首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The chain‐transfer behavior of 7‐methylene‐2‐methyl‐1,5‐dithiacyclooctane was investigated in the presence of four chain‐transfer agents: thiophenol (PhSH), thiobenzoic acid (BzSH), diphenyl disulfide (PhSSPh), and dibenzoyl disulfide (BzSSBz). The chain‐transfer constants for these compounds at 60 °C were 0.38 (PhSH), 0.76 (BzSH), 0.24 (PhSSPh), and 0.05 (BzSSBz). The variations in the thiol chain‐transfer constants could be explained in terms of the stability of the resulting radicals. The chain transfer to the disulfides, however, appeared to be determined by the electronic character of the disulfide bond, and this suggests that the transfer took place via an addition–fragmentation mechanism. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4421–4425, 2002  相似文献   

2.
Phenacyl morpholine‐4‐dithiocarbamate is synthesized and characterized. Its capability to act as both a photoiniferter and reversible addition fragmentation chain transfer agent for the polymerization of styrene is examined. Polymerization carried out in bulk under ultra violet irradiation at above 300 nm at room temperature shows controlled free radical polymerization characteristics up to 50% conversions and produces well‐defined polymers with molecular weights close to those predicted from theory and relatively narrow poyldispersities (Mw/Mn ~ 1.30). End group determination and block copolymerization with methyl acrylate suggest that morpholino dithiocarbamate groups were attained at the end of the polymer. Photolysis and polymerization studies revealed that polymerization proceeds via both reversible termination and RAFT mechanisms. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3387–3395, 2008  相似文献   

3.
New thiopyrylium and pyrylium salt‐based photoinitiating systems for visible light induced free radical polymerization (FRP) or free radical promoted cationic polymerization (FRPCP) under visible lights are presented. The reaction mechanisms are investigated by laser flash photolysis and the structure/reactivity trend is discussed. The abilities of two different classes of coinitiators are investigated (thiols/disulfides and silanes). In FRP, upon irradiation with a xenon lamp (λ > 390 nm), the (thio)pyrylium salts in combination with thiols or disulfides lead to very high polymerization rates, compared to the reference eosin Y/methyldiethanolamine system. In FRPCP, silanes are found much better coinitiators: a high efficiency of the photopolymerization under air is noted. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7369–7375, 2008  相似文献   

4.
We describe the development of chain‐growth condensation polymerization for the synthesis of well‐defined π‐conjugated polymers via a new polymerization mechanism, catalyst‐transfer polymerization. We first studied the condensation polymerization of Grignard‐type hexylthiophene monomer with a Ni catalyst as a part of our research on chain‐growth condensation polymerization, and found that this polymerization also proceeded in a chain‐growth polymerization manner. However, the polymerization mechanism involving the Ni catalyst was different from that of previous chain‐growth condensation polymerizations based on substituent effects; the Ni catalyst catalyzed the coupling reaction of the monomer with the polymer, followed by the transfer of Ni(0) to the terminal C? Br bond of the elongated molecule. This catalyst‐transfer condensation polymerization is generally applicable for the synthesis of polythiophene with an etheric side chain and poly(p‐pheneylene), as well as for the synthesis of polyfluorene via the Pd‐catalyzed Suzuki–Miyaura coupling reaction. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 753–765, 2008  相似文献   

5.
We report here a novel direct method for the syntheses of primary aminoalkyl methacrylamides that requires mild reagents and no protecting group chemistry. The reversible addition‐fragmentation chain transfer polymerization (RAFT) of the aminoalkyl methacrylamide revealed to be highly efficient with 4‐cyanopentanoic acid dithiobenzoate (CTP) as chain transfer agent and 4,4′‐azobis(4‐cyanovaleric acid) (ACVA) as initiator. Cationic amino‐based homopolymers of reasonably narrow polydispersities (Mw/Mn < 1.30) and predetermined molecular weights were obtained without recourse to any protecting group chemistry. A range of block and random copolymers were also synthesized via the RAFT process. The homopolymers and copolymers were characterized by aqueous conventional and triple detection gel permeation chromatography systems. Furthermore, the primary amine‐based methacrylamide monomers and polymers revealed to be highly stable both with the primary amino group in the protonated and deprotonated form. We have also demonstrated that stabilized gold nanoparticles can be generated with the RAFT‐synthesized amine‐based polymers via a photochemical process. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4984–4996, 2008  相似文献   

6.
Silica–polystyrene core‐shell particles were successfully prepared by surface‐mediated reversible addition fragmentation chain transfer (RAFT) polymerization of styrene monomer from the surfaces of the silica‐supported RAFT agents. Initially, macro‐RAFT agents were synthesized by RAFT polymerization of γ‐methacryloxypropyltrimethoxysilane (MPS) in the presence of chain transfer agents (CTAs). Immobilization of CTAs onto the silica surfaces was then performed by reacting silica with macro‐RAFT agents via a silane coupling. Grafting of polymer onto silica forms core‐shell nanostructures and shows a sharp contrast between silica core and polymer shell in the phase composition. The thickness of grafted‐polymer shell and the diameter of core‐shell particles increase with the increasing ratio of monomer to silica. A control experiment was carried out by conventional free radical emulsion copolymerization of MPS‐grafted silica and styrene under comparable conditions. The resulting data provide further insight into the chemical composition of grafted‐polymers that are grown from the silica surface through RAFT process. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 467–484, 2009  相似文献   

7.
Low‐molecular‐weight poly(acrylic acid) (PAA) was synthesized by reversible addition fragmentation chain transfer polymerization with a trithiocarbonate as chain‐transfer agent (CTA). With a combination of NMR spectroscopy and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry, the PAA end‐groups of the polymer were analyzed before and after neutralization by sodium hydroxide. The polymer prior to neutralization is made up of the expected trithiocarbonate chain‐ends and of the H‐terminated chains issued from a reaction of transfer to solvent. After neutralization, the trithiocarbonates are transformed into thiols, disulfides, thiolactones, and additional H‐terminated chains. By quantifying the different end‐groups, it was possible to demonstrate that fragmentation is the rate limiting step in the transfer reaction. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5439–5462, 2004  相似文献   

8.
In the reversible addition‐fragmentation chain transfer (RAFT) mediated polymerization of methyl acrylate, a selective reaction is observed in the early stages of the polymerization. This initialization process was earlier observed in in situ 1H NMR spectroscopy experiments where extremely low target molar masses were chosen (around DP = 5). Here, for the first time, the presence of the initialization process is identified as the cause of an induction period under typical conditions of a RAFT‐mediated polymerization. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2500–2509, 2008  相似文献   

9.
Controlled radical polymerizations of N‐ethylmethylacrylamide (EMA) by atom transfer radical polymerization and reversible addition‐fragmentation chain transfer processes were investigated in detail for the first time, employing complementary characterization techniques including gel permeation chromatography, 1H NMR spectroscopy, and matrix‐assisted laser desorption ionization time‐of‐flight mass spectrometry. In both cases, relatively good control of the polymerization of EMA was achieved, as revealed by the linear evolution of molecular weights with monomer conversions and the low polydispersity of poly(N‐ethylmethylacrylamide) (PEMA). The thermal phase transitions of well‐defined PEMA homopolymers with polydispersities less than 1.2 and degrees of polymerization up to 320 in aqueous solution were determined by temperature‐dependent turbidity measurements. The obtained cloud points (CPs) vary in the range of 58–68 °C, exhibiting inverse molecular weight and polymer concentration dependences. Moreover, the presence of a carboxyl group instead of an alkyl one at the PEMA chain end can elevate its CP by ~3–4 °C. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 60–69, 2008  相似文献   

10.
Hydrogen is a very effective chain‐transfer agent in propylene polymerization reactions with Ti‐based Ziegler–Natta catalysts. However, measurements of the hydrogen concentration effect on the molecular weight of polypropylene prepared with a supported TiCl4/dibutyl phthalate/MgCl2 catalyst show a peculiar effect: hydrogen efficiency in the chain transfer significantly decreases with concentration, and at very high concentrations, hydrogen no longer affects the molecular weight of polypropylene. A detailed analysis of kinetic features of chain‐transfer reactions for different types of active centers in the catalyst suggests that chain transfer with hydrogen is not merely the hydrogenolysis reaction of the Ti? C bond in an active center but proceeds with the participation of a coordinated propylene molecule. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1899–1911, 2002  相似文献   

11.
Acidic bismuth salts, such as BiCl3, BiBr3, BiJ3, and Bi‐triflate catalyzed the ring‐opening polymerization of 2‐methoxazoline (MOZ) in bulk at 100 °C, whereas less acidic salts such as Bi2O3 or Bi(III)acetate did not. Bi‐triflate‐catalyzed polymerizations of 2‐ethyloxazoline (EtOZ) were performed with variation of the monomer–catalyst ratio (M/C). It was found that the molecular weights were independent of the M/C ratio. The formation of cationic chain ends and the absence of cycles was proven by reactions of virgin polymerization products with N,N‐dimethyl‐4‐aminopyridine or triphenylphosphine. The resulting polymers having modified cationic chain ends were characterized by 1H NMR spectroscopy and MALDI‐TOF mass spectrometry. The polymerization mechanism including chain‐transfer reactions is discussed. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4777–4784, 2008  相似文献   

12.
Ethyl S‐(thiobenzoyl)thioacetate, ethyl S‐thiobenzoyl‐2‐thiopropionate, and S‐(thiobenzoyl)thioglycolic acid were used as chain‐transfer agents for the reversible addition–fragmentation chain‐transfer (RAFT) polymerizations of styrene, methyl methacrylate, and butyl acrylate. Of these polymerizations, only those of styrene and butyl acrylate with any of the transfer agents showed molecular weight control corresponding to controlled/living polymerizations. The best molecular weight control was observed for the polymerizations of styrene and butyl acrylate with ethyl (S)‐thiobenzoyl‐2‐thiopropionate. Semiempirical PM3 calculations were performed for the investigation of the relative heats of reaction of the chain‐transfer equilibria between the aforementioned chain‐transfer agents and dimer radicals of the three monomers. The molecular weight control of the polymerizations correlated with the stability trend of the leaving‐group radical of the chain‐transfer agent. This relatively simple computational model offered some value in determining which transfer agents would show the best molecular weight control in RAFT polymerizations. © 2002 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 555–563, 2002; DOI 10.1002/pola.10143  相似文献   

13.
The effect of bulk viscosity on the cobaloxime‐mediated catalytic chain‐transfer polymerization of methacrylates at 60 °C was investigated by both the addition of high molecular weight poly(methyl methacrylate) to methyl methacrylate polymerization and the dilution of benzyl methacrylate polymerization by toluene. The results indicate that the bulk viscosity is not directly linked to the chain‐transfer activity. The previously measured relationship between chain‐transfer‐rate coefficient and monomer viscosity therefore probably reflects changes at the molecular level. However, the results in this article do not necessarily disprove a diffusion‐controlled reaction rate because cobaloxime diffusion is expected to scale with the monomer friction coefficient rather than bulk viscosity. Considering the published data, to date we are not able to distinguish between a diffusion‐controlled reaction rate or a mechanism directly affected by the methacrylate substituent. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 782–792, 2002; DOI 10.1002/pola.10152  相似文献   

14.
High molecular weight poly(vinyl)silazane were synthesized successfully by reversible addition fragmentation chain transfer (RAFT) polymerization in toluene at 120 °C, using dithiocarbamate derivatives and 2,2′‐azobis‐isobutyrylnitrile (AIBN) as the RAFT agents and thermal initiator, respectively. The polymerization of a vinylcyclicsilazane oligomer with 82.5% conversion was readily controlled to increase the molecular weight from 1000 to 12,000 g/mol with a narrow polydispersity <1.5. The resulting polymer showed a high ceramic yield of 70 wt % at 1000 °C. Moreover, the approach was extended successfully to the synthesis of poly(vinyl)silazane‐block‐polystyrene as an inorganic–organic diblock copolymer. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4594–4601, 2008  相似文献   

15.
Methyl methacrylate (MMA) was polymerized in bulk at 70 °C in the presence of an alkoxyamine initiator with low dissociation temperature (the so‐called BlocBuilder?) and increasing amounts of free Ntert‐butyl‐N‐(1‐diethylphosphono‐2,2‐dimethylpropyl) nitroxide (SG1). Low final monomer conversions were reached, indicating a loss in radical activity due to side reactions such as irreversible homoterminations between the propagating radicals and β‐hydrogen transfer (also called disproportionation) from a propagating radical to a free‐SG1 nitroxide. Proton NMR and MALDI‐TOF mass spectrometry were used to analyze the polymer chain‐ends and to clearly identify the main mechanism of irreversible termination. In particular, it was shown that all polymer chains were terminated by an alkene function in the presence of a large excess of free SG1, meaning that β‐hydrogen transfer from PMMA propagating radicals to the nitroxide SG1 was the major chain‐stopping event. On the other hand, for a low excess of free SG1, the two termination modes coexisted. Kinetic modeling was then performed using the PREDICI software, and the rate constant of β‐hydrogen transfer, kβHtr, was estimated to be 1.69 × 103 L mol?1 s?1 at 70 °C. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6333–6345, 2008  相似文献   

16.
Polysulfone‐g‐poly(N‐isopropylacrylamide) (PSf‐g‐PNIPAAm) graft copolymers were prepared from atom transfer radical polymerization of NIPAAm using chloromethylated PSf as a macro‐initiator. The chain lengths of PNIPAAm of the graft copolymers were controllable with polymerization reaction time. The chemical structures of the graft copolymers were characterized with FTIR, NMR, and elemental analysis and their amphiphilic characteristics were examined and discussed. The PSf‐g‐PNIPAAm graft copolymers and the nanoparticles made from the graft copolymers exhibited repeatable temperature‐responsive properties in heating–cooling cycles. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4756–4765, 2008  相似文献   

17.
A humidity blocker approach to overcoming the humidity interference with cationic photopolymerization is proposed and validated. Environmental humidity is one of the major interfering factors in cationic photopolymerization, and cationic photopolymerization is found to be inhibited by high humidity. When curing cycloaliphatic epoxide based cationic UV curable materials flexibilized by various reactive diluents under different humidity conditions, it was found that the more hydrophobic materials exhibited higher monomer conversion under higher humidity. To obtain cationic UV curable materials that are less influenced by humidity, a humidity blocker approach was proposed and monomer conversion of materials containing both hydroxy‐functional reactive diluents and epoxy‐siloxane were examined using real‐time FTIR. The hydroxy‐functional reactive diluents act as an internal hydroxyl source that enhances monomer conversion through chain transfer mechanism, and the hydrophobic epoxy‐siloxane acts as a humidity blocker, mitigating the inhibiting effects of humidity. Cationic UV curable materials with an optimized combination of these two components exhibited higher and more consistent monomer conversion under a range humidity conditions. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4344–4351, 2008  相似文献   

18.
Single‐electron transfer living radical polymerization (SET‐LRP) proceeds by an outer‐sphere single‐electron transfer mechanism that induces a heterolytic bond cleavage of the initiating and propagating R‐X (where X = Cl, Br, and I) species. Therefore, unlike the homolytic bond cleavage mechanism claimed for ATRP, SET‐LRP is expected to show a small dependence of the nature of the halide group on the apparent rate constant of activation. This means the R‐X with X = Cl, Br, and I must all be efficient initiators for SET‐LRP and no chain transfer must be observed in the case of initiators with X = Br and I. Here, we report the SET‐LRP of methyl acrylate initiated with the alkyl chlorides methyl‐2‐chloropropionate (MCP) and chloroform (CHCl3) and catalyzed by Cu(0)/Me6‐TREN/CuCl2 in DMSO at 25 °C. A combination of kinetic and structural analysis was used to elucidate the MCP and CHCl3 initiating behavior under SET‐LRP conditions, and to demonstrate the very small dependence of the SET‐LRP apparent rate constant of propagation on X while providing polymers with well defined architecture. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4917–4926, 2008  相似文献   

19.
End group activation of polymers prepared by reversible addition‐fragmentation chain transfer (RAFT) polymerization was accomplished by conversion of thiocarbonylthio end groups to thiols and subsequent reaction with excess of a bismaleimide. Poly(N‐isopropylacrylamide) (PNIPAM) was prepared by RAFT, and subsequent aminolysis led to sulfhydryl‐terminated polymers that reacted with an excess of 1,8‐bismaleimidodiethyleneglycol to yield maleimido‐terminated macromolecules. The maleimido end groups allowed near‐quantitative coupling with model low molecular weight thiols or dienes by Michael addition or Diels‐Alder reactions, respectively. Reaction of maleimide‐activated PNIPAM with another thiol‐terminated polymer proved an efficient means of preparing block copolymers by a modular coupling approach. Successful end group functionalization of the well‐defined polymers was confirmed by combination of UV–vis, FTIR, and NMR spectroscopy and gel permeation chromatography. The general strategy proved to be versatile for the preparation of functional telechelics and modular block copolymers from RAFT‐generated (co)polymers. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5093–5100, 2008  相似文献   

20.
The effect of catalyst partitioning over the organic and water phases in the catalytic chain transfer mediated miniemulsion polymerization was investigated and a mathematical model developed to describe the instantaneous degree of polymerization of the formed polymer. Experimental and predicted instantaneous degrees of polymerization prove to be in excellent agreement. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5839–5849, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号