首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The surface modification of montmorillonite clay was carried out through ion‐ exchange reaction using p‐phenylenediamine as a modifier. This modified clay was employed to prepare aromatic polyamide/organoclay nanocomposite materials. The dispersion behavior of clay was examined in the polyamide matrix. Polyamide chains were synthesized from 4‐aminophenyl sulfone and isophthaloyl chloride (IPC) in dimethylacetamide. These amide chains were suitably end‐capped with carbonyl chloride end groups to interact chemically with modified montmorillonite clay. The resulting nanocomposite films containing 2–20 wt% of organoclay were characterized by TEM, X‐ray diffraction (XRD), thin‐film tensile testing; thermogravimetric analysis (TGA), differential scanning calorimetric (DSC) and water absorption measurements. Mechanical testing revealed that modulus and strength improved up to 6 wt% organoclay loading while elongation and toughness of nanocomposites decreased with the addition of clay content in the matrix. Thermal decomposition temperatures of the nanocomposites were in the range 225–450 °C. These nanocomposites expressed increase in the glass‐transition temperature values relative to pure polyamide describing interfacial interactions among the phases. The percent water uptake of these composites reduced upon the addition of modified layered silicate depicting improved barrier properties. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
Nanocomposites from organoclay and aromatic polyamide were prepared using solution intercalation method. Aramid chains were synthesised by reacting 4-aminophenylsulfone with isophthaloyl chloride in dimethylacetamide. Dodecylamine was used as a modifier to change the hydrophilic nature of montmorillonite into organophilic. Suitable quantities of organoclay were mixed in the aramid solution with high-speed stirring for homogeneous dispersion of the clay. Thin films cast from these materials after evaporating the solvent were characterised. The morphology of nanocomposites was determined by X-ray diffraction and TEM. Results revealed the formation of delaminated and disordered intercalated clay platelets in the aramid matrix. Mechanical data indicated improvement in the tensile strength and modulus with clay loading up to 6 wt.%. The glass transition temperature increased up to 20 wt.% organoclay, suggesting better cohesion between the two phases and thermal stability augmented with increasing clay loading. The water uptake reduced gradually as a function of organoclay showing decreased permeability.  相似文献   

3.
Surface treated montmorillonite was used to prepare nanocomposites with aromatic–aliphatic polyamide by solution intercalation technique. The polyamide chains were produced through polycondensation of 4-aminophenyl sulfone with sebacoyl chloride in dimethyl acetamide. Compatibility between the polymer and organoclay was achieved through carbonyl chloride end-capped amide chains prepared by adding extra sebacoyl chloride near the end of polymerization reaction. The nanocomposites morphology and clay dispersion were investigated by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Delaminated and intercalated morphologies were observed for different loading of organoclay. Tensile strength and modulus improved for nanocomposites with optimum organoclay content (10-wt.%). Thermal stability and glass transition temperature of nanocomposites increased relative to pristine polyamide with augmenting organoclay content. Water uptake of these materials decreased as compared to the neat polyamide indicating reduced permeability.  相似文献   

4.
Aramid–organoclay nanocomposites were fabricated through solution intercalation technique. Montmorillonite was modified with p-amino benzoic acid in order to have compatibility with the matrix. The effect of clay dispersion and the interaction between clay and polyamide chains on the properties of nanocomposites were investigated using X-ray diffraction (XRD), transmission electron microscopy (TEM), tensile testing of thin films, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and water uptake measurements. Excessive clay dispersion was achieved even on the addition of high proportions of clay. The structural investigations confirmed the formation of delaminated nanostructures at low clay contents and disordered intercalated morphology at higher clay loadings. The tensile behavior and thermal stability significantly amplified while permeability reduced with increasing dispersibility of organoclay in the polyamide matrix.  相似文献   

5.
The aim of this work was to obtain membranes from polyamide 6/montmorillonite clay nanocomposites through the phase inversion technique. The nanocomposites and membranes from polyamide 6/montmorillonite clay were characterized by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Thermogravimetry (TG) and Differential Scanning Calorimetry (DSC). Microporous and asymmetric membranes were successfully obtained from nanocomposites and the results showed that the salts were incorporated by intercalation between the organoclay layers and, apparently that the nanocomposites and membranes were thermally more stable than the pure polyamide.  相似文献   

6.
Poly(amic acid) (PAA) was prepared by the reaction of 4,4'‐(hexafluoro‐isopropylidene)diphthalic anhydride (6FDA) with 2,2'‐bis[4‐(4‐aminophenoxy)phenyl] hexafluoropropane (BAPP) in N,N‐dimethylacetamide (DMAc). Hybrid films were obtained from blend solutions of the precursor polymer and the organoclay Cloisite 15A, varying the organoclay content from 0 to 3.0 wt%. The cast PAA film was heat‐treated at different temperatures to create polyimide (PI) hybrid films, which showed excellent optical transparencies and were almost colorless. The intercalation of PI chains in the organoclays was examined by means of wide‐angle X‐ray diffraction (XRD) and electron microscopy (SEM and TEM). In addition, the thermo‐mechanical properties were tested using a differential scanning calorimeter (DSC), a thermogravimetric analyzer (TGA), and a universal tensile machine (UTM). In the XRD, SEM, and TEM results for the PI hybrid films, a substantial increase in the agglomeration of the clay particles was observed as the clay loading was increased from 0.5 to 3.0 wt%. This suggests that in the hybrid materials with low clay content, the clay particles are better dispersed in the matrix polymer and do not agglomerate significantly. We found that the addition of a small amount of organoclay is sufficient to improve the thermal and mechanical properties of the PI, with the maximum enhancement being observed at 1.0 wt% Cloisite 15A. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
New type of aromatic polyamide/montmorillonite nanocomposites were produced using solution intercalation technique in N-methyl-2-pyrrolidone. High-molecular-weight amide chains were synthesized from 4,4′-diaminodiphenyl ether and 4-phenylenediacrylic acid in N-methyl-2-pyrrolidone. The resulting nanocomposite films containing 5–20 wt.% of organoclay (Cloisite® 20A) were characterized for FT-IR, scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), optical transparency and water absorption measurements. The distribution of organoclay and nanostructure of the composites were investigated by (XRD) and SEM analyses. Thermogravimetric analysis indicated an increase in thermal stability of nanocomposites as compared to pristine polyamide. The percentage optical transparency and water absorption of these hybrids was found to be much reduced upon the addition of modified layered silicate indicating decreased permeability.  相似文献   

8.
This work prepared poly(ethylene glycol‐co‐1,3/1,4‐cyclohexanedimethanol terephthalate) (PETG)/organoclay nanocomposites via a melt intercalation process and investigated the influences of organoclay aspect ratio and organoclay content on the dispersed state, mechanical, thermal, gas barrier, and heat recovery properties of PETG/organoclay nanocomposites. X‐ray diffraction (XRD) and transmission electron microscopic analyses showed that the organoclay dispersed in the polymer matrix with intercalation in the nanometer scale range. Differential scanning calorimetry (DSC) analysis demonstrated that all of the obtained nanocomposites were amorphous, indicating that the addition of organoclay did not affect the amorphous nature of PETG. The gas barrier properties of the nanocomposites improved with organoclay content and the properties were also affected by the organoclay aspect ratio. Water vapor and oxygen transmission rates (OTRs) of PETG/organoclay nanocomposites containing 3 phr Cloisite 15A, and 3 phr modified polymer grade Na‐montmorillonites (MPGN) were the lowest among the samples tested, and were 41.7 and 44.3%, respectively, of those of neat PETG. Similar organoclay content‐ and aspect ratio‐related effects were observed in the mechanical and heat recovery properties of the tested nanocomposites. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Poly(trimethylene terephthalate) (PTT)/montmorillonite (MMT) nanocomposites were prepared by the solution intercalation method. Two different kinds of clay were organomodified with an intercalation agent of cetyltrimetylammonium chloride (CMC). X‐ray diffraction (XRD) indicated that the layers of MMT were intercalated by CMC, and interlayer spacing was a function of the cationic exchange capacity of clay. The XRD studies demonstrated that the interlayer spacing of organoclay in the nanocomposites depends on the amount of organoclay. From the results of differential scanning calorimetric analysis, it was found that clay behaves as a nucleating agent and enhances the crystallization rate of PTT. The maximum enhancement of the crystallization rate for the nanocomposites was observed in nanocomposites containing about 1 wt % organoclay with a range of 1–15 wt %. From thermogravimetric analysis, we found that the thermal stability of the nanocomposites was enhanced by the addition of 1–10 wt % organoclay. According to transmission electron microscopy, the organoclay particle was highly dispersed in the PTT matrix without a large agglomeration of particles for a low organoclay content (5 wt %). However, an agglomerated structure did form in the PTT matrix at a 15 wt % organoclay content. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2902–2910, 2003  相似文献   

10.
The preparation, characterization and properties of novel millable polyurethane/organoclay nanocomposites are reported. Clay treated with methyl tallow bis(2‐hydroxyethyl) quaternary ammonium chloride was used as an organoclay for nanocomposite preparation. X‐ray diffraction indicated the intercalation of polymer chains inside the interlayer spacings of the clay. Dynamic mechanical analysis showed a significant increase in storage modulus, and tensile strength increases with increased organoclay loading.

X‐ray diffraction patterns of millable polyurethane/organoclay nanocomposites.  相似文献   


11.
Nanocomposites containing both polyethylene and montmorillonite clay organically modified with four different types of quaternary ammonium salts were obtained via direct melt intercalation. Thus, the main purpose of this work was to evaluate the effect of the organoclay on the thermal stability of polyethylene. The organoclays were characterized by XRD, FTIR, DSC and TG. The polyethylene/organoclay nanocomposites were studied by XRD, TEM, TG, besides an evaluation of their mechanical properties. The results showed that the salts were incorporated by intercalation between the layers of the organoclay and, apparently that the nanocomposites were more thermally stable than pure polyethylene.  相似文献   

12.
Polyethylene(PE)/clay nanocomposites have been successfully prepared by in situ polymerization with an intercalation catalyst titanium-montmorillonite (Ti-MMT) and analyzed by X-ray diffraction analysis (XRD), Fourier transform infrared analysis (FT-IR), Transmission electron microscopy (TEM), differentail scanning calorimetry (DSC), thermal gravimetric analysis (TGA) and tensile testing. XRD and TEM indicate that the clay is exfoliated into nanometer size and disorderedly dispersed in the PE matrix, and the PE crystallinity of PE/clay nanocomposite declines to 15∼30%. Compared with pure PE, PE/clay nanocomposites behave higher thermal, physical and mechanical properties; the layer structure of the clay decreases the polymerization activity and produce polymer with a high molecular weight. For PE/clay nanocomposites, the highest tensile strength of 33.4 MPa and Young's modulus of 477.4 MPa has been achieved when clay content is 7.7 wt %. The maximum thermal decomposition temperature is up to 110 °C higher, but the thermal decomposition temperature of the PE/clay nanocomposites decreases with the increases of the clay contents in the PE matrix.  相似文献   

13.
The preparation and characterization of melt‐intercalated poly(vinylidene fluoride) (PVDF)/clay nanocomposites are reported. Organophilic clay (clay treated with dimethyl dihydrogenated tallow quaternary ammonium chloride) was used for the nanocomposite preparation. The composites were characterized with X‐ray diffraction (XRD), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA). XRD results indicated the intercalation of the polymer in the interlayer spacing. The incorporation of clay in PVDF resulted in the β form of PVDF. DSC nonisothermal curves showed an increase in the melting and crystallization temperatures along with a decrease in crystallinity. Isothermal crystallization studies show an enhanced rate of crystallization with the addition of clay. DMA indicated significant improvements in the storage modulus over a temperature range of ?100 to 150 °C. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 31–38, 2003  相似文献   

14.
A thermotropic liquid crystalline polyester (TLCP)/organoclay nanocomposite was synthesized via in situ intercalation polycondensation of diethyl‐2,5‐dihexyloxyterephthalic acid and 4,4′‐biphenol in the presence of organically modified montmorillonite (MMT). The organoclay, C18‐MMT, was prepared by the ion exchange of Na+‐MMT with octadecylamine chloride (C18‐Cl?). TLCP/C18‐MMT nanocomposites were prepared to examine the variations of the thermal properties, morphology, and liquid crystalline phases of the nanocomposites with clay content in the range of 0–7 wt%. It was found that the addition of only a small amount of organoclay was sufficient to improve the thermal behavior of the TLCP hybrids, with maximum enhancement being observed at 1 wt% C18‐MMT. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
The fabrication of syndiotactic polystyrene (sPS)/organoclay nanocomposite was conducted via a stepwise mixing process with poly(styrene‐co‐vinyloxazolin) (OPS), that is, melt intercalation of OPS into organoclay followed by blending with sPS. The microstructure of nanocomposite mainly depended on the arrangement type of the organic modifier in clay gallery. When organoclays that have a lateral bilayer arrangement were used, an exfoliated structure was obtained, whereas an intercalated structure was obtained when organoclay with a paraffinic monolayer arrangement were used. The thermal and mechanical properties of sPS nanocomposites were investigated in relation to their microstructures. From the thermograms of nonisothermal crystallization and melting, nanocomposites exhibited an enhanced overall crystallization rate but had less reduced crystallinity than a matrix polymer. Clay layers dispersed in a matrix polymer may serve as a nucleating agent and hinder the crystal growth of polymer chains. As a comparison of the two nanocomposites with different microstructures, because of the high degree of dispersion of its clay layer the exfoliated nanocomposite exhibited a faster crystallization rate and a lower degree of crystallinity than the intercalated one. Nanocomposites exhibited higher mechanical properties, such as strength and stiffness, than the matrix polymer as observed in the dynamic mechanical analysis and tensile tests. Exfoliated nanocomposites showed more enhanced mechanical properties than intercalated ones because of the uniformly dispersed clay layers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1685–1693, 2004  相似文献   

16.
Fluorene‐based polyester nanocomposites were prepared by in situ polymerization of equivalent weights of 9,9′‐dihexylfluorene‐2,7‐dicarboxylic acid and 4,4′‐dihydroxy‐1,4‐diphenoxybutane (DPB‐OH) in the presence of octadecyl‐montmorillonite (C18‐MMT) as an organoclay. We investigated the intercalation of the organoclay among the polymer chains, with the aim of improving the thermal properties of the polyester. It was found that the addition of only a small amount of organoclay was enough to improve the polyester's thermal properties. The maximum enhancement of the thermal properties of the fluorene‐based polyester nanocomposites was observed with the dispersion of 5 wt% organoclay. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
Novel epoxy‐clay nanocomposites have been prepared by epoxy and organoclays. Polyoxypropylene triamine (Jeffamine T‐403), primary polyethertriamine (Jeffamine T‐5000) and three types of polyoxypropylene diamine (Jeffamine D‐230, D‐400, D‐2000) with different molecular weight were used to treat Na‐montmorillonite (MMT) to form organoclays. The preparation involves the ion exchange of Na+ in MMT with the organic ammonium group in Jeffamine compounds. X‐ray diffraction (XRD) confirms the intercalation of these organic moieties to form Jeffamine‐MMT intercalates. Jeffamine D‐230 was used as a swelling agent for the organoclay and curing agent. It was established that the d001 spacing of MMT in epoxy‐clay nanocomposites depends on the silicate modification. Although XRD data did not show any apparent order of the clay layers in the T5000‐MMT/epoxy nanocomposite, transmission electron microscopy (TEM) revealed the presence of multiplets with an average size of 5 nm and the average spacing between multiplets falls in the range of 100 Å. The multiplets clustered into mineral rich domains with an average size of 140 nm. Scanning electron microscopy (SEM) reveals the absence of mineral aggregate. Nanocomposites exhibit significant increase in thermal stability in comparison to the original epoxy. The effect of the organoclay on the hardness and toughness properties of crosslinked polymer matrix was studied. The hardness of all the resulting materials was enhanced with the inclusion of organoclay. A three‐fold increase in the energy required for breaking the test specimen was found for T5000‐MMT/epoxy containing 7 wt% of organoclay as compared to that of pure epoxy. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
The feasibility of constructing polymer/clay nanocomposites with polypeptides as the matrix material is shown. Cationic poly‐L‐lysine · HBr (PLL) was reinforced by sodium montmorillonite clay. The PLL/clay nanocomposites were made via the solution‐intercalation film‐casting technique. X‐ray diffraction and transmission electron microscopy data indicated that montmorillonite layers intercalated with PLL chains coexist with exfoliated layers over a wide range of relative PLL/clay compositions. Differential scanning calorimetry suggests that the presence of clay suppresses crystal formation in PLL relative to the neat polypeptide and slightly decreases the PLL melting temperature. Despite lower crystallinity, dynamic mechanical analysis revealed a significant increase in the storage modulus of PLL with an increase in clay loading producing storage modulus magnitudes on par with traditional engineering thermoplastics. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2579–2586, 2002  相似文献   

19.
Poly(ethylene terephthalate‐co‐ethylene naphthalate) (PETN)/organoclay was synthesized with the solution intercalation method. Hexadecylamine was used as an organophilic alkylamine in organoclay. Our aim was to clarify the intercalation of PETN chains to hexadecylamine–montmorillonite (C16–MMT) and to improve both the thermal stability and tensile property. We found that the addition of only a small amount of organoclay was enough to improve the thermal stabilities and mechanical properties of PETN/C16–MMT hybrid films. Maximum enhancement in both the ultimate tensile strength and initial modulus for the hybrids was observed in blends containing 4 wt % C16–MMT. Below a 4 wt % clay loading, the clay particles could be highly dispersed in the polymer matrix without a large agglomeration of particles. However, an agglomerated structure did form in the polymer matrix at a 6 wt % clay content. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2581–2588, 2001  相似文献   

20.
A series of aromatic thermotropic liquid crystalline copolyester (TLCP) nanocomposites were prepared by the in situ intercalation polymerization of p‐acetoxybenzoic acid (ABA), terephthalic acid (TPA), and diacetoxynaphthalene (DAN) isomers in the presence of the organoclay. The DAN isomers used in this study were 2,3‐ and 2,7‐naphthylene. We examined the variation of the liquid crystallinity, morphology, and thermal properties of the nanocomposites with organoclay content in the range 0–10 wt %. All the polymer nanocomposites were fabricated with a molar ratio of ABA:TPA:DAN = 2:1:1; they were shown to consist of a nematic liquid crystalline phase for low organoclay contents (≤5 wt %), whereas the hybrids with a higher concentration of organoclay (≥10 wt %) were found not to be mesomorphic. By using transmission electron microscopy, the clay layers in the 2,3‐DAN copolyester hybrids were found to be better dispersed in the matrix polymer than those in the 2,7‐DAN copolyester hybrids. The introduction of an organoclay into the matrix polymer was found to improve the thermal properties of the 2,3‐DAN copolyester hybrids. However, the thermal properties of the 2,7‐DAN copolyester hybrids were found to be worse than those of the pure matrix polymer for all organoclay compositions tested. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 387–397, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号