首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A high‐pressure cell for in situ X‐ray reflectivity measurements of liquid/solid interfaces at hydrostatic pressures up to 500 MPa (5 kbar), a pressure regime that is particularly important for the study of protein unfolding, is presented. The original set‐up of this hydrostatic high‐pressure cell is discussed and its unique properties are demonstrated by the investigation of pressure‐induced adsorption of the protein lysozyme onto hydrophobic silicon wafers. The presented results emphasize the enormous potential of X‐ray reflectivity studies under high hydrostatic pressure conditions for the in situ investigation of adsorption phenomena in biological systems.  相似文献   

2.
A novel set‐up has been designed and used for synchrotron radiation X‐ray high‐resolution powder diffraction (SR‐HRPD) in transmission geometry (spinning capillary) for in situ solid–gas reactions and processes in an isobaric and isothermal environment. The pressure and temperature of the sample are controlled from 10?3 to 1000 mbar and from 80 to 1000 K, respectively. To test the capacities of this novel experimental set‐up, structure deformation in the porous material zeolitic imidazole framework (ZIF‐8) by gas adsorption at cryogenic temperature has been studied under isothermal and isobaric conditions. Direct structure deformations by the adsorption of Ar and N2 gases have been observed in situ, demonstrating that this set‐up is perfectly suitable for direct structural analysis under in operando conditions. The presented results prove the feasibility of this novel experimental station for the characterization in real time of solid–gas reactions and other solid–gas processes by SR‐HRPD.  相似文献   

3.
A cell for the investigation of interfaces under pressure is presented. Given the pressure and temperature specifications of the cell, P≤ 100 bar and 253 K ≤T≤ 323 K, respectively, high‐energy X‐rays are required to penetrate the thick Al2O3 windows. The CH4(gas)/H2O(liquid) interface has been chosen to test the performance of the new device. The measured dynamic range of the high‐energy X‐ray reflectivity data exceeds 10?8, thereby demonstrating the validity of the entire experimental set‐up.  相似文献   

4.
X‐ray reflectivity studies of the structure of liquid–vapour and liquid–liquid interfaces at modern sources, such as free‐electron lasers, are currently impeded by the lack of dedicated liquid surface diffractometers. It is shown that this obstacle can be overcome by an alternative experimental approach that uses the natural curvature of a liquid drop for variation of the angle of incidence. Two modes of operation are shown: (i) sequential reflectivity measurements by a nanometre beam and (ii) parallel acquisition of large ranges of a reflectivity curve by micrometre beams. The feasibility of the two methods is demonstrated by studies of the Hg/vapour, H2O/vapour and Hg/0.1 M NaF interface. The obtained reflectivity curves match the data obtained by conventional techniques up to 5αc in micro‐beam mode and up to 35αc in nano‐beam mode, allowing observation of the Hg layering peak.  相似文献   

5.
Synchrotron‐based scanning transmission soft X‐ray microscopy (STXM) with nanometer resolution was used to investigate the existence and behavior of interfacial gas nanobubbles confined between two silicon nitride windows. The observed nanobubbles of SF6 and Ne with diameters smaller than 2.5 µm were quite stable. However, larger bubbles became unstable and grew during the soft X‐ray imaging, indicating that stable nanobubbles may have a length scale, which is consistent with a previous report using atomic force microscopy [Zhang et al. (2010), Soft Matter, 6 , 4515–4519]. Here, it is shown that STXM is a promising technique for studying the aggregation of gases near the solid/water interfaces at the nanometer scale.  相似文献   

6.
A wide range of high‐performance X‐ray surface/interface characterization techniques are implemented nowadays at every synchrotron radiation source. However, these techniques are not always `non‐destructive' because possible beam‐induced electronic or structural changes may occur during X‐ray irradiation. As these changes may be at least partially reversible, an in situ technique is required for assessing their extent. Here the integration of a scanning Kelvin probe (SKP) set‐up with a synchrotron hard X‐ray interface scattering instrument for the in situ detection of work function variations resulting from X‐ray irradiation is reported. First results, obtained on bare sapphire and sapphire covered by a room‐temperature ionic liquid, are presented. In both cases a potential change was detected, which decayed and vanished after switching off the X‐ray beam. This demonstrates the usefulness of a SKP for in situ monitoring of surface/interface potentials during X‐ray materials characterization experiments.  相似文献   

7.
8.
The study of liquid–liquid interfaces with X‐ray scattering methods requires special instrumental considerations. A dedicated liquid surface diffractometer employing a tilting double‐crystal monochromator in Bragg geometry has been designed. This diffractometer allows reflectivity and grazing‐incidence scattering measurements of an immobile mechanically completely decoupled liquid sample, providing high mechanical stability. The available energy range is from 6.4 to 29.4 keV, covering many important absorption edges. The instrument provides access in momentum space out to 2.54 Å?1 in the surface normal and out to 14.8 Å?1 in the in‐plane direction at 29.4 keV. Owing to its modular design the diffractometer is also suitable for heavy apparatus such as vacuum chambers. The instrument performance is described and examples of X‐ray reflectivity studies performed under in situ electrochemical control and on biochemical model systems are given.  相似文献   

9.
Liquid jets are of interest, both for their industrial relevance and for scientific applications (more important, in particular for X‐rays, after the advent of free‐electron lasers that require liquid jets as sample carrier). Instability mechanisms have been described theoretically and by numerical simulation, but confirmed by few experimental techniques. In fact, these are mainly based on cameras, which is limited by the imaging resolution, and on light scattering, which is hindered by absorption, reflection, Mie scattering and multiple scattering due to complex air/liquid interfaces during jet break‐up. In this communication it is demonstrated that synchrotron small‐angle X‐ray scattering (SAXS) can give quantitative information on liquid jet dynamics at the nanoscale, by detecting time‐dependent morphology and break‐up length. Jets ejected from circular tubes of different diameters (100–450 µm) and speeds (0.7–21 m s?1) have been explored to cover the Rayleigh and first wind‐induced regimes. Various solvents (water, ethanol, 2‐propanol) and their mixtures have been examined. The determination of the liquid jet behaviour becomes essential, as it provides background data in subsequent studies of chemical and biological reactions using SAXS or X‐ray diffraction based on synchrotron radiation and free‐electron lasers.  相似文献   

10.
Combined small‐ and wide‐angle X‐ray scattering (SAXS/WAXS) is a powerful technique for the study of materials at length scales ranging from atomic/molecular sizes (a few angstroms) to the mesoscopic regime (~1 nm to ~1 µm). A set‐up to apply this technique at high X‐ray energies (E > 50 keV) has been developed. Hard X‐rays permit the execution of at least three classes of investigations that are significantly more difficult to perform at standard X‐ray energies (8–20 keV): (i) in situ strain analysis revealing anisotropic strain behaviour both at the atomic (WAXS) as well as at the mesoscopic (SAXS) length scales, (ii) acquisition of WAXS patterns to very large q (>20 Å?1) thus allowing atomic pair distribution function analysis (SAXS/PDF) of micro‐ and nano‐structured materials, and (iii) utilization of complex sample environments involving thick X‐ray windows and/or samples that can be penetrated only by high‐energy X‐rays. Using the reported set‐up a time resolution of approximately two seconds was demonstrated. It is planned to further improve this time resolution in the near future.  相似文献   

11.
An integration method is demonstrated for directly determining the average interface statistics of periodic multilayers from the X‐ray scattering diagram. By measuring the X‐ray scattering diagram in the out‐of‐plane geometry and integrating the scattered intensity along the vertical momentum transfer qz in an interval, which is decided by the thickness ratio Γ (ratio of sublayer's thickness to periodic thickness), the cross‐correlations between different interfaces are canceled and only the autocorrelations are reserved. Then the multilayer can be treated as a `single interface' and the average power spectral density can be obtained without assuming any vertical correlation model. This method has been employed to study the interface morphology of sputter‐deposited W/Si multilayers grown at an Ar pressure of 1–7 mTorr. The results show an increase in vertical correlation length and a decrease in lateral correlation length with increased Ar pressure. The static roughness exponent α = 0 and dynamic growth exponent z = 2 indicate the Edwards–Wilkinson growth model at an Ar pressure of 1–5 mTorr. At an Ar pressure of 7 mTorr, α = 0.35 and z = 1.65 indicate the Kardar–Parisi–Zhang growth model.  相似文献   

12.
The characterization of Mg–Co–Zr tri‐layer stacks using X‐ray fluorescence induced by X‐ray standing waves, in both the grazing‐incidence (GI) and the grazing‐exit (GE) modes, is presented. The introduction of a slit in the direction of the detector improves the angular resolution by a factor of two and significantly improves the sensitivity of the technique for the chemical characterization of the buried interfaces. By observing the intensity variations of the Mg Kα and Co Lα characteristic emissions as a function of the incident (GI mode) or detection (GE mode) angle, it is shown that the interfaces of the Si/[Mg/Co/Zr]×30 multilayer are abrupt, whereas in the Si/[Mg/Zr/Co]×30 multilayer a strong intermixing occurs at the Co‐on‐Zr interfaces. An explanation of this opposite behavior of the Co‐on‐Zr and Zr‐on‐Co interfaces is given by the calculation of the mixing enthalpies of the Co–Mg, Co–Zr and Mg–Zr systems, which shows that the Co–Zr system presents a negative value and the other two systems present positive values. Together with the difference of the surface free energies of Zr and Co, this leads to the Mg/Zr/Co system being considered as a Mg/CoxZry bi‐layer stack, with x/y estimated around 3.5.  相似文献   

13.
A high‐temperature furnace with an induction heater coil has been designed and constructed for in situ X‐ray spectroscopic experiments under controlled atmospheric conditions and temperatures up to 3275 K. The multi‐purpose chamber design allows working in backscattering and normal fluorescence mode for synchrotron X‐ray absorption and emission spectroscopy. The use of the furnace is demonstrated in a study of the in situ formation of Cr oxide between 1823 K and 2023 K at logPO2 values between ?10.0 and ?11.3 using X‐ray absorption near‐edge spectroscopy. The set‐up is of particular interest for studying liquid metals, alloys and other electrically conductive materials under extreme conditions.  相似文献   

14.
The multipurpose portable ultra‐high‐vacuum‐compatible chamber described in detail in this article has been designed to carry out grazing‐incidence X‐ray scattering techniques on the BM25‐SpLine CRG beamline at the ESRF. The chamber has a cylindrical form, built on a 360° beryllium double‐ended conflate flange (CF) nipple. The main advantage of this chamber design is the wide sample temperature range, which may be varied between 60 and 1000 K. Other advantages of using a cylinder are that the wall thickness is reduced to a minimum value, keeping maximal solid angle accessibility and keeping wall absorption of the incoming X‐ray beam constant. The heat exchanger is a customized compact liquid‐nitrogen (LN2) continuous‐flow cryostat. LN2 is transferred from a storage Dewar through a vacuum‐isolated transfer line to the heat exchanger. The sample is mounted on a molybdenum support on the heat exchanger, which is equipped with a BORALECTRIC heater element. The chamber versatility extends to the operating pressure, ranging from ultra‐high vacuum (<10?10 mbar) to high pressure (up to 3 × 103 mbar). In addition, it is equipped with several CF ports to allocate auxiliary components such as capillary gas‐inlet, viewports, leak valves, ion gun, turbo pump, etc., responding to a large variety of experiment requirements. A movable slits set‐up has been foreseen to reduce the background and diffuse scattering produced at the beryllium wall. Diffraction data can be recorded either with a point detector or with a bi‐dimensional CCD detector, or both detectors simultaneously. The system has been designed to carry out a multitude of experiments in a large variety of environments. The system feasibility is demonstrated by showing temperature‐dependence grazing‐incidence X‐ray diffraction and conductivity measurements on a 20 nm‐thick La0.7Ca0.3MnO3 thin film grown on a SrTiO3(001) substrate.  相似文献   

15.
The layout and the characteristics of the hard X‐ray beamline BL10 at the superconducting asymmetric wiggler at the 1.5 GeV Dortmund Electron Accelerator DELTA are described. This beamline is equipped with a Si(111) channel‐cut monochromator and is dedicated to X‐ray studies in the spectral range from ~4 keV to ~16 keV photon energy. There are two different endstations available. While X‐ray absorption studies in different detection modes (transmission, fluorescence, reflectivity) can be performed on a designated table, a six‐axis kappa diffractometer is installed for X‐ray scattering and reflectivity experiments. Different detector set‐ups are integrated into the beamline control software, i.e. gas‐filled ionization chambers, different photodiodes, as well as a Pilatus 2D‐detector are permanently available. The performance of the beamline is illustrated by high‐quality X‐ray absorption spectra from several reference compounds. First applications include temperature‐dependent EXAFS experiments from liquid‐nitrogen temperature in a bath cryostat up to ~660 K by using a dedicated furnace. Besides transmission measurements, fluorescence detection for dilute sample systems as well as surface‐sensitive reflection‐mode experiments are presented.  相似文献   

16.
A microfluidic double channel device is employed to study reactions at flowing liquid–liquid junctions in contact with a boron‐doped diamond (BDD) working electrode. The rectangular flow cell is calibrated for both single‐phase liquid flow and biphasic liquid–liquid flow for the case of (i) the immiscible N‐octyl‐2‐pyrrolidone (NOP)–aqueous electrolyte system and (ii) the immiscible acetonitrile–aqueous electrolyte system. The influence of flow speed and liquid viscosity on the position of the phase boundary and mass transport‐controlled limiting currents are examined. In contrast to the NOP–aqueous electrolyte case, the acetonitrile–aqueous electrolyte system is shown to behave close to ideal without ‘undercutting’ of the organic phase under the aqueous phase. The limiting current for three‐phase boundary reactions is only weakly dependent on flow rate but directly proportional to the concentration and the diffusion coefficient in the organic phase. Acetonitrile as a commonly employed synthetic solvent is shown here to allow effective three‐phase boundary processes to occur due to a lower viscosity enabling faster diffusion. N‐butylferrocene is shown to be oxidised at the acetonitrile–aqueous electrolyte interface about 12 times faster when compared with the same process at the NOP–aqueous electrolyte interface. Conditions suitable for clean two‐phase electrosynthetic processes without intentionally added supporting electrolyte in the organic phase are proposed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
Coupling electron‐hole (e‐ h+) and electron‐ion plasmas across a narrow potential barrier with a strong electric field provides an interface between the two plasma genres and a pathway to electronic and photonic device functionality. The magnitude of the electric field present in the sheath of a low temperature, nonequilibrium microplasma is sufficient to influence the band structure of a semiconductor region in immediate proximity to the solid‐gas phase interface. Optoelectronic devices demonstrated by leveraging this interaction are described here. A hybrid microplasma/semiconductor photodetector, having a Si cathode in the form of an inverted square pyramid encompassing a neon microplasma, exhibits a photosensitivity in the ~420–1100 nm region as high as 3.5 A/W. Direct tunneling of electrons into the collector and the Auger neutralization of ions arriving at the Si surface appear to be facilitated by an n ‐type inversion layer at the cathode surface resulting from bandbending by the microplasma sheath electric field. Recently, an npn plasma bipolar junction transistor (PBJT), in which a low temperature plasma serves as the collector in an otherwise Si device, has also been demonstrated. Having a measured small signal current gain hfe as large as 10, this phototransistor is capable of modulat‐ing and extinguishing the collector plasma with emitter‐base bias voltages <1 V. Electrons injected into the base when the emitter‐base junction is forward‐biased serve primarily to replace conduction band electrons lost to the collector plasma by secondary emission and ion‐enhanced field emission in which ions arriving at the base‐collector junction deform the electrostatic potential near the base surface, narrowing the potential barrier and thereby facilitating the tunneling of electrons into the collector. Of greatest significance, therefore, are the implications of active, plasma/solid state interfaces as a new frontier for plasma science. Specifically, the PBJT provides the first opportunity to control the electronic properties of a material at the boundary of, and interacting with, a plasma. By specifying the relative number densities of free (conduction band) and bound (valence band) electrons at the base‐collector interface, the PBJT's emitter‐base junction is able to dictate the rates of secondary electron emission (including Auger neutralization) at the semiconductor‐plasma interface, thereby offering the ability to vary at will the effective secondary electron emission coefficient for the base surface (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
A new set‐up is presented to measure element‐selective magnetization dynamics using the ALICE chamber [Grabis et al. (2003), Rev. Sci. Instrum. 74 , 4048–4051] at the BESSY II synchrotron at the Helmholtz‐Zentrum Berlin. A magnetic‐field pulse serves as excitation, and the magnetization precession is probed by element‐selective X‐ray resonant magnetic scattering. With the use of single‐bunch‐generated X‐rays a temporal resolution well below 100 ps is reached. The ALICE diffractometer environment enables investigations of thin films, described here, multilayers and laterally structured samples in reflection or diffuse scattering geometry. The combination of the time‐resolved set‐up with a cryostat in the ALICE chamber will allow temperature‐dependent studies of precessional magnetization dynamics and of damping constants to be conducted over a large temperature range and for a large variety of systems in reflection geometry.  相似文献   

19.
As an increasingly important structural‐characterization technique, grazing‐incidence X‐ray scattering (GIXS) has found wide applications for in situ and real‐time studies of nanostructures and nanocomposites at surfaces and interfaces. A dedicated beamline has been designed, constructed and optimized at beamline 8‐ID‐E at the Advanced Photon Source for high‐resolution and coherent GIXS experiments. The effectiveness and applicability of the beamline and the scattering techniques have been demonstrated by a host of experiments including reflectivity, grazing‐incidence static and kinetic scattering, and coherent surface X‐ray photon correlation spectroscopy. The applicable systems that can be studied at 8‐ID‐E include liquid surfaces and nanostructured thin films.  相似文献   

20.
Imaging experiments at the European X‐ray Free Electron Laser (XFEL) require silicon pixel sensors with extraordinary performance specifications: doses of up to 1 GGy of 12 keV photons, up to 105 12 keV photons per 200 µm × 200 µm pixel arriving within less than 100 fs, and a time interval between XFEL pulses of 220 ns. To address these challenges, in particular the question of radiation damage, the properties of the SiO2 layer and of the Si–SiO2 interface, using MOS (metal‐oxide‐semiconductor) capacitors manufactured on high‐resistivity n‐type silicon irradiated to X‐ray doses between 10 kGy and 1 GGy, have been studied. Measurements of capacitance/conductance–voltage (C/G–V) at different frequencies, as well as of thermal dielectric relaxation current (TDRC), have been performed. The data can be described by a dose‐dependent oxide charge density and three dominant radiation‐induced interface states with Gaussian‐like energy distributions in the silicon band gap. It is found that the densities of the fixed oxide charges and of the three interface states increase up to dose values of approximately 10 MGy and then saturate or even decrease. The shapes and the frequency dependences of the C/G–V measurements can be quantitatively described by a simple model using the parameters extracted from the TDRC measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号