首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Polymer‐grafted multiwalled carbon nanotube (MWCNT) hybrid composite which possess a hard backbone of MWCNT and a soft shell of brush‐like polystyrene (PSt) were synthesized. The reversible addition fragmentation chain transfer (RAFT) agents were successfully immobilized onto the surface of MWCNT first, and PSt chains were subsequently grafted from sidewall of MWCNT via RAFT polymerization. Chemical structure of resulting product and the quantities of grafted polymer were determined by Fourier transform infrared, thermal gravimetric analysis, nuclear magnetic resonance, and X‐ray photoelectron spectra. Transmission electron microscopy and field emission scanning electron microscopy images clearly indicate that the nanotubes were coated with a polymer layer. Furthermore, the functionalized MWCNT as additives was added to base lubricant and the tribological property of resultant MWCNT lubricant was investigated with four‐ball machines. The results indicate that the functionalization led to an improvement in the dispersion of MWCNT and as additives it amended the tribological property of base lubricant. The mechanism of the significant improvements on the tribological properties of the functionalized MWCNT as additives was discussed. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3014–3023, 2008  相似文献   

2.
Polystyrene‐grafted multiwalled carbon nanotubes (PS‐g‐MWNTs) with a hairy‐rod nanostructure were synthesized by the in situ free‐radical polymerization of styrene in the presence of multiwalled carbon nanotubes (MWNTs) terminated with vinyl groups. To quantitatively study the molecular weight and composition of polystyrene (PS) chains in PS‐g‐MWNTs, PS‐g‐MWNTs were fully defunctionalized by hydrolysis. The results showed that 1 of every 100 carbon atoms in MWNTs was functionalized at the tips and outer walls of the carbon nanotubes and grafted by PS with a weight‐average molecular weight of 9800 g/mol; therefore, a uniform thin layer (ca. 8–10 nm) of a PS shell was formed on the outer wall of MWNTs. PS‐g‐MWNTs were soluble in dimethylformamide and tetrahydrofuran. The thermal stability and glass‐transition temperature of PS in PS‐g‐MWNTs were obviously increased. Nanopins were formed on the glass substrates by the self‐assembly of PS‐g‐MWNTs, and the dewetting effect between the glass substrate and PS chains covered MWNTs during the evaporation of the solution. Both the length and diameter of the nanopins increased with the solution concentration. When PS‐g‐MWNTs were compression‐molded, MWNTs were dispersed uniformly in the PS matrix and formed good networks, such as circlelike and starlike structures, because of the entanglements of hairy PS chains on MWNTs. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3869–3881, 2006  相似文献   

3.
With anodic aluminum oxide (AAO) membranes as wetting templates, nanotubes of the cylinder‐forming polystyrene‐block‐poly(ethylene oxide) (PS‐b‐PEO) copolymer were generated. The PS‐b‐PEO solution was introduced into the cylindrical nanopores of an AAO membrane by capillary force and polymeric nanotubes formed after solvent evaporation. Because of the water solubility of the cylindrical PEO microdomains and the orientation of the cylindrical PEO microdomains with respect to the nanotube walls, the nanotubes were permeable to aqueous media. PS‐b‐PEO nanotubes were also prepared on the interior walls of amorphous carbon nanotubes (a‐CNTs). Because of the unique water permeability of the PEO microdomains, an avenue for functionalizing the interior of the a‐CNTs is enabled. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2912–2917, 2007  相似文献   

4.
The in situ grafting‐from approach via atom transfer radical polymerization was successfully applied to polystyrene, poly(styrene‐co‐acrylonitrile), and polyacrylonitrile grafted onto the convex surfaces of multiwalled carbon nanotubes (MWCNTs) with (2‐hydroxyethyl 2‐bromoisobutyrate) as an initiator. Thermogravimetric analysis showed that effective functionalization was achieved with the grafting approach. The grafted polymers on the MWCNT surface were characterized and confirmed with Fourier transform infrared spectroscopy and nuclear magnetic resonance. Raman and near‐infrared spectroscopy revealed that the grafting of polystyrene, poly(styrene‐co‐acrylonitrile), and polyacrylonitrile slightly affected the side‐wall structures. Field emission scanning electron microscopy showed that the carbon nanotube surface became rough because of the grafting of the polymers. Differential scanning calorimetry results indicated that the polymers grafted onto MWCNTs showed higher glass‐transition temperatures. The polymer‐grafted MWCNTs exhibited relatively good dispersibility in an organic solvent such as tetrahydrofuran. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 460–470, 2007  相似文献   

5.
PCL was blended with pristine multiwalled carbon nanotubes (MWCNT) and with a nanohybrid obtained from the same MWCNT but grafted with low molecular weight PCL, employing concentrations of 0.25 to 5 wt % of MWCNT and MWCNT‐g‐PCL. Excellent CNT dispersion was found in all samples leading to supernucleation of both nanofiller types. Nanohybrids with 1 wt % or less MWCNTs crystallize faster than nanocomposites (due to supernucleation), while the trend eventually reverses at higher nanotubes content (because of plasticization). Rheological results show that yield‐like behavior develops in both nanocomposites, even for the minimum content of carbon nanotubes. In addition, the MWCNT‐g‐PCL family, when compared with the neat polymer, exhibits lower values of viscosity and modulus in oscillatory shear, and higher compliance in creep. These rheological differences are discussed in terms of the plasticization effect caused by the existence of low molecular weight free and grafted PCL chains in the nanohybrids. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1310–1325  相似文献   

6.
A nanocomposite of multiwalled carbon nanotubes (CNTs) and poly(3‐hexylthiophene) (P3HT) was prepared by grafting P3HT uniformly on the surface of CNTs (P3HT/P3HT‐g‐CNT) via a “grafting from” method with the coating thicknesses controlled. It was found that as the coating thickness decreased, the crystallinity of the P3HT decreased, along with significant red‐shifting of Raman that signified alterations of chain conformation. Furthermore, although the photoluminescence (PL) peak remained unchanged when grafted on CNTs, modifications of P3HT energy gap was observed, indicating variations of vibronic levels arising from the grafting. Moreover, broadening of the PL emission took place that suggested decreasing of lifetimes of the photo‐generated species when grafted on CNTs. Bilayer photovoltaic devices with the (6,6)‐phenyl C61‐butyric acid methyl ester as the electron acceptor have shown that the nanocomposite P3HT/P3HT‐g‐CNT performed much more efficiently as the electron donor, in both photocurrent density and power conversion efficiency, compared with the neat P3HT. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

7.
A set of eight functional 4‐vinyl‐1,2,3‐triazolium monomers were synthesized using copper catalyzed azide‐alkyne 2 + 3 Hüisgen cycloaddition. These vinyl‐trizolium monomers readily polymerized via free radical polymerization. The physical properties of the vinyl‐triazolium based poly(ionic liquid)s (PILs) are strongly dependent on the pendant functional groups. These polymers were characterized for glass transition temperature (Tg), solubility, and the thermal decomposition. The vinyl‐triazolium based PILs offer an efficient route to highly functional PILs with the advantage of facile synthesis and the ability to incorporate many desirable functional moieties. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 417–423  相似文献   

8.
The maleic anhydride‐grafted multiwalled carbon nanotubes (MWCNTs‐g‐MA) have been introduced into polypropylene/ethylene‐co‐vinyl acetate (PP/EVA) blend. To clearly describe the effects of MWCNTs‐g‐MA on the morphology and mechanical properties of PP/EVA blends, the selective distribution of MWCNTs‐g‐MA in the blends is realized through different sample preparation methods, namely, MWCNTs‐g‐MA disperse in EVA phase and MWCNTs‐g‐MA disperse in PP matrix. The results show that the distribution of MWCNTs‐g‐MA has an important effect on the final morphology of EVA and the crystallization structure of PP matrix. Compared with PP/EVA binary blend, distribution of MWCNTs‐g‐MA in PP matrix induces the aggregation of EVA phase at high EVA content and the decrease of spherulite diameters of PP matrix simultaneously. However, when MWCNTs‐g‐MA are dispersed in the EVA phase, they induce more homogeneous distribution of EVA, and the crystallization behavior of PP is slightly affected by MWCNTs‐g‐MA. The corresponding mechanical properties including impact strength and tensile strength are tested and analyzed in the work. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1481–1491, 2009  相似文献   

9.
Structural and morphological behavior under stress–strain of polypropylene/multi‐walled carbon nanotubes (PP/MWCNTs) nanocomposites prepared through ultrasound‐assisted melt extrusion process was studied by means of optical microscopy, scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, small angle X‐ray scattering (SAXS), and wide angle X‐ray scattering (WAXS). A high ductile behavior was observed in the PP/MWCNT nanocomposites with low concentration of MWCNTs. This was related to an energy‐dissipating mechanism, achieved by the formation of an ordered PP‐CNTs interphase zone and crystal oriented structure in the undeformed samples. Different strain‐induced‐phase transformations were observed by ex situ SAXS/WAXS, characterizing the different stages of structure development during the deformation of PP and PP/MWCNTs nanocomposites. The high concentration of CNTs reduced the strain behavior of PP due to the agglomeration of nanoparticles. A structural pathway relating the deformation‐induced phase transitions and the dissipation energy mechanism in the PP/MWCNTs nanocomposites at low concentration of nanoparticles was proposed. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 475–491  相似文献   

10.
This study aims to investigate the curing behavior of a vinyl ester‐polyester resin suspensions containing 0.3 wt % of multiwalled carbon nanotubes with and without amine functional groups (MWCNTs and MWCNT‐NH2). For this purpose, various analytical techniques, including Differential Scanning Calorimetry (DSC), Fourier infrared spectroscopy (FTIR), Raman Spectroscopy, and Thermo Gravimetric Analyzer (TGA) were conducted. The resin suspensions with carbon nanotubes (CNTs) were prepared via 3‐roll milling technique. DSC measurements showed that resin suspensions containing CNTs exhibited higher heat of cure (Q), besides lower activation energy (Ea) when compared with neat resin. For the sake of simplicity of interpretation, FTIR investigations were performed on neat vinyl ester resin suspensions containing the same amount of CNTs as resin. As a result, the individual fractional conversion rates of styrene and vinyl ester were interestingly found to be altered dependent on MWCNTs and MWCNT‐NH2. The findings obtained from RS measurements of the cured samples are highly proportional to those obtained from FTIR measurements. TGA measurements revealed that CNT modified nanocomposites have higher activation energy of degradation (Ed) compared with the cured polymer. The findings obtained revealed that CNTs with and without amine functional groups alter overall thermal curing response of the surrounding matrix resin, which may probably impart distinctive characteristics to mechanical behavior of the corresponding nanocomposites achieved. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1511–1522, 2009  相似文献   

11.
Even though poly(ethylene oxide) (PEO) is immiscible with both poly(l ‐lactide) (PLLA) and poly(vinyl alcohol) (PVA), this article shows a working route to obtain miscible blends based on these polymers. The miscibility of these polymers has been analyzed using the solubility parameter approach to choose the proper ratios of the constituents of the blend. Then, PVA has been grafted with l ‐lactide (LLA) through ring‐opening polymerization to obtain a poly(vinyl alcohol)‐graft‐poly(l ‐lactide) (PVA‐g‐PLLA) brush copolymer with 82 mol % LLA according to 1H and 13C NMR spectroscopies. PEO has been blended with the PVA‐g‐PLLA brush copolymer and the miscibility of the system has been analyzed by DSC, FTIR, OM, and SEM. The particular architecture of the blends results in DSC traces lacking clearly distinguishable glass transitions that have been explained considering self‐concentration effects (Lodge and McLeish) and the associated concentration fluctuations. Fortunately, the FTIR analysis is conclusive regarding the miscibility and the specific interactions in these systems. Melting point depression analysis suggests that interactions of intermediate strength and PLOM and SEM reveal homogeneous morphologies for the PEO/PVA‐g‐PLLA blends. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1217–1226  相似文献   

12.
A new compatibilizer, poly(vinyl benzyloxy ethyl naphthalene)‐graft‐poly(methyl methacrylate), for poly(styrene‐co‐acrylonirile) (SAN)/multi‐walled carbon nanotubes (MWCNTs) composites was synthesized. It has been identified that naphthalene unit in backbone of compatibilizer interacts with MWCNTs via π? π interaction and that the PMMA graft of the compatibilizer is miscible with the SAN matrix. When a small amount of compatibilizer was added to SAN/MWCNT composites, MWCNTs were more homogeneously dispersed in SAN matrix than the case without compatibilizer, indicating that the compatibilizer improves the compatibility between SAN and MWCNTs. As a consequence, mechanical and electrical properties of the composites with compatibilizer were largely improved as compared with those of composites without compatibilizer. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 4184–4191, 2010  相似文献   

13.
Polyethylene (PE) chains grafted onto the sidewalls of SWCNTs (SWCNT‐g‐PE) were successfully synthesized via ethylene copolymerization with functionalized single‐walled carbon nanotubes (f‐SWCNTs) catalyzed by rac‐(en)(THInd)2ZrCl2/MAO. Here f‐SWCNTs, in which α‐alkene groups were chemically linked on the sidewalls of SWCNTs, were synthesized by Prato reaction. The composition and microstructure of SWCNT‐g‐PE were characterized by means of 1H NMR, Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, thermogravimetric analyses (TGA), field‐emission scanning electron microscope (FESEM), and transmission electron microscope (TEM). Nanosized cable‐like structure was formed in the SWCNT‐g‐PE, in which the PE formed a tubular shell and several SWCNTs bundles existed as core. The formation of the above morphology in the SWCNT‐g‐PE resulted from successfully grafting of PE chains onto the surface of SWCNTs via copolymerization. The grown PE chains grafted onto the sidewall of the f‐SWCNTs promoted the exfoliation of the mass nanotubes. Comparing with pure PE, the physical mixture of PE/f‐SWCNTs and in situ PE/SWCNTs mixture, thermal stability, and mechanical properties of SWCNT‐g‐PE were higher because of the chemical bonding between the f‐SWCNTs and PE chains. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5459–5469, 2007  相似文献   

14.
Fe3O4 nanoparticles were indirectly implanted onto functionalized multi‐walled carbon nanotubes (MWCNTs) leading to a nanocomposite with stronger magnetic performance. Poly(acrylic acid) (PAA) oligomer was first reacted with hydroxyl‐functionalized MWCNTs (MWCNTs‐OH) forming PAA‐grafted MWCNTs (PAA‐g‐MWCNTs). Subsequently, Fe3O4 nanoparticles were attached onto the surface of PAA‐g‐MWCNTs through an amidation reaction between the amino groups on the surface of Fe3O4 nanoparticles and the carboxyl groups of PAA. Fourier transform infrared spectra confirmed that the Fe3O4 nanoparticles and PAA‐g‐MWCNTs were indeed chemically linked. The morphology of the nanocomposites was characterized using transmission electron microscope (TEM). The surface and bulk structure of the nanocomposites were examined using X‐ray diffraction, X‐ray photoelectron spectrometer (XPS), and thermogravimetric analysis (TGA). The magnetic performance was characterized by vibrating sample magnetometer (VSM) and the magnetic saturation value of the magnetic nanocomposites was 47 emu g?1. The resulting products could be separated from deionized water under an external magnetic field within about 15 s. Finally, the magnetorheological (MR) performances of the synthesized magnetic nanocomposites and pure Fe3O4 nanoparticles were examined using a rotational rheometer. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

15.
We report an efficient way, sequential double click reactions, for the preparation of brush copolymers with AB block‐brush architectures containing polyoxanorbornene (poly (ONB)) backbone and poly(ε‐caprolactone) (PCL), poly(methyl methacrylate) (PMMA) or poly(tert‐butyl acrylate) (PtBA) side chains: poly(ONB‐g‐PMMA)‐b‐poly(ONB‐g‐PCL) and poly(ONB‐g‐PtBA)‐b‐poly(ONB‐g‐PCL). The living ROMP of ONB affords the synthesis of well‐defined poly(ONB‐anthracene)20b‐poly (ONB‐azide)5 block copolymer with anthryl and azide pendant groups. Subsequently, well‐defined linear alkyne end‐functionalized PCL (PCL‐alkyne), maleimide end‐functionalized PMMA (PMMA‐MI) and PtBA‐MI were introduced onto the block copolymer via sequential azide‐alkyne and Diels‐Alder click reactions, thus yielding block‐brush copolymers. The molecular weight of block‐brush copolymers was measured via triple detection GPC (TD‐GPC) introducing the experimentally calculated dn/dc values to the software. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

16.
The development of high performance lubricants has been driven by increasingly growing industrial demands and environmental concerns. Herein, we demonstrate oil‐soluble polymer brush‐grafted inorganic nanoparticles (hairy NPs) as highly effective lubricant additives for friction and wear reduction. A series of oil‐miscible poly(lauryl methacrylate) brush‐grafted silica and titania NPs were synthesized by surface‐initiated atom transfer radical polymerization. These hairy NPs showed exceptional stability in poly(alphaolefin) (PAO) base oil; no change in transparency was observed after being kept at ?20, 22, and 100 °C for ≥55 days. High‐contact stress ball‐on‐flat reciprocating sliding tribological tests at 100 °C showed that addition of 1 wt % of hairy NPs into PAO led to significant reductions in coefficient of friction (up to ≈40 %) and wear volume (up to ≈90 %). The excellent lubricating properties of hairy NPs were further elucidated by the characterization of the tribofilm formed on the flat. These hairy NPs represent a new type of lubricating oil additives with high efficiency in friction and wear reduction.  相似文献   

17.
A method for covalent functionalization of multiwalled carbon nanotubes (MWCNTs) was developed using the free radicals generated through Bergman cyclization of enediyne‐containing compounds. Four enediyne‐bearing Frechet type dendrimers were synthesized in good quantities and characterized. Then, the enediyne‐containing molecules were reacted with MWCNTs in N‐methyl‐2‐pyrrolidinone at 206 °C under nitrogen. The structure and morphology of the resulting products were characterized by thermogravimetric analysis, ultraviolet–visible spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, and transmission electron microscopy. The dendrimer‐functionalized MWCNTs showed good solubility/dispersibility in common organic solvents and polymer solutions. They were used in the formation of polymer composites through electrospinning with polycaprolactone. The results confirmed the surface functionalization of MWCNTs. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

18.
In this study, we used click chemistry to synthesize new linear polypeptide‐g‐pyrene polymers from a mono‐azido‐functionalized pyrene derivative (N3‐Py) and several poly(γ‐propargyl‐l ‐glutamate) (PPLG) oligomers. Incorporating the pyrene units as side chains enhanced the α‐helical conformations of these PPLG oligomers in the solid state, as determined using Fourier transform infrared (FTIR) spectroscopy; it also increased the temperature stability of the α‐helical secondary structures of the grafted PPLG oligomers, relative to those of the pure PPLG species, as revealed through temperature‐dependent FTIR spectroscopic analyses. In addition, the thermal properties of the PPLG‐g‐Py polypeptides (e.g., glass transition temperatures increased by ca. 100 °C) were superior to those of pure PPLG oligomers. Mixing the PPLG‐g‐Py oligomers with multiwalled carbon nanotubes (MWCNTs) in dimethylformamide led to the formation of highly dispersible PPLG‐g‐Py/MWCNT organic/inorganic hybrid complex materials. Fluorescence emission spectra revealed significant π–π stacking between the PPLG‐g‐Py oligomers and the MWCNTs in these complexes. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 321–329  相似文献   

19.
The synthesis, micelle formation, and bulk properties of semifluorinated amphiphilic poly(ethylene glycol)‐b‐poly(pentafluorostyrene)‐g‐cubic polyhedral oligomeric silsesquioxane (PEG‐b‐PPFS‐g‐POSS) hybrid copolymers is reported. The synthesis of amphiphilic PEG‐b‐PPFS block copolymers are achieved using atom transfer radical polymerization (ATRP) at 100 °C in trifluorotoluene using modified poly(ethylene glycol) as a macroinitiator. Subsequently, a proportion of the reactive para‐F functionality on the pentafluorostyrene units was replaced with aminopropylisobutyl POSS through aromatic nucleophilic substitution reactions. The products were fully characterized by 1H‐NMR and GPC. The products, PEG‐b‐PPFS and PEG‐b‐PPFS‐g‐POSS, were subsequently self‐assembled in aqueous solutions to form micellar structures. The critical micelle concentrations (cmc) were estimated using two different techniques: fluorescence spectroscopy and dynamic light scattering (DLS). The cmc was found to decrease concomitantly with the number of POSS particles grafted per copolymer chain. The hydrodynamic particle sizes (Rh) of the micelles, calculated from DLS data, increase as the number of POSS molecules grafted per copolymer chain increases. For example, Rh increased from ~60 nm for PEG‐b‐PPFS to ~80 nm for PEG‐b‐PPFS‐g‐POSS25 (25 is the average number of POSS particles grafted copolymer chain). Static light scattering (SLS) data confirm that the formation of larger micelles by higher POSS containing copolymers results from higher aggregation numbers (Nagg), caused by increased hydrophobicity. The Rg/Rh values, where Rg is the radius of gyration calculated from SLS data, are consistent with a spherical particle model having a core‐shell structure. Thermal characterization by differential scanning calorimetry (DSC) reveals that the grafted POSS acts as a plasticizer; the glass transition temperature (Tg) of the PPFS block in the copolymer decreases significantly with increasing POSS content. Finally, the rhombohedral crystal structure of POSS in PEG‐b‐PPFS‐g‐POSS was verified by wide angle X‐ray diffraction measurements. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 152–163, 2010  相似文献   

20.
In this study, we grafted water‐soluble biocompatible polymer, poly(N‐(2‐hydroxypropyl)methacrylamide) (PHPMA), onto the surface of multi‐walled carbon nanotubes (MWNTs). The reversible addition‐fragmentation chain transfer (RAFT) agents, dithioesters, were successfully immobilized onto the surface of MWNTs first, PHPMA chains were then subsequently grafted onto MWNTs via RAFT polymerization by using dithioesters immobilized on MWNTs as RAFT agent. FTIR, XPS, 1H NMR, Raman and TGA were used to characterize the resulting products and to determine the content of water‐soluble PHPMA chains in the product. The MWNTs grafted with PHPMA chains have good solubility in distilled water, PBS buffer, and methanol. TEM images of the samples provide direct evidence for the formation of a nanostructure that MWNTs coated with polymer layer. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2419–2427, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号