首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The classical result of Erd?s and Rényi asserts that the random graph G(n,p) experiences sharp phase transition around \begin{align*}p=\frac{1}{n}\end{align*} – for any ε > 0 and \begin{align*}p=\frac{1-\epsilon}{n}\end{align*}, all connected components of G(n,p) are typically of size Oε(log n), while for \begin{align*}p=\frac{1+\epsilon}{n}\end{align*}, with high probability there exists a connected component of size linear in n. We provide a very simple proof of this fundamental result; in fact, we prove that in the supercritical regime \begin{align*}p=\frac{1+\epsilon}{n}\end{align*}, the random graph G(n,p) contains typically a path of linear length. We also discuss applications of our technique to other random graph models and to positional games. © 2012 Wiley Periodicals, Inc. Random Struct. Alg., 2013  相似文献   

2.
Let ??k(n, p) be the random k‐uniform hypergraph on V = [n] with edge probability p. Motivated by a theorem of Erd?s and Rényi 7 regarding when a random graph G(n, p) = ??2(n, p) has a perfect matching, the following conjecture may be raised. (See J. Schmidt and E. Shamir 16 for a weaker version.) Conjecture. Let k|n for fixed k ≥ 3, and the expected degree d(n, p) = p(). Then (Erd?s and Rényi 7 proved this for G(n, p).) Assuming d(n, p)/n1/2 → ∞, Schmidt and Shamir 16 were able to prove that ??k(n, p) contains a perfect matching with probability 1 ? o(1). Frieze and Janson 8 showed that a weaker condition d(n, p)/n1/3 → ∞ was enough. In this paper, we further weaken the condition to A condition for a similar problem about a perfect triangle packing of G(n, p) is also obtained. A perfect triangle packing of a graph is a collection of vertex disjoint triangles whose union is the entire vertex set. Improving a condition pcn?2/3+1/15 of Krivelevich 12 , it is shown that if 3|n and p ? n?2/3+1/18, then © 2003 Wiley Periodicals, Inc. Random Struct. Alg., 23: 111–132, 2003  相似文献   

3.
Given graphs G and H, an edge coloring of G is called an (H,q)‐coloring if the edges of every copy of H ? G together receive at least q colors. Let r(G,H,q) denote the minimum number of colors in a (H,q)‐coloring of G. In 9 Erd?s and Gyárfás studied r(Kn,Kp,q) if p and q are fixed and n tends to infinity. They determined for every fixed p the smallest q (denoted by qlin) for which r(Kn,Kp,q) is linear in n and the smallest q (denoted by qquad) for which r(Kn,Kp,q) is quadratic in n. They raised the problem of determining the smallest q for which we have . In this paper by using the Regularity Lemma we show that if , then we have . © 2003 Wiley Periodicals, Inc. J Graph Theory 44: 39–49, 2003  相似文献   

4.
With ξ the number of triangles in the usual (Erd?s‐Rényi) random graph G(m,p), p > 1/m and η > 0, we show (for some Cη > 0) This is tight up to the value of Cη. © 2011 Wiley Periodicals, Inc. Random Struct. Alg., 40, 452–459, 2012  相似文献   

5.
The circulant G = C(n,S), where , is the graph with vertex set Zn and edge set . It is shown that for n odd, every 6‐regular connected circulant C(n, S) is decomposable into Hamilton cycles. © 2006 Wiley Periodicals, Inc. J Combin Designs  相似文献   

6.
It is shown that if G is a graph of order n with minimum degree δ(G), then for any set of k specified vertices {v1,v2,…,vk} ? V(G), there is a 2‐factor of G with precisely k cycles {C1,C2,…,Ck} such that viV(Ci) for (1 ≤ ik) if or 3k + 1 ≤ n ≤ 4k, or 4kn ≤ 6k ? 3,δ(G) ≥ 3k ? 1 or n ≥ 6k ? 3, . Examples are described that indicate this result is sharp. © 2003 Wiley Periodicals, Inc. J Graph Theory 43: 188–198, 2003  相似文献   

7.
In this note we strengthen the stability theorem of Erd?s and Simonovits. Write Kr(s1, …, sr) for the complete r‐partite graph with classes of sizes s1, …, sr and Tr(n) for the r‐partite Turán graph of order n. Our main result is: For all r≥2 and all sufficiently small c>0, ε>0, every graph G of sufficiently large order n with e(G)>(1?1/r?ε)n2/2 satisfies one of the conditions:
  • (a) G contains a $K_{r+1} (\lfloor c\,\mbox{ln}\,n \rfloor,\ldots,\lfloor c\,\mbox{ln}\,n \rfloor,\lceil n^{{1}-\sqrt{c}}\rceil)In this note we strengthen the stability theorem of Erd?s and Simonovits. Write Kr(s1, …, sr) for the complete r‐partite graph with classes of sizes s1, …, sr and Tr(n) for the r‐partite Turán graph of order n. Our main result is: For all r≥2 and all sufficiently small c>0, ε>0, every graph G of sufficiently large order n with e(G)>(1?1/r?ε)n2/2 satisfies one of the conditions:
    • (a) G contains a $K_{r+1} (\lfloor c\,\mbox{ln}\,n \rfloor,\ldots,\lfloor c\,\mbox{ln}\,n \rfloor,\lceil n^{{1}-\sqrt{c}}\rceil)$;
    • (b) G differs from Tr(n) in fewer than (ε1/3+c1/(3r+3))n2 edges.
    Letting µ(G) be the spectral radius of G, we prove also a spectral stability theorem: For all r≥2 and all sufficiently small c>0, ε>0, every graph G of sufficiently large order n with µ(G)>(1?1/r?ε)n satisfies one of the conditions:
    • (a) G contains a $K_{r+1}(\lfloor c\,\mbox{ln}\,n\rfloor,\ldots,\lfloor c\,\mbox{ln}\,n\rfloor,\lceil n^{1-\sqrt{c}}\rceil)$;
    • (b) G differs from Tr(n) in fewer than (ε1/4+c1/(8r+8))n2 edges.
    © 2009 Wiley Periodicals, Inc. J Graph Theory 62: 362–368, 2009  相似文献   

8.
Let be a 2‐factorization of the complete graph Kv admitting an automorphism group G acting doubly transitively on the set of vertices. The vertex‐set V(Kv) can then be identified with the point‐set of AG(n, p) and each 2‐factor of is the union of p‐cycles which are obtained from a parallel class of lines of AG(n, p) in a suitable manner, the group G being a subgroup of A G L(n, p) in this case. The proof relies on the classification of 2‐(v, k, 1) designs admitting a doubly transitive automorphism group. The same conclusion holds even if G is only assumed to act doubly homogeneously. © 2006 Wiley Periodicals, Inc. J Combin Designs  相似文献   

9.
For 0 < p < 1 and q > 0 let Gq(n,p) denote the random graph with vertex set [n]={1,…,n} such that, for each graph G on [n] with e(G) edges and c(G) components, the probability that Gq(n,p)=G is proportional to . The first systematic study of Gq(n,p) was undertaken by 6 , who analyzed the phase transition phenomenon corresponding to the emergence of the giant component. In this paper we describe the structure of Gq(n,p) very close the critical threshold. © 2005 Wiley Periodicals, Inc. Random Struct. Alg., 2006  相似文献   

10.
The kth moment of the degree sequence d1d2 ≥ …dn of a graph G is . We give asymptotically sharp bounds for μk(G) when G is in a monotone family. We use these results for the case k = 2 to improve a result of Pach, Spencer, and Tóth [15]. We answer a question of Erd?s [9] by determining the maximum variance of the degree sequence when G is a triangle‐free n‐vertex graph. © 2005 Wiley Periodicals, Inc.  相似文献   

11.
For a graph G=(V(G),E(G)), a strong edge coloring of G is an edge coloring in which every color class is an induced matching. The strong chromatic index of G, χs(G), is the smallest number of colors in a strong edge coloring of G. The strong chromatic index of the random graph G(n,p) was considered in Discrete Math. 281 (2004) 129, Austral. J. Combin. 10 (1994) 97, Austral. J. Combin. 18 (1998) 219 and Combin. Probab. Comput. 11 (1) (2002) 103. In this paper, we consider χs(G) for a related class of graphs G known as uniform or ε-regular graphs. In particular, we prove that for 0<ε?d<1, all (d,ε)-regular bipartite graphs G=(UV,E) with |U|=|V|?n0(d,ε) satisfy χs(G)?ζ(ε)Δ(G)2, where ζ(ε)→0 as ε→0 (this order of magnitude is easily seen to be best possible). Our main tool in proving this statement is a powerful packing result of Pippenger and Spencer (Combin. Theory Ser. A 51(1) (1989) 24).  相似文献   

12.
For a graph G, denote by t(G) (resp. b(G)) the maximum size of a triangle‐free (resp. bipartite) subgraph of G. Of course for any G, and a classic result of Mantel from 1907 (the first case of Turán's Theorem) says that equality holds for complete graphs. A natural question, first considered by Babai, Simonovits and Spencer about 20 years ago is, when (i.e., for what p = p(n)) is the “Erd?s‐Rényi” random graph G = G(n,p) likely to satisfy t(G) = b(G)? We show that this is true if for a suitable constant C, which is best possible up to the value of C. © 2014 Wiley Periodicals, Inc. Random Struct. Alg., 47, 59–72, 2015  相似文献   

13.
For any integer n, let be a probability distribution on the family of graphs on n vertices (where every such graph has nonzero probability associated with it). A graph Γ is ‐almost‐universal if Γ satisifies the following: If G is chosen according to the probability distribution , then G is isomorphic to a subgraph of Γ with probability 1 ‐ . For any p ∈ [0,1], let (n,p) denote the probability distribution on the family of graphs on n vertices, where two vertices u and v form an edge with probability p, and the events {u and v form an edge}; u,vV (G) are mutually independent. For k ≥ 4 and n sufficiently large we construct a ‐almost‐universal‐graph on n vertices and with O(n)polylog(n) edges, where q = ? ? for such k ≤ 6, and where q = ? ? for k ≥ 7. The number of edges is close to the lower bound of Ω( ) for the number of edges in a universal graph for the family of graphs with n vertices and maximum degree k. © 2010 Wiley Periodicals, Inc. Random Struct. Alg., 2010  相似文献   

14.
A bipartition of the vertex set of a graph is called balanced if the sizes of the sets in the bipartition differ by at most one. B. Bollobás and A. D. Scott, Random Struct Alg 21 (2002), 414–430 conjectured that if G is a graph with minimum degree of at least 2 then V(G) admits a balanced bipartition V1, V2 such that for each i, G has at most |E(G)|/3 edges with both ends in Vi. The minimum degree condition is necessary, and a result of B. Bollobás and A. D. Scott, J. Graph Theory 46 (2004), 131–143 shows that this conjecture holds for regular graphs G(i.e., when Δ(G)=δ(G)). We prove this conjecture for graphs G with \begin{eqnarray*}\Delta(G)\le\frac{7}{5}\delta(G)\end{eqnarray*}; hence, it holds for graphs ]ensuremathG with \begin{eqnarray*}\delta(G)\ge\frac{5}{7}|V(G)|\end{eqnarray*}. © 2009 Wiley Periodicals, Inc. J Graph Theory 63: 210–225, 2010  相似文献   

15.
We prove that there is a constant c > 0, such that whenever pnc, with probability tending to 1 when n goes to infinity, every maximum triangle‐free subgraph of the random graph Gn,p is bipartite. This answers a question of Babai, Simonovits and Spencer (Babai et al., J Graph Theory 14 (1990) 599–622). The proof is based on a tool of independent interest: we show, for instance, that the maximum cut of almost all graphs with M edges, where M ? n and M ≤ /2, is “nearly unique”. More precisely, given a maximum cut C of Gn,M, we can obtain all maximum cuts by moving at most \begin{align*}\mathcal{O}(\sqrt{n^3/M})\end{align*} vertices between the parts of C. © 2012 Wiley Periodicals, Inc. Random Struct. Alg., 2012  相似文献   

16.
An equitable coloring of a graph is a proper vertex coloring such that the sizes of any two color classes differ by at most one. The least positive integer k for which there exists an equitable coloring of a graph G with k colors is said to be the equitable chromatic number of G and is denoted by χ=(G). The least positive integer k such that for any k′ ≥ k there exists an equitable coloring of a graph G with k′ colors is said to be the equitable chromatic threshold of G and is denoted by χ=*(G). In this paper, we investigate the asymptotic behavior of these coloring parameters in the probability space G(n,p) of random graphs. We prove that if n?1/5+? < p < 0.99 for some 0 < ?, then almost surely χ(G(n,p)) ≤ χ=(G(n,p)) = (1 + o(1))χ(G(n,p)) holds (where χ(G(n,p)) is the ordinary chromatic number of G(n,p)). We also show that there exists a constant C such that if C/n < p < 0.99, then almost surely χ(G(n,p)) ≤ χ=(G(n,p)) ≤ (2 + o(1))χ(G(n,p)). Concerning the equitable chromatic threshold, we prove that if n?(1??) < p < 0.99 for some 0 < ?, then almost surely χ(G(n,p)) ≤ χ=* (G(n,p)) ≤ (2 + o(1))χ(G(n,p)) holds, and if < p < 0.99 for some 0 < ?, then almost surely we have χ(G(n,p)) ≤ χ=*(G(n,p)) = O?(χ(G(n,p))). © 2009 Wiley Periodicals, Inc. Random Struct. Alg., 2009  相似文献   

17.
A k-decomposition (G1,…,Gk) of a graph G is a partition of its edge set to form k spanning subgraphs G1,…,Gk. The classical theorem of Nordhaus and Gaddum bounds χ(G1) + χ(G2) and χ(G1)χ(G2) over all 2-decompositions of Kn. For a graph parameter p, let p(k;G) denote the maximum of over all k-decompositions of the graph G. The clique number ω, chromatic number χ, list chromatic number χℓ, and Szekeres–Wilf number σ satisfy ω(2;Kn) = χ(2;Kn) = χℓ(2;Kn) = σ(2;Kn) = n + 1. We obtain lower and upper bounds for ω(k;Kn), χ(k;Kn), χℓ(k;Kn), and σ(k;Kn). The last three behave differently for large k. We also obtain lower and upper bounds for the maximum of χ(k;G) over all graphs embedded on a given surface. © 2005 Wiley Periodicals, Inc. J Graph Theory  相似文献   

18.
Applying the method that we presented in [19], in this article we prove: “Let G be an elementary abelian p-group. Let n = dn1. If d(≠ p) is a prime not dividing n1, and the order w of d mod p satisfies $ w > \frac{{d^2}}{3} $, then the Second Multiplier Theorem holds without the assumption n1 > λ, except that only one case is yet undecided: wd2, and $ \frac{{p - 1}}{{2w}} \ge 3 $, and t is a quadratic residue mod p, and t is not congruent to $ x^{\frac{{p - 1}}{{2w}}j} $ (mod p) (1 ≤ j < 2w), where t is an integer meeting the conditions of Second Multiplier Theorem, and x is a primitive root of p.”. © 1994 John Wiley & Sons, Inc.  相似文献   

19.
Gibbs sampling also known as Glauber dynamics is a popular technique for sampling high dimensional distributions defined on graphs. Of special interest is the behavior of Gibbs sampling on the Erd?s‐Rényi random graph G(n,d/n), where each edge is chosen independently with probability d/n and d is fixed. While the average degree in G(n,d/n) is d(1 ‐ o(1)), it contains many nodes of degree of order log n/log log n. The existence of nodes of almost logarithmic degrees implies that for many natural distributions defined on G(n,p) such as uniform coloring (with a constant number of colors) or the Ising model at any fixed inverse temperature β, the mixing time of Gibbs sampling is at least n1+Ω(1/log log n). Recall that the Ising model with inverse temperature β defined on a graph G = (V,E) is the distribution over {±}Vgiven by . High degree nodes pose a technical challenge in proving polynomial time mixing of the dynamics for many models including the Ising model and coloring. Almost all known sufficient conditions in terms of β or number of colors needed for rapid mixing of Gibbs samplers are stated in terms of the maximum degree of the underlying graph. In this work, we show that for every d < ∞ and the Ising model defined on G (n, d/n), there exists a βd > 0, such that for all β < βd with probability going to 1 as n →∞, the mixing time of the dynamics on G (n, d/n) is polynomial in n. Our results are the first polynomial time mixing results proven for a natural model on G (n, d/n) for d > 1 where the parameters of the model do not depend on n. They also provide a rare example where one can prove a polynomial time mixing of Gibbs sampler in a situation where the actual mixing time is slower than npolylog(n). Our proof exploits in novel ways the local tree like structure of Erd?s‐Rényi random graphs, comparison and block dynamics arguments and a recent result of Weitz. Our results extend to much more general families of graphs which are sparse in some average sense and to much more general interactions. In particular, they apply to any graph for which every vertex v of the graph has a neighborhood N(v) of radius O(log n) in which the induced sub‐graph is a tree union at most O(log n) edges and where for each simple path in N(v) the sum of the vertex degrees along the path is O(log n). Moreover, our result apply also in the case of arbitrary external fields and provide the first FPRAS for sampling the Ising distribution in this case. We finally present a non Markov Chain algorithm for sampling the distribution which is effective for a wider range of parameters. In particular, for G(n, d/n) it applies for all external fields and β < βd, where d tanh(βd) = 1 is the critical point for decay of correlation for the Ising model on G(n, d/n). © 2009 Wiley Periodicals, Inc. Random Struct. Alg., 2009  相似文献   

20.
We consider random walks on several classes of graphs and explore the likely structure of the vacant set, i.e. the set of unvisited vertices. Let Γ(t) be the subgraph induced by the vacant set of the walk at step t. We show that for random graphs Gn,p (above the connectivity threshold) and for random regular graphs Gr,r ≥ 3, the graph Γ(t) undergoes a phase transition in the sense of the well‐known ErdJW‐RSAT1100590x.png ‐Renyi phase transition. Thus for t ≤ (1 ‐ ε)t*, there is a unique giant component, plus components of size O(log n), and for t ≥ (1 + ε)t* all components are of size O(log n). For Gn,p and Gr we give the value of t*, and the size of Γ(t). For Gr, we also give the degree sequence of Γ(t), the size of the giant component (if any) of Γ(t) and the number of tree components of Γ(t) of a given size k = O(log n). We also show that for random digraphs Dn,p above the strong connectivity threshold, there is a similar directed phase transition. Thus for t ≤ (1 ‐ ε)t*, there is a unique strongly connected giant component, plus strongly connected components of size O(log n), and for t ≥ (1 + ε)t* all strongly connected components are of size O(log n). © 2012 Wiley Periodicals, Inc. Random Struct. Alg., 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号