zn–0.4Zr (wt%). It is shown that small variations in the alloying element concentration can be used to manipulate the alloy microstructure and precipitate formation towards eliminating the asymmetry (tension/compression) and anisotropy of yield stress.  相似文献   

12.
This paper reports on the grain refinement in dynamic hydrogenation disproportionation desorption and recombination (d-HDDR) processed Nd-rich Nd2Fe14B and stoichiometric Nd2Fe14B powders using high pressure reactive milling (HPRM) followed by a subsequent desorption and recombination. In contrast to the dynamic-HDDR processed anisotropic powder with a grain size of the Nd2Fe14B phase of 300 nm, the new approach yields a further reduction of the Nd2Fe14B1 grain size to less than 70 nm. Nd-rich Nd2Fe14B powder produced by HPRM and subsequent desorption exhibits a coercivity μ0iHc=1.35 T and a remanence of 0.80 T. In the stoichiometric material, the reduction of the Nd-content leads to an increase in remanence to 0.85 T. Additionally, it is demonstrated that highly anisotropic powders can also be obtained by dynamic-HDDR processing of stoichiometric Nd2Fe14B powders.  相似文献   

13.
RE2Fe14B (RE=rare earth) materials are capable of absorbing hydrogen to form a stable solid solution at room temperature. Hydrogenation produces a number of significant changes in the hyperfine interactions. In this work, 57Fe Mössbauer effect spectroscopy and X-ray diffraction measurements were performed on Nd14.01Hf0.08Fe78.91B7.00 alloys submitted to thermal treatment in hydrogen atmosphere. A non-linear increase of the hyperfine fields and isomer shifts with hydrogen concentration was observed. The hyperfine parameters of the 8j1 site exhibit a rather different evolution than those experienced by the other major sites (8j2, 16k1, 16k2). The origin of the hyperfine field enhancement is analyzed in terms of volume expansion and H nearest neighbors to the Fe sites. A linear expression on these two effects to give account of isomer shift evolution for 8j1 site is given.  相似文献   

14.
The structure, transport properties and the magnetoresistance behavior in the temperature interval 77–400 K of the perovskite-like lanthanum manganites La0.6Pb0.4−xMgx+yMnO3 (x=0, 0.1, 0.2 and y=0, 0.2) were investigated. Polycrystalline bulk samples were prepared by sol–gel self-combustion and subsequent heat treatment at 1000 °C for different times, 40, 80, 160 and 320 min. All manganites exhibit a peak in the resistivity around 200–250 K, below the ferromagnetic ordering temperature (320–330 K). An isotropic and negative magnetoresistance has been observed in all compounds. Magnetoresistance MR exhibits a peak in the temperature range 130–150 K, below SC–metal transition temperature. Magnitude of MR at the peaks was nearly 27% in the magnetic field of 2 T. At room temperature, a magnetoresistance of 9.5% for La0.6Pb0.2Mg0.2MnO3 composition was obtained. Longer heat treatment time enhanced the magnetorezistive properties.  相似文献   

15.
In order to establish the role of niobium on the hydrogenation, disproportionation, desorption and recombination (HDDR) behavior of near-stoichiometric alloys, two alloys: NdI3Fe8OB7 and Nd13Fe78Nb1Co1B7 (at%) were investigated before, during and after the HDDR process. The microstructure of the as-cast Nb-free alloy before employing the HDDR process was found to consist of three phases, the matrix Nd2Fe14B (φ) phase, Nd-rich phase and a significant amount of free iron; whereas, the microstructure of the Nb-containing alloy consisted of only the first two phases.  相似文献   

16.
B. Klobes  K. Maier  T.E.M. Staab 《哲学杂志》2015,95(13):1414-1424
Room temperature ageing, so-called natural ageing, of Al–Mg–Si alloys has a subtle but striking influence on the mechanical properties achievable by subsequent ageing at more elevated temperatures. Though strongly debated, different clustering processes are generally accepted to give rise to this effect. Using temperature-dependent positron lifetime measurements of naturally aged Al–Mg–Si alloys, it is shown that in the early stages of ageing, small clusters of alloying atoms without embedded vacancies take part in the decomposition process. These clusters serve as shallow positron traps with a binding energy of about 55(10) meV, grow in the course of natural ageing and transform to deep positron traps with binding energies well above thermal energies. Thus, results of positron annihilation spectroscopy techniques need to be interpreted carefully with respect to the microstructure of age-hardenable Al alloys. Moreover, it is shown that a simple approach to bind positron states using a three-dimensional potential well and (bulk) positron affinities cannot explain the present findings.  相似文献   

17.
The microstructure and the solidification kinetics of stoichiometric Nd–Fe–B alloy with Ti and C additions were investigated using the electromagnetic levitation technique. In situ temperature–time characteristics were carried out. A strong reduction of the growth velocity of the Nd2Fe14B phase was observed in the Nd–Fe–B–Ti–C alloy compared to the addition-less Nd–Fe–B alloy. The undercoolability of the melt depends on the alloy composition. Moreover, at high TiC contents, the maximum undercooling level is strongly reduced turning to low cooling rates. The TiC solution and its formation were studied in overheated and undercooled samples, respectively after subsequent quenching. The cooling rate prior to solidification influences drastically the morphology of the TiC precipitates which affects strongly the nucleation of the properitectic γ-Fe phase in the undercooled stage.  相似文献   

18.
The synthesis of a series of Mg–Cu–Zn ferrites with the substitution of Cu for Mg has been obtained by solid-state reaction method. Microstuctural and structural analyses were carried out using a scanning electron microscope and X-ray diffraction (XRD), respectively. The lattice parameter is found to increase with increasing copper content. A remarkable densification is observed with the addition of Cu ions in the ferrites. Microstructural analyses indicate that CuO influences the microstructure of the ferrites by the formation of liquid phase during sintering. The grain size significantly increases with increasing copper content. Exaggerated grain growth is observed for the samples of x=0.25–0.35. The initial magnetic permeability (μ′) increases sharply with increasing concentration of Cu ions. This increase in μ′ is explained with the grain growth mechanism and enhanced densification of the ferrites. The resonance frequency of all the samples shifts toward the lower frequency as the permeability increases with Cu content. Sintering temperature Ts also affects the densification, grain growth and initial magnetic permeability of the samples.  相似文献   

19.
An extruded Mg–1Mn–1Nd (wt%) (MN11) alloy was tested in tension in an SEM at temperatures of 323?K (50°C), 423?K (150°C), and 523?K (250°C) to analyse the local deformation mechanisms through in situ observations. Electron backscatter diffraction was performed before and after the deformation. It was found that the tensile strength decreased with increasing temperature, and the relative activity of different twinning and slip systems was quantified. At 323?K (50°C), extension twinning, basal, prismatic ?a?, and pyramidal ?c?+?a? slip were active. Much less extension twinning was observed at 423?K (150°C), while basal slip and prismatic ?a? slip were dominant and presented similar activities. At 523?K (250°C), twinning was not observed, and basal slip controlled the deformation.  相似文献   

20.
Spinel cobalt ferrite, CoFe2−xMxO4 has been synthesized by substitution of the combination of metallic elements M=Zr–Mg by the microemulsion method using polyethylene glycol as a surfactant. Powder X-ray diffraction analysis reveals that the substitution results in shrinkage of the unit cell of cobalt ferrite due to higher binding energy of the synthesized samples. The energy-dispersive X-ray fluorescence analysis confirms the stoichiometric ratios of the elements present. The thermogravimetric analysis shows that the minimum temperature required for the synthesis of these substituted compounds is 700 °C. A two-point probe method was employed for the measurement of the electrical resistivity in a temperature range of 293±5 to 673±5 K. It appears that there is a decrease in the number of Fe2+/Fe3+ pairs at the octahedral sites due to the substitution and corresponding migration of some of the Fe3+ ions to tetrahedral sites, consequently increasing the resistivity and the activation energy of hopping of electron at the octahedral sites. The susceptibility data also suggest migration of Fe3+ to tetrahedral site in the initial stage, which results in an increase in A–B interactions leading to large increase in the blocking temperature (TB) as observed in samples having dopant content x=0.1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号