首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pressure-dependence of mechanical, electronic and thermodynamic properties of metastable (L12 type) and stable (D023 type) Al3Zr precipitations in Al–Li alloys were investigated by employing the first-principle calculations. The calculated equilibrium parameters are in good agreement with experimental and previous calculation results available. Elastic properties including bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio and universal anisotropic index are determined by Voigt–Reuss–Hill approximation. It is found that for both phases, external pressure can improve the mechanical stability, ductility and plasticity. The electronic structures are determined to reveal the bonding characteristics of both phases. In addition, both phonon method and Gibbs program have been proposed to predict thermodynamic properties of two phases. All of these results can help to have a better understanding of the physical and chemical properties of Al3Zr precipitations in Al–Li alloy. And can offer theoretical guidance for the weight lighting, energy conservation and emissions reduction in the design of new aluminium alloys.  相似文献   

2.
To better clarify the physical properties for Al3RE precipitates, first-principles calculations are performed to investigate the vibrational, anisotropic elastic and thermodynamic properties of Al3Er and Al3Yb. The calculated results agree well with available experimental and theoretical ones. The vibrational properties indicate that Al3Er and Al3Yb will keep their dynamical stabilities with L12 structure up to 100 GPa. The elastic constants are satisfied with mechanical stability criteria up to the external pressure of 100 GPa. The mechanical anisotropy is predicted by anisotropic constants AG, AU, AZ and 3D curved surface of Young’s modulus. The calculated results show that both Al3Er and Al3Yb are isotropic at zero pressure and obviously anisotropic under high pressure. Further, we systematically investigate the thermodynamic properties and provide the relationships between thermal parameters and pressure. Finally, the pressure-dependent behaviours of density of states, Mulliken charge and bond length are discussed.  相似文献   

3.
王娜  唐壁玉 《物理学报》2009,58(13):230-S234
运用第一性原理方法研究了L12型铝合金相Al3Sc和Al3Zr的晶体结构、电子结构和弹性.结合能和形成能的计算表明,两种合金具有较强的合金化能力,且Al3Zr较Al3Sc具有更强的结构稳定性.电子结构分析表明,费米能级以下较多的价电子数决定了Al3Zr具有较强的结构稳定性.计算并分析比较了两种合金相的单晶弹性常数(C11,C12C44)以及多晶弹性模量(体弹性模量B、剪切模量G、杨氏模量Y、泊松比ν和各向异性因子A).通过对比实验和其他理论计算结果,进一步分析和解释了两种合金相的力学性质. 关键词: 铝合金 第一性原理 结构和电子性质 弹性  相似文献   

4.
Structural stability and electronic properties of polar intermetallic CaZn2 and SrZn2 in both CeCu2-type and MgZn2-type structures have been investigated using first-principles method. The calculated equilibrium lattice parameters agree closely with the available experimental and other theoretical results. In terms of formation enthalpy, it is discovered that the present compounds with CeCu2-type structure are energetically more stable than that with MgZn2-type. They are all mechanically stable according to the criteria of elastic stability. In particular, we have investigated the pressure effect on the compressive behaviour and structural stability of each compound. Subsequently, the bulk modulus, shear modulus, Young’s modulus, theoretical hardness, Poisson’s ratio and Debye temperature in the ground state can be estimated using Voigt–Reuss–Hill homogenization method. Mechanical anisotropy is characterized by the anisotropic factors and direction-dependent Young’s modulus. Finally, the electronic structures are determined to reveal the bonding characteristics of considered phases.  相似文献   

5.
The microstructures and tensile properties of Mg–Al2Ca–Mg2Ca in situ composites (Mg–17Al–8Ca, Mg–14Al–11Ca and Mg–12.5Al–12.5Ca) with different Ca/Al ratios have been studied in both as-cast and extruded conditions. The results indicated that by increasing Ca/Al ratio, new Mg2Ca intermetallic introduces to the Al2Ca phase in eutectic structure. Computer-aided cooling curve analysis confirmed the formation of these phases during solidification. Extrusion process not only altered the size of large bulk Al2Ca intermetallic, but also changed the size and morphology of intermetallics in eutectic structure considerably. The results showed that with increasing Ca/Al ratio, tensile properties of cast composites changes slightly, but significant enhancement is observed after extrusion process. The strength and elongation values of Mg–12.5Al–12.5Ca (Ca/Al = 1) alloy improved from 166 MPa and 2% in as-cast condition to 465 MPa and 12% in hot-extruded condition. The reason for the improved toughness may be attributed to the formation of finer and well-dispersed distribution of hard (Al2Ca) and ductile (Mg2Ca) phases. It was found that hot extrusion easily deforms ductile Mg2Ca phase in comparison with Al2Ca phase. In as-extruded condition, there are more very fine dimples than as-casted condition because extrusion process leads to formation of fragmented tiny particles and more uniformity distribution of Al2Ca particles.  相似文献   

6.
Faruk Toksoy 《哲学杂志》2013,93(28):2469-2483
Abstract

By applying ab initio calculation within density functional theory (DFT), we study the structure parameters, electronic band structure, elastic coefficients, polycrystalline elastic properties, anisotropy factors and Debye temperature of ferroelectric and paraelectric phases of LiTaO3 within the generalised gradient approximation at ambient pressure. The atomic structure in both phases is fully relaxed and the lattice constant, angle and atomic positions are well consistent with experimental values. The computed single-crystal elastic coefficients indicate that mechanical stability of LiTaO3 in both phases is confirmed using the generalised Born criteria. The shear, bulk and Young’s modulus, Poisson’s ratio, and Vickers hardness were computed according to theoretical elastic constants by Voight–Reuss–Hill method. Several anisotropy factors and indexes are computed to illustrate mechanical anisotropy. Both phases are shown to be weakly anisotropic. The Debye temperature is estimated using the longitude and transverse elastic wave velocity of the ideal polycrystalline LiTaO3 aggregates. We have found that LiTaO3 in both phases has an indirect energy band gap. The differences in the electronic structure and density of states for both phases are quite small. Our results indicate that the mechanical and bonding properties of both phases are very similar. The obtained results were compared with the available experimental and theoretical values.  相似文献   

7.
Nuclear magnetic resonance (NMR) of the low abundance and low gyromagnetic ratio isotope 25Mg, I=5/2, 2.606 MHz/T, 10% abundant, is shown here to provide an informative probe for phase identification, site symmetry and site multiplicity of the intermetallic compounds which occur as strengthening precipitate phases in lightweight alloys. The intermetallics discussed here, Mg17Al12, MgZn2, Mg2Al3 and Al2CuMg, are the final equilibrium precipitate phases in a number of Mg- and Al-based heat-treatable alloys. The 25Mg spectra of Mg in Al–10 at%Mg alloy show the progressive precipitation of Mg2Al3 from Mg in solid solution as a function of annealing time at 150 °C. Also reported are 25Mg spectra for CuMg2, Mg44Al15Zn41 and Mg2Sn, along with the counter atom 67Zn and 63Cu NMR spectra for MgZn2 and CuMg2. All spectra are simulated to determine nuclear interaction parameters and confirm site occupancy.  相似文献   

8.
To prevent the formation of Al/Mg intermetallic compounds (IMCs) of Al3Mg2 and Al12Mg17, dissimilar Al/Mg were ultrasonic-assisted soldered using Sn-based filler metals. A new IMC of Mg2Sn formed in the soldered joints during this process and it was prone to crack at large thickness. The thickness of Mg2Sn was reduced to 22 μm at 285 °C when using Sn-3Cu as the filler metal. Cracks were still observed inside the blocky Mg2Sn. The thickness of Mg2Sn was significantly reduced when using Sn-9Zn as the filler metal. A 17 μm Mg2Sn layer without crack was obtained at a temperature of 200 °C, ultrasonic power of Mode I, and ultrasonic time of 2 s. The shear strengths of the joints using Sn-9Zn was much higher than those using Sn-3Cu because of the thinner Mg2Sn layer in the former joints. Sn whiskers were prevented by using Sn-9Zn. A cavitation model during ultrasonic assisted soldering was proposed.  相似文献   

9.
The structural, phase stabilities, mechanical, electronic and thermodynamic properties of intermetallic phases in Zr–Sn system are investigated by using first-principles method. The equilibrium lattice constants, enthalpy of formation (ΔHform) and elastic constants are obtained and compared with available experimental and theoretical data. The configuration of Zr4Sn is measured with reasonable precision. The ΔHform of five hypothetical structures are obtained in order to find possible metastable phase for Zr–Sn system. The mechanical properties, including bulk modulus, shear modulus, Young's modulus and Poisson's ratio, are calculated by Voigt–Reuss–Hill approximation and the Zr5Sn4 and Zr5Sn3 show excellent mechanical properties. The electronic density of states for Zr5Sn4, Zr5Sn3 and cP8-Zr3Sn are calculated to further investigate the stability of intermetallic compounds. Through the quasi-harmonic Debye model, the Debye temperature, heat capacity and thermal expansion coefficient under temperature of 0–300 K and pressure of 0–50 GPa for Zr5Sn3 and Zr5Sn4 are deeply investigated.  相似文献   

10.
Abstract

Using transmission electron microscopy and X-ray diffraction, we established that the ordered η1-Al50Cu44Fe6 and φ-Al47.5Cu49.5Fe3 (Fmm2) alloys with nano-sized domain structure are formed by slowly cooling, whereas β-solid solutions with a short-range order were found in quenched states. The φ′-modification which exhibits the additional long-period superstructure was also observed in Al47.5Cu49.5Fe3. The studies of low temperature magnetic susceptibility and heat capacity did not reveal any another phase transitions in these alloys. The indentation test showed that hardness and Young’s modulus consistently grow as β-Al50Cu33Fe17 → η1-Al50Cu44Fe6 → (φ+φ′)-Al47.5Cu49.5Fe3 and approach to those in icosahedral phase. The same trend in the Young’s modulus was obtained for alloys containing β-solid solution with a short-range order. Ab initio calculations, however, predicted the opposite tendency in cubic β-Al50Cu50?xFex with a decrease in x, which was explained by the weakening of the covalent Fe 3d – Al sp bonding. This discrepancy between the results for β- and ordered phases, we related to a crucial effect of ordering which is accompanied by a progressive distortion of cubic local structure in the series β-Al50Cu33Fe17 → η1-Al50Cu44Fe6 → φ-Al47.5Cu49.5Fe3. As we demonstrated for η-Al(Cu, Fe), these distortions lead to the strengthening of the both covalent Fe–Al and Cu–Al bonds and the higher modules.  相似文献   

11.
Fuda Guo  Na Nie 《哲学杂志》2018,98(6):517-530
We applied a first-principle calculation to investigate the different influences of the two incorporation sites of B atoms on the mechanical and thermodynamic properties of the near-equiatomic B2–ZrCu compound. The alloying B atoms have two possible incorporation sites, namely, octahedral interstices and Cu sites. When the concentration of B atoms is lower than 5.882 at.%, interstitial B atoms will be effective at improving the bulk modulus (B), shear modulus (G) and Young’s modulus (E) of the B2–ZrCu parent. When the concentration of the substitutional B atoms is lower than 12.5 at.%, the ductility of the parent will be strengthened. The interstitial B atoms that are located at octahedral interstices in the 〈110〉 direction can remarkably improve the Debye temperature (ΘD) of the substituted Zr8Cu8?zBz phase. The prediction for the melting point shows that the high-temperature stability is strengthened with the increase of the B concentration. Interstitial B atoms are beneficial to the minimum thermal conductivity. Finally, the electronic properties are discussed in detail to further understand the mechanical properties.  相似文献   

12.
段永华  孙勇  何建洪  彭明军  郭中正 《物理学报》2012,61(4):46101-046101
为了了解Pb-Mg-Al合金腐蚀的物理本质, 本文采用基于第一性原理的赝势平面波方法系统地计算了Pb-Mg-Al合金中各物相的结合能、费米能级和局域态密度等电子结构参数, 分析了合金的电化学腐蚀机理. 计算结果表明:Pb-Mg-Al合金中各主要组成物相稳定性大小关系为 Mg17Al12>Mg2Pb>Mg;Mg,Mg2Pb和Mg17Al12的费米能级存在Ef(Mg)>Ef(Mg2Pb)>Ef(Mg17Al12)的关系, 说明Mg最容易失去电子, Mg2Pb次之, Mg17Al12最难;局域态密度表明, 在同样的外界条件下, 体系中Mg相和Mg2Pb相对于Mg17Al12均处于不稳定的状态, 容易失去电子, 即容易发生腐蚀. Pb-Mg-Al合金体系中不同物相的费米能级差构成了电化学腐蚀的电动势, 导致电子从费米能级高的Mg相和Mg2Pb相流向费米能级低的Mg17Al12相, 使Pb-Mg-Al合金发生腐蚀.  相似文献   

13.
The structural, elastic, electronic properties and Debye temperature of Ni3Ta under different pressures are investigated using the first-principles method based on density functional theory. Our calculated equilibrium lattice parameters at 0 GPa well agree with the experimental and previous theoretical results. The calculated negative formation enthalpies and elastic constants both indicate that Ni3Ta is stable under different pressures. The bulk modulus B, shear modulus G, Young’s modulus E and Poisson’s ratio ν are calculated by the Voigt–Reuss–Hill method. The bigger ratio of B/G indicates Ni3Ta is ductile and the pressure can improve the ductility of Ni3Ta. In addition, the results of density of states and the charge density difference show that the stability of Ni3Ta is improved by the increasing pressure. The Debye temperature Θ D calculated from elastic modulus increases along with the pressure.  相似文献   

14.
ABSTRACT

The structural, electronic, elastic and thermodynamic properties of LuX (X = N, Bi and Sb) based on rare earth into phases, Rocksalt (B1) and CsCl (B2) have been investigated using full-potential linearized muffin-tin orbital method (FP-LMTO) within density functional theory. Local density approximation (LDA) for exchange-correlation potential and local spin density approximation (LSDA) are employed. The structural parameters as lattice parameters a0, bulk modulus B, its pressure derivate B’ and cut-off energy (Ec) within LDA and LSDA are presented. The elastic constants were derived from the stress–strain relation at 0 K. The thermodynamic properties for LuX using the quasi-harmonic Debye model are studied. The temperature and pressure variation of volume, bulk modulus, thermal expansion coefficient, heat capacities, Debye temperature and Gibbs free energy at different pressures (0–50 GPa) and temperatures (0–1600 K) are predicted. The calculated results are in accordance with other data.  相似文献   

15.
The structural, elastic and phonon properties of Mg2Si1?xSnx alloy are investigated by performing density functional theory and density functional perturbation theory calculations. The calculated lattice parameter increases with the increase of Sn content obeying Vegard’s Law that is in good agreement with available experimental data. Shear modulus, Young’s modulus and sound velocities are determined from the obtained elastic constants. Phonon dispersion curves show a pronounced softening with increasing of Sn content. The softening mechanism has been discussed based upon the element mass and bond strength. Besides, phonon contribution to the Helmholtz free energy, the entropy and the constant-volume heat capacity are calculated within the harmonic approximation based on the calculated phonon density of states. Results show Mg2Si1?xSnx is thermodynamically more stable with higher Sn content.  相似文献   

16.
ABSTRACT

This work uses first-principles total energy calculations on the basis of density functional theory to predict the structural stability, mechanical and thermodynamic properties of Zn atom doped AlLi phase in Mg–Li–Al–Zn alloy. The values of the equilibrium lattice parameters and the formation of enthalpy are highly consistent with the experimental and previous calculations results available. Negative enthalpies of formation ΔH are predicted for all AlLi phase doped concentrations which have positive consequences for its structural stability. The elastic modulus is deduced by Voigt–Reuss–Hill arithmetic approximation. The bulk modulus of the Al–Li–Zn compounds increases as the doping concentrations increase, which are larger than the value of the AlLi phase. In particular, the stability and mechanical anisotropy of the Al–Li–Zn compounds are discussed. The charge density cloud map is drawn to reveal the bonding characteristics of four compounds. The changes in thermodynamic properties are derived by the phonon frequencies within the quasi-harmonic approximation.  相似文献   

17.
Runyue Li 《哲学杂志》2016,96(35):3654-3670
First-principles calculations were performed to investigate the structural properties, phase stabilities, elastic properties and thermal conductivities of MP (M = Ti, Zr, Hf) monophosphides. These monophosphides are thermodynamically and mechanically stable. Values for the bulk modulus B, shear modulus G, Young’s modulus E and Poisson’s ratio ν were calculated by Voigt–Reuss–Hill approximation. The mechanical anisotropy was discussed via several anisotropy indices and three-dimensional (3D) surface constructions. The order of elastic anisotropy is ZrP > HfP > TiP. The minimum thermal conductivities of these monophosphides were investigated using Clarke’s model and Cahill’s model. The results revealed that these monophosphides are suitable for use as thermal insulating materials and that their minimum thermal conductivities are anisotropic.  相似文献   

18.
ABSTRACT

We have investigated the structural, dynamical, elastic, and electronic properties of WGe2 and W5Ge3 compounds in different phases. We have considered the C11b (tetragonal, space group I4/mmm) and C23 (orthorhombic, space group Pnma) strukturbericht phases for WGe2 compound and D81 (tetragonal, space group I4/mcm), D8m (tetragonal space group I4/mcm) strukturbericht phases for W5Ge3 compound. The structural parameters, formation enthalpies, phonon dispersion curves, elastic constants, mechanical modulus, anisotropic factors, thermal conductivities, and electronic structures have been investigated using generalised gradient approximation within in the plane wave pseudopotential density functional theory. The calculated lattice constants are in a good agreement with the experimental data. The considered phases for WGe2 and W5Ge3 compounds have a metallic character. The results indicated that all phases for compounds are both mechanically stable and dynamically stable except for W5Ge3-D81. The anisotropy in some mechanical modulus has been investigated using several elastic anisotropy indexes and directional dependence of compressibility, Young’s moduli, shear moduli, and Poisson’s ratio.  相似文献   

19.
The structural, elastic, electronic and thermodynamic properties of the rhombohedral topological insulator Bi2Se3 are investigated by the generalized gradient approximation (GGA) with the Wu–Cohen (WC) exchange-correlation functional. The calculated lattice constants agree well with the available experimental and other theoretical data. Our GGA calculations indicate that Bi2Se3 is a 3D topological insulator with a band gap of 0.287 eV, which are well consistent with the experimental value of 0.3 eV. The pressure dependence of the elastic constants Cij, bulk modulus B, shear modulus G, Young’s modulus E, and Poisson’s ratio σ of Bi2Se3 are also obtained successfully. The bulk modulus obtained from elastic constants is 53.5 GPa, which agrees well with the experimental value of 53 GPa. We also investigate the shear sound velocity VS, longitudinal sound velocity VL, and Debye temperature ΘE from our elastic constants, as well as the thermodynamic properties from quasi-harmonic Debye model. We obtain that the heat capacity Cv and the thermal expansion coefficient α at 0 GPa and 300 K are 120.78 J mol?1 K?1 and 4.70 × 10?5 K?1, respectively.  相似文献   

20.
H.Y. Wu  Y.H. Chen  C.R. Deng  X.Y. Han  P.F. Yin 《哲学杂志》2015,95(21):2240-2256
The electronic, elastic and dynamical properties of MgSe in the rocksalt (B1) and iron silicide (B28) phase and the effects of pressure on these properties are investigated using first-principles method. The calculated electronic band structure indicates that the B1 phase of MgSe presents an indirect band-gap feature and the band gaps initially increase with pressure and subsequently decrease upon compression. Remarkably, an indirect-to-direct band-gap transition has been observed at the phase transition pressure. The elastic constants, bulk modulus, shear modulus, Young’s modulus, elastic anisotropy and B/G ratio of MgSe in the B1 and B28 phase at high pressure have also been investigated. The bulk modulus, shear modulus and Young’s modulus all increase monotonously with the increasing of pressure for the B1 and B28 phase of MgSe. The calculated phonon frequencies of the B1 phase at zero pressure agree well with available theoretical results. And the transverse acoustic phonon TA(X) mode of this phase completely softening to zero at 82 GPa. The phonon curves of the B28 phase under pressure have also been successfully investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号