首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several types of deformation bands form during uniaxial extension of Al single crystals for which the tensile axis is initially parallel to [110]. The objectives of the present work are to analyse crystal orientation evolution in the deformation bands and adjoining regions, and to integrate the experimental observations with a crystal mechanics model. The most prominent deformation bands contain secondary slip traces and exhibit crystal rotations consistent with unpredicted slip on a secondary slip system. These special bands of secondary slip (SBSS) become more closely aligned with the tensile axis as extension increases. The evolution of SBSS inclination with extension indicates that SBSS form initially as kink bands and that SBSS boundaries are immobile. SBSS grow during straining by expansion of the volume of material in which secondary slip operates. Deformed matrix (DM) bands are zones between SBSS; primary slip predominates in DM bands. Small intra-DM bands result from spatial variation of the shear amplitudes for the two primary slip systems. The evolution of intra-DM band inclination with extension indicates that intra-DM bands form initially as kink bands and that the band boundaries are mobile, at least to some extent.  相似文献   

2.
J. A. Wert  X. Huang 《哲学杂志》2013,93(8):969-983

When fcc single crystals with high-symmetry crystal orientations are deformed to moderate strains by rolling, tension or channel die compression, long dislocation boundaries inclined to the extension axis form. Similarly, long dislocation boundaries are often found in grains embedded in polycrystals deformed in the same manner. These extended planar boundaries (EPBs) are characteristically -30-40° from the extension direction and contain the transverse specimen axis. The objective of the present article is to demonstrate that EPBs formed during plane strain deformation are parallel to equivalent slip planes, a pair of hypothetical slip systems used for analyses of the strain and crystal rotation components in place of the larger number of physical slip systems. The coincidence of EPBs and equivalent slip plane inclinations is shown to account for persistent observations of EPBs in the angle range -30-40° from the rolling direction, in rolled single crystals of various initial orientations. The tendency of EPBs towards tilt or twist boundary character can also be rationalized on the basis of the equivalent slip system concept and consideration of the dislocation types available to be incorporated into EPBs.  相似文献   

3.
A dislocation dynamical model of the reaction-diffusion type is used to describe the spatio-temporal dynamics of Lüders band propagation in polycrystals. The diffusive nature of dislocation glide is traced back to the random crystallographic orientation of the active slip systems. The role of pile-ups in dislocation multiplication is accounted for by a dynamical generalization of the Hall-Petch law. It is argued that Lüders bands in polycrystals are related to a bistable dynamics of mobile dislocations. Further results obtained cover the dependences on material parameters and deformation conditions of (1) the occurrence, (2) the strain, propagation velocity and width of Lüders bands, and (3) the upper and lower yield stresses. These results are in good agreement with experimental findings.  相似文献   

4.
ABSTRACT

In the present study, the fracture behaviour of AA6016 alloy was investigated during bending deformation. Wrap-bend tests were conducted and the material was subjected to different bend angles to study crack propagation. The average grain size of the as-received material is approximately 45?μm. The aspect ratio of the grains was changed from 0.53 to 0.40 during bending. The presence of deformation bands was observed during bending in both tensile and compressive regions of the sample. No orientation correlation was observed between the deformation band and its corresponding parent grain. The Schmid factor inside the deformation bands was higher than that of the parent grain, which indicates that the deformation bands accommodate strain during bending. The crystallographic texture evolved significantly during bending deformation. The strength of cube texture component decreases with increasing bend angle and new texture components formed during bending. These new texture components favour either single slip or duplex slip. A mixture of intra-granular and inter-granular fracture occurs during bending. It is observed that inter-granular crack propagation is predominantly favoured along high-angle boundaries, and grain boundary de-cohesion occurs in regions where the misorientation angle is greater than 40°. The formation of deformation-induced coincidence lattice site (CSL) boundaries is also observed during bending and it is shown that the volume fraction of CSL boundaries of Σ3 type increases with increasing bend angle. The current study shows that the formation of deformation-induced CSL boundaries of Σ3 type in AA6016 alloy can improve its inherent resistance to crack propagation during bending.  相似文献   

5.
ABSTRACT

The ability to experimentally synthesise ceramic materials to incorporate nanotwinned microstructures can drastically affect the underlying deformation mechanisms and mechanics through the complex interaction between stress state, crystallographic orientation, and twin orientation. In this study, molecular dynamics simulations are used to examine the transition in deformation mechanisms and mechanical responses of nanotwinned zinc-blende SiC ceramics subjected to different stress states (uniaxial compressive, uniaxial tensile, and shear deformation) by employing various twin spacings and loading/crystallographic orientations in nanotwinned structures, as compared to their single crystal counterparts. The simulation results show that different combinations of stress states and crystal/twin orientation, and twin spacing trigger different deformation mechanisms: (i) shear localised deformation and shear-induced fracture, preceded by point defect formation and dislocation slip, in the vicinity of the twin lamellae, shear band formation, and dislocation (emission) avalanche; (ii) cleavage and fracture without dislocation plasticity, weakening the nanotwinned ceramics compared to their twin-free counterpart; (iii) severe localised deformation, generating a unique zigzag microstructure between twins without any structural phase transformations or amorphisation, and (iv) atomic disordering localised in the vicinity of coherent twin boundaries, triggering dislocation nucleation and low shearability compared to twin-free systems.  相似文献   

6.
The role of twinning processes giving rise to the fragmentation and rotation of a structure caused by single-crystal deformation, as well as the joining of grains during the manufacturing of optical ceramics, is investigated. Models describing the twins in the single crystals under study, which are formed by rotating a cubic lattice about the threefold symmetry axis through an angle of 60°, are constructed. The twin formation energies are estimated.  相似文献   

7.
Q. Z. Chen  B. J. Duggan 《哲学杂志》2013,93(23):3633-3646
The mechanisms of shear band formation in IF steel after cold rolling to ~50% reductions have been investigated using transmission electron microscopy. The observations revealed that shear bands were always parallel to a second set of microbands, where these exist, and contained within individual crystals, indicating that shear banding is controlled by orientation. Crystallographic analysis revealed that shear banding involves two mechanisms, dislocation glide and rigid-body rotation. In the first step, dislocation glide causes a rotation about the 〈211〉 axis to produce the so called ‘S’ band, which gives the shear band its crystallographic character. In the second step, when the most heavily stressed slip plane parallel to the shear band is of the form {110}〈111〉, rigid-body rotation continues about the 〈211〉 axis in the sheared zone and, then, a rotation about the transverse direction (TD) is promoted by the geometry of the sample. Using rigid-body matrix theory, the calculated orientations of shear bands are shown to be in agreement with experimental observations. The process outlined is capable of explaining how slip processes in grains that contain microbands, using either {110} or {112} slip planes, can produce crystallographic shear bands.  相似文献   

8.
The formation of deformation bands with the typically alternating sign of the misorientation across their boundaries is interpreted as spontaneous deformation instability caused by anisotropy of hardening. To analyse the nature of the fragmentation, a model of a rigid-plastic crystal domain deformed by symmetric double slip in a plane-strain compression is considered. The basic reason for the deformation band existence is that a local decrease in number of active slip systems in the bands is energetically less costly than a homogeneous deformation by multislip. However, such model of the bands predicts their extreme orientation and their width tends to zero. This trend is modified by hardening caused by a build up of the band boundaries and by a dislocation bowing (Orowan) stress. The model provides an explanation of observed orientation of the bands, their width and the significant change in the structural morphology seen as the band reorientation occurs at large strains. The predictions are in a favourable agreement with the available observations.  相似文献   

9.
We have studied three-dimensional (3D) structures and growth processes of 14H-type long-period stacking order (LPSO) formed in Mg97Zn1Gd2 cast alloys by single tilt-axis electron tomography (ET) using high-angle annular dark-field scanning transmission electron microscopy. Evolution of the solute-enriched stacking faults (SFs) and the 14H LPSO by ageing were visualised in 3D with a high spatial resolution in multi-scale fields of views from a few nanometres to ~10 μm. Lateral growth of the solute-enriched SFs and the LPSO in the (0?0?0?1)Mg plane is notable compared to the out-of-plane growth in the [0?0?0?1]Mg direction. The 14H LPSO grows at the cost of decomposition of the (Mg, Zn)3Gd-type precipitates, and accompany a change of in-plane edge angles from 30 to 60°. We have updated the Time–Temperature–Transformation diagram for precipitation in Mg97Zn1Gd2 alloys: starting temperatures of both solute-enriched SFs and LPSO formation shifted to a shorter time side than those in the previous diagram.  相似文献   

10.
Orientation of compatible domain walls and magnitude of disorientation angle of a ferroelastic domain twin resulting from phase transition hexagonal to monoclinic phases is expressed in crystallographic unit-cell parameters of the low-symmetry phase. These two characteristics, the orientation of the compatible wall and the disorientation angle, depend on the spontaneous strain in two single-domain states R 1, R 2 from which the domain twin is formed. They have been determined for all classes of the compatible domain walls as a function of the strain-tensor components [A. Authier, International Tables for Crystallography, in Physical Properties of Crystals, Chapter 3.4, Vol. D, A. Authier, ed., Kluwer Academic Publishers, Dordrecht, 2003, pp. 449–505]. If relative changes of crystal lattice are small, then the second rank symmetrical strain tensor u can be calculated from the crystallographic unit-cell parameters before and after the deformation [J.L. Schlenker, G.V. Gibbs, and M.B. Boisen Jr, Strain-tensor components expressed in terms of lattice parameters, Acta. Cryst. A 34 (1978), pp. 52–54; L. Jian and C.M. Wayman, Domain boundary and domain switching in a ceramic rare-earth Orthoniobate LaNbO4 , J. Am. Ceram. Soc. 79 (1996), pp. 1642–1648]. An alternative approach expresses the disorientation angle and orientation of the compatible domain wall [J. P?ívratská, Disorientation angle expressed in terms of lattice parameters, Ferroelectrics 291 (2003), pp. 197–204] in terms of the crystallographic unit-cell parameters of the low-symmetry phase.  相似文献   

11.
A neutron quasi-elastic investigation on a well-orientated chain axis crystal of n-triacosane has been undertaken using the twin rotor spectrometer on the Pluto reactor at Harwell with an incident neutron wavelength of 2·64 Å. Data taken in the plastic phase show considerable quasi-elastic broadening, both perpendicular and parallel to the chain axis. Good agreement with experiment is obtained using a continuous rotation diffusion model with translational diffusion. On cooling below the plastic phase transition, slight quasi-elastic broadening isalso seen in both configurations.  相似文献   

12.
LaAlO3 crystals have been investigated with differential scanning calorimetry (DSC), high-precision X-ray powder diffraction (XRD) and scanning force microscopy (SFM). The DSC measurements show the second-order phase transition of LaAlO3 at 544°C, where LaAlO3 changes its symmetry from the cubic Pm3m high-temperature phase to the pseudocubic rhombohedral low-temperature phase. This paraelastic to improper ferroelastic phase transition causes twinning in the {100} and {110} planes of the pseudocubic lattice. The twin angles between the surface {100}pseudocubic planes of twin domains were measured by SFM on the surface of a macroscopic (100)cubic cut crystal plate. The misorientation angle ω100 between {100} twins is 0.195(8)°, while {110} twinning gives an angle of ω110=0.276(7)°. The two twin kink angles correspond to a rhombohedral angle of the pseudocubic cell of the phase as 1=90.0973(40)° and 2=90.0975(30)°, respectively. The XRD result for this rhombohedral angle is =90.096(1)°. The orientation of the misfit steps formed during annealing after mechanical surface polishing depends on the domain orientation and pattern during polishing. Any heating close to or above Tc changes the domain pattern. Footprints of previous domain patterns can thus be found on the surface in the form of surface corrugation and changes in the shape and orientation of misfit steps.  相似文献   

13.
Extended regions located at an angle of 20° to the rolling plane are observed inside deformation bands in a (110)[001] Fe-3%Si alloy single crystal at a high strain (~60%). These regions were interpreted earlier as shear bands. The lattice orientation in these bands is close to (110)[001], and their habit plane is parallel to the {112} planes of the deformed {111}〈112〉 matrix. The misorientations between the bands and the matrix group around special misorientations Σ9, Σ19a, Σ27a, and Σ33a, which are characterized by close angles of rotation about axis 〈110〉. During primary recrystallization, the (110)[001] grains growing from the bands retain segments of the corresponding special boundaries with the deformed matrix.  相似文献   

14.
Abstract

The grain refinement and texture evolution in the surface gradient microstructure of a Ni-based superalloy induced by high speed machining was studied in this research. The direct evidence of grain refinement induced by dislocation–twin interaction was revealed and the detailed grain refinement process was summarised as deformation twinning, dislocation-twin reaction, localied thinning of nanotwin lamellae and final fracture. The underlying dislocation–twin interaction mechanism was elucidated from the crystallographic perspective. Using electron backscatter diffraction and precession electron diffraction techniques, a multiscale texture analysis covering undeformed coarse grain region, ultrafine grain region and nanograin region was carried out. The texture evolution with decreasing depth to the machined surface was identified as cube in the bulk interior and a mixture of rotated cube {0?0?1}<1?1?0>, cube {1?0?0}<0?0?1>, copper {1?1?2}<1?1?1 > and Goss {1?1?0}<0?0?1> textures in the topmost 1.3-μm-thick nanograin layer. The intrinsic thermomechanical effects of high precision machining are responsible for crystallographic texture transformation.  相似文献   

15.
Isotactic polypropylene (iPP) was plastically shear deformed by equal channel angular extrusion (ECAE) at extrusion temperatures varied from 45 to 125°C (25 mm/min). The evolutions of morphology and crystal orientation were studied by reflected optical microscopy (ROM), scanning electron microscopy (SEM), and X-ray diffraction. It was found that the original spherulites were deformed into nearly ellipsoids with their long axis tilted at an angle away from the flow direction. Azimuthal scanning results revealed that two preferred crystal orientations were formed after ECAE. The crystal plasticity was activated by increasing the extrusion temperature, followed by fast rotation of crystallites toward the shear direction. The thermal mechanical analysis (TMA) indicated that low extrusion temperature was favorable to fix the molecular orientation. The iPP samples processed at the investigated temperatures displayed a significant increase in the impact strength, especially for those extruded at 45°C and 65°C. The tensile results revealed a greater elongation at break in the samples deformed at low temperatures (45°C and 65°C) but not in those deformed at high temperatures (85°C or above).  相似文献   

16.
The group-theoretical study of the structural phase transition to incommensurate state of MgSiF6·6H2O crystals, revealed by the electron paramagnetic resonance (EPR) method, as well as analysis of the EPR results, are presented. The consideration of temperature dependences of Mn2+ admixture ion EPR spectrum symmetry and parameters leads to the conclusion that at T i1 = 370 ± 0.3 K they undergo second-order structural phase transition to incommensurately modulated state, the order parameter of this transition may be the angle of [Mg(H2O)6]2+ octahedra rotation around crystal C 3 axis. At temperature decreasing below T i1 the gradual transformation of plane-wave modulation of lattice displacements into soliton mode occurs, which is interrupted by the first-order phase transition at T i2 = 343 ± 0.3 K accompanied by abrupt decrease in modulation amplitude. At T c = 298.5 ± 0.3 K the first-order improper ferroelastic phase transition into monoclinic phase occurs. The group-theoretical analysis of the phase transition at T i1 in the investigated crystals, carried out for the first time, has shown that the existence of the incommensurately modulated phase is conditioned by the fundamental reasons (presence of Lifshitz invariant). The conclusions of this analysis on the nature of order parameter, the structural motifs of incommensurate phase and the possible character of temperature evolution of the structure are in agreement with the EPR investigation data.  相似文献   

17.
ABSTRACT

Priceite is a calcium borate mineral and occurs as white crystals in the monoclinic pyramidal crystal system. We have used a combination of Raman spectroscopy with complimentary infrared spectroscopy and scanning electron microscopy with Energy-dispersive X-ray Spectroscopy (EDS) to study the mineral priceite. Chemical analysis shows a pure phase consisting of B and Ca only. Raman bands at 956, 974, 991, and 1019 cm?1 are assigned to the BO stretching vibration of the B10O19 units. Raman bands at 1071, 1100, 1127, 1169, and 1211 cm?1 are attributed to the BOH in-plane bending modes. The intense infrared band at 805 cm?1 is assigned to the trigonal borate stretching modes. The Raman band at 674 cm?1 together with bands at 689, 697, 736, and 602 cm?1 are assigned to the trigonal and tetrahedral borate bending modes. Raman spectroscopy in the hydroxyl stretching region shows a series of bands with intense Raman band at 3555 cm?1 with a distinct shoulder at 3568 cm?1. Other bands in this spectral region are found at 3221, 3385, 3404, 3496, and 3510 cm?1. All of these bands are assigned to water stretching vibrations. The observation of multiple bands supports the concept of water being in different molecular environments in the structure of priceite. The molecular structure of a natural priceite has been assessed using vibrational spectroscopy.  相似文献   

18.
S. Liu  H. Guo  S. Yang  X. Wang 《哲学杂志》2018,98(11):934-958
We elucidate here the deformation behaviour and delamination phenomenon in a high-strength low-alloy bainitic steel, in terms of microstructure, texture and stress evolution during deformation via in situ electron back-scattered diffraction and electron microscopy. Furthermore, the selective role of bainitic lath boundary on slip systems was studied in terms of dislocation pile-up and grain boundary energy models. During tensile deformation, the texture evolution was concentrated at {1 1 0}<1 1 1> and the laths were turn parallel to loading direction. The determining role of lath on the deformation behaviour is governed by length/thickness (l/t) ratio. When l/t > 28, the strain accommodates along the bainite lath rather than along the normal direction. The delamination crack initiated normal to (0 1 1) plane, and become inclined to (0 1 1) plane with continued strain along (0 1 1) plane and lath plane. This indicated that the delamination is not brittle process but plastic process. The lack of dimples at the delaminated surface is because of lack of strain normal to the direction of lath. The delaminated (0 1 1) planes were associated with cleavage along the (1 0 0) plane.  相似文献   

19.
Using the infinitesimal deformation approach, a crystallographic analysis of the austenite-martensite transformation from the cubic to orthorhombic phase - which predicts crystallographic parameters such as habit plane, orientation relationship between austenite and martensite, rotation matrix and total shape deformation matrix - is derived from a knowledge of the crystal structures of the initial and final phase only. The numerical values coming from orientation relationships obtained for Au-47.5 Cd Fe-Ni and In--Tl alloys are compared with predictions of the phenomenological crystallographic theory, infinitesimal deformation approach and experimental data.  相似文献   

20.
Bin Li 《哲学杂志》2013,93(13):1582-1603
Reports of Type II twins are quite rare for most crystal structures. When they do occur, they are usually one of a number of possible twinning modes observed in a particular material. However, for the triclinic phase devitrite, Na2Ca3Si6O16, which nucleates from commercial soda?lime?silica float glass subjected to suitable heat treatments, the only reported twinning mode to date is a Type II twinning mode. In this study, this Type II twinning mode is first examined by molecular dynamics simulation to determine the lowest energy configuration of perfect twin boundaries for the twin mode. This is then compared with the lowest energy configurations of perfect twin boundaries found for six possible Type I twinning modes for devitrite for which the formal deformation twinning shear is less than 0.6. The most favourable twin plane configuration for the Type II twinning crystallography is shown to produce reasonably low twin boundary energies and sensible predictions for the optimum locations of the twin plane, K 1, and the [1?0?0] rotation axis, η 1, about which the 180° Type II twinning operation takes place. By comparison, all the Type I twinning modes were found to have very energetically unstable atomic configurations, and for each of these twinning modes, the lowest energy configurations found all led to high effective K 1 twin boundary energies relative to perfect crystal. These results therefore provide a rationale for the experimental observation of the particular Type II twinning mode seen in devitrite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号