首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The Ritter reaction, that is, reaction of a carbocation with a nitrile, was carried out on polyisobutylene (PIB) using a variety of reaction conditions. End quenching of PIB carbocations with acrylonitrile under living polymerization conditions (methyl chloride (MeCl)/hexane 60/40 (v/v) solvent mixtures at −70 °C) resulted in either tert‐chloride end groups or loss of chain‐end fidelity via carbocation rearrangement, as evidenced by NMR spectroscopy. Exo‐olefin functionalized PIB substrates were also reacted with nitriles under a variety of reaction conditions including various acid and solvent medium combinations. In all cases, the result was either no reaction or PIB that had undergone severe backbone degradation, as determined via NMR spectroscopy and gel permeation chromatography. Finally, the Ritter reaction was performed on a series of exo‐olefin functionalized oligoisobutylenes using acrylonitrile as the nitrile and either 60/40 dichloromethane/hexane or excess acrylonitrile as the solvent. In 60/40 dichloromethane/hexane, significant carbocation rearrangement and/or degradation resulted in a variety of isomeric, acrylamide‐functionalized oligomers. In excess acrylonitrile, the desired Ritter reaction was the only reaction observed, resulting in the smooth formation of the terminal acrylamide. The various N‐oligoisobutylacrylamides thus obtained represent new hydrophobic monomers useful for the introduction of hydrophobic moieties into acrylamide‐based water‐soluble polymers. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 840–852  相似文献   

2.
The controlled cationic polymerization of isobutylene (IB) initiated by H2O as initiator and TiCl4 as coinitiator was carried out in n‐Hexane/CH2Cl2 (60/40, v/v) mixture at −40 °C in the presence of N,N‐dimethylacetamide (DMA). Polyisobutylene (PIB) with nearly theoretical molecular weight (Mn = 1.0 × 104 g/mol), polydispersity (Mw/Mn) of 1.5 and high content (87.3%) of reactive end groups (tert‐Chlorine and α‐double bond) was obtained. The Friedel‐Crafts alkylation of triphenylamine (TPA) with the above reactive PIB was further conducted at different reactions, such as [TPA]/[PIB], solvent polarity, alkylation temperature, and time. The resultant PIBs with arylamino terminal group were characterized by 1H NMR, UV, and GPC with RI/UV dual detectors. The experimental results indicate that alkylation efficiency (Aeff) increased with increases in [TPA]/[PIB], reaction temperature, and reaction time and with a decrease in solvent polarity. The alkylation efficiency could reach 81.0% at 60/40(v/v) mixture of n‐Hex/CH2Cl2 with [TPA]/[PIB] of 4.49 at 50 °C for 54 h. Interestingly, the synthesis of PIB with arylamino terminal group could also be achieved in one pot by combination of the cationic polymerization of IB initiated by H2O/TiCl4/DMA system with the successive alkylation by further introduction of TPA. Mono‐, di‐ or tri‐alkylation occurred experimentally with different molar ratio of [TPA]/[PIB]. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 936–946, 2008  相似文献   

3.
Summary: We recently reported the synthesis of polyisobutylene (PIB) via direct initiation by epoxycyclohexyl isobutyl polyhedral oligomeric silsesquioxane (POSS®) (Figure 1 ) in conjunction with titanium tetrachloride (TiCl4). This system successfully initiated the living carbocationic polymerization of isobutylene (IB) in hexane/methyl chloride (Hx/MeCl -60/40, v/v) at T = −80 °C, yielding an asymmetric telechelic PIB with one POSS® cage head group and one tert-Cl end group. 1 This paper will discuss IB polymerizations initiated by 1,2-epoxycyclohexane and bis[3,4-(epoxycyclohexyl)ethyl]-tetramethyl-disiloxane, in conjunction with TiCl4.  相似文献   

4.
1‐(ω‐Azidoalkyl)pyrrolyl‐terminated polyisobutylene (PIB) was successfully synthesized both by substitution of the terminal halide of 1‐(ω‐haloalkyl)pyrrolyl‐terminated PIB with sodium azide and by in situ quenching of quasiliving PIB with a 1‐(ω‐azidoalkyl)pyrrole. Azide substitution of the terminal halide was carried out in 50/50 heptane/DMF at 90 °C for 24 h using excess azide. The 1‐(ω‐haloalkyl)pyrrolyl‐PIB precursors included 1‐(2‐chloroethyl)pyrrolyl‐PIB, 1‐(2‐bromoethyl)pyrrolyl‐PIB, and 1‐(3‐bromopropyl)pyrrolyl‐PIB. In situ quenching involved direct addition of 1‐(2‐azidoethyl)pyrrole to quasiliving PIB initiated from 5‐tert‐butyl‐1,3‐di(1‐chloro‐1‐methylethyl)benzene (bDCC)/TiCl4 at ?70 °C in hexane/CH3Cl (60/40, v/v). 1H NMR analysis of the quenched product revealed mixed isomeric end groups in which PIB was attached at either C2 or C3 of the pyrrole ring (C2/C3 = 0.40/0.60). SEC indicated the absence of coupled PIB under optimized conditions, confirming exclusive mono‐substitution on each pyrrole ring. 1‐(3‐Azidopropyl)pyrrolyl‐PIB was reacted in modular fashion with various functional alkynes, propargyl alcohol, propargyl acrylate, glycidyl propargyl ether, and 3‐dimethylamino‐1‐propyne, via a Huisgen 1,3‐dipolar cycloaddition (Click) reaction, using Cu(I)Br/N,N,N′,N″,N″‐pentamethyldiethylenetriamine or bromtris(triphenylphosphine)Cu(I) as catalyst. The reactions were quantitative and produced PIBs bearing terminal hydroxyl, acrylate, glycidyl, or dimethylaminomethyl groups attached via exclusively four‐substituted triazole linkages. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2533–2545, 2010  相似文献   

5.
Allyl telechelic polyisobutylene (allyl‐PIB‐allyl) is of great commercial and scientific interest produced by living polymerization of isobutylene followed by functionalization (allylation with allyltrimethylsilane) under external cooling, typically to ?78 °C. Cooling is cumbersome and costly, and temperature control is far from ideal. Herein we describe the quantitative preparation of allyl‐PIB‐allyl under ideal internal temperature control at ~?40 °C using refluxing propane/methyl chloride mixtures. The exact composition of the nonpolar/polar solvents and polymerization time crucially affect product quality. Well‐defined allyl‐PIB‐allyl is obtained using 60/40 (v/v) refluxing propane/methyl chloride and terminating not more than 5 min after monomer depletion. In pure refluxing propane or methyl chloride, or at longer reaction times, byproducts form that compromise product quality. A mechanism is presented to explain the observations. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 1784–1789  相似文献   

6.
Multiarm star‐branched polymers based on poly(styrene‐b‐isobutylene) (PS‐PIB) block copolymer arms were synthesized under controlled/living cationic polymerization conditions using the 2‐chloro‐2‐propylbenzene (CCl)/TiCl4/pyridine (Py) initiating system and divinylbenzene (DVB) as gel‐core‐forming comonomer. To optimize the timing of isobutylene (IB) addition to living PS⊕, the kinetics of styrene (St) polymerization at −80°C were measured in both 60 : 40 (v : v) methyl cyclohexane (MCHx) : MeCl and 60 : 40 hexane : MeCl cosolvents. For either cosolvent system, it was found that the polymerizations followed first‐order kinetics with respect to the monomer and the number of actively growing chains remained invariant. The rate of polymerization was slower in MCHx : MeCl (kapp = 2.5 × 10−3 s−1) compared with hexane : MeCl (kapp = 5.6 × 10−3 s−1) ([CCl]o = [TiCl4]/15 = 3.64 × 10−3M; [Py] = 4 × 10−3M; [St]o = 0.35M). Intermolecular alkylation reactions were observed at [St]o = 0.93M but could be suppressed by avoiding very high St conversion and by setting [St]o ≤ 0.35M. For St polymerization, kapp = 1.1 × 10−3 s−1 ([CCl]o = [TiCl4]/15 = 1.82 × 10−3M; [Py] = 4 × 10−3M; [St]o = 0.35M); this was significantly higher than that observed for IB polymerization (kapp = 3.0 × 10−4 s−1; [CCl]o = [Py] = [TiCl4]/15 = 1.86 × 10−3M; [IB]o = 1.0M). Blocking efficiencies were higher in hexane : MeCl compared with MCHx : MeCl cosolvent system. Star formation was faster with PS‐PIB arms compared with PIB homopolymer arms under similar conditions. Using [DVB] = 5.6 × 10−2M = 10 times chain end concentration, 92% of PS‐PIB arms (Mn,PS = 2600 and Mn,PIB = 13,400 g/mol) were linked within 1 h at −80°C with negligible star–star coupling. It was difficult to achieve complete linking of all the arms prior to the onset of star–star coupling. Apparently, the presence of the St block allows the PS‐PIB block copolymer arms to be incorporated into growing star polymers by an additional mechanism, namely, electrophilic aromatic substitution (EAS), which leads to increased rates of star formation and greater tendency toward star–star coupling. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1629–1641, 1999  相似文献   

7.
New linear triblock thermoplastic elastomers (TPEs) comprising a rubbery polyisobutylene (PIB) midblock flanked by two glassy endblocks of various styrenic polymers have been synthesized by living carbocationic polymerization by sequential monomer addition. First isobutylene (IB) was polymerized by a bifunctional tert-ether (dicumyl methyl ether) initiator in conjunction with TiCl4 coinitiator in CH3Cl/methylcyclohexane (MeCHx) (40/60 v/v) solvent mixtures at ?80°C. After the living narrow molecular weight distribution PIB midblock ( = 1.1–1.2) has reached the desired molecular weight, the styrenic monomers together with an electron pair donor (ED) and a proton trap (di-tert-butylpyridine, DtBP) were added to start the blocking of the glassy segments from the living ⊕PIB⊕ chain ends. While p-methylstyrene (pMeSt), p-t-butylstyrene (ptBuSt) and indene (In) gave essentially 100% blocking to the corresponding glassy endblocks, the blocking of 2,4,6-trimethylstyrene (TMeSt) and α-methylstyrene (αMeSt) were ineffective. Uncontrolled initiation by protic impurities was prevented by the use of DtBP. In the simultaneous presence of DtBP and the strong ED N,N-dimethylacetamide (DMA), TPEs with good mechanical properties (10–20 MPa tensile strength, 300–600% elongation) were prepared. The products exhibit a low and a high temperature Tg characteristic of phase separated rubbery and glassy domains. The service temperature of these new TPEs exceeds that of PSt–PIB–PSt triblock copolymers due to the higher Tgs (PpMeSt = 108, PptBuSt = 142 and PIn = 220–240°C) of the outer blocks. The Tg of the glassy blocks can be regulated by copolymerizing two styrene derivatives; a triblock copolymer with outer blocks of poly(pt-butylstyrene-co-indene) showed a single glassy transition Tg = +165°C, i.e., in between that of PptBuSt and PIn. Virgin TPEs have been repeatedly compression molded without deterioration of physical properties. The high melt flow index obtained with a TPE containing PptBuSt endblocks suggests superior processability relative to those with PSt end-blocks. The tensile strength retention at 60°C of the former TPE is far superior to that of a PSt–PIB–PSt triblock of similar composition.  相似文献   

8.
Poly(isobutylene) (PIB) chains with a radical at the chain end were graft-copolymerized on the poly(tetrafluoroethylene) (PTFE) surface in vacuo at 77 K. The PIB chains tethered on the PTFE surface in vacuo were regarded as isolated chains from neighboring tethered PIB chains. The molecular motion of the ends of the isolated PIB chains was observed by an electron spin resonance (ESR) spectrometer in the temperature range from 3 to 125 K, which was lower than Tg of PIB, 200 K,1 and two motion modes were found: One is a quantum tunneling of the methyl group located at the chain end at 3 K, and the other is an interconformation transition with freely rotating methyl group at the end at 77 K, where the transition rate was estimated to be 15 MHz at that temperature. The transition rate increased with an increase in temperature. The activation energy of the transition was estimated to be 370 J/mol. The high mobility and low activation energy was attributed to the isolation of PIB chains in vacuo. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 2095–2102, 1998  相似文献   

9.
Allyl‐telechelic polyisobutylene (A‐PIB‐A) produced by the bis‐benzocyclobutane dichloride (bBCB‐diCl) initiator contains the bis‐benzocyclobutane (bBCB) fragment at the center of the macromolecule (A‐PIB‐bBCB‐PIB‐A). Thermolysis of A‐PIB‐bBCB‐PIB‐A quantitatively converts the central bBCB fragment to a substituted conjugated tetraene (A‐PIB‐tetraene‐PIB‐A). The structure of A‐PIB‐tetraene‐PIB‐A was anticipated from small molecule models and identified/quantitated by 1H NMR spectroscopy. This is the first time a reactive functional group was introduced at the statistical center of a (telechelic) PIB. Subsequently, the A‐PIB‐tetraene‐PIB‐A was peroxidized to an epoxy derivative. Reaction of the A‐PIB‐tetraene‐PIB‐A with HSCH2CH2OH produced HOCH2‐telechelic PIB containing a central  CH2OH function, and hydrosilation with HSi(Me2)‐O‐Si(Me2)H produced SiH‐telechelic PIB with a central  SiH function. Reactions with maleic anhydride, tetracyanoethylene, butyl lithium, and potassium permanganate have also been examined. In sum, A‐PIB‐bBCB‐PIB‐A and A‐PIB‐tetraene‐PIB‐A are useful intermediates for the synthesis of novel PIB‐based materials for various end uses under investigation. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1140–1145  相似文献   

10.
The synthesis of novel arborescent (arb; randomly branched, “tree‐like,” and often called “hyperbranched”) block copolymers comprised of rubbery polyisobutylene (PIB) and glassy polystyrene (PSt) blocks (arb‐PIB‐b‐PSt) is described. The syntheses were accomplished by the use of arb‐PIB macroinitiators (prepared by the use of 4‐(2‐methoxyisopropyl) styrene inimer) in conjunction with titanium tetrachloride (TiCl4). The effect of reaction conditions on blocking of St from arb‐PIB was investigated. Purified block copolymers were characterized by 1H NMR spectroscopy and Size Exclusion Chromatography (SEC). arb‐PIB‐b‐PSt with 11.7–33.8 wt % PSt and Mn = 468,800–652,900 g/mol displayed thermoplastic elastomeric properties with 3.6–8.7 MPa tensile strength and 950–1830% elongation. Samples with 26.8–33.8 wt % PSt were further characterized by Atomic Force Microscopy (AFM), which showed phase‐separated mixed spherical/cylindrical/lamellar PSt phases irregularly distributed within the continuous PIB phase. Dynamic Mechanical Thermal Analysis (DMTA) and solvent swelling of arb‐PIB‐b‐PSt revealed unique characteristics, in comparison with a semicommercial PSt‐b‐PIB‐b‐PSt block copolymer. The number of aromatic branching points of the arb‐PIB macroinitiator, determined by selective destruction of the linking sites, agreed well with that calculated from equilibrium swelling data of arb‐PIB‐b‐PSt. This method for the quantitative determination of branching sites might be generally applicable for arborescent polymers. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1811–1826, 2005  相似文献   

11.
Methacrylate‐terminated polyisobutylenes (PIB‐MAs) were synthesized by transesterification of vinyl methacrylate by hydroxyl‐terminated polyisobutylenes (PIB‐OH) using Candida antarctica lipase B (Novozyme 435) catalyst in hexane at 50 °C. PIB CH2 CH2 CH2 OH and Glissopal OH, synthesized by anti‐Markovnikov hydrobromination of allyl‐terminated PIB and Glissopal®2300 followed by hydrolysis, were quantitatively converted into the corresponding PIB‐MAs. 1H and 13C NMR spectroscopy verified the formation of the expected structures. This “green” chemistry is a very promising methodology for polymer functionalization in general, and biomaterial synthesis in particular.

  相似文献   


12.
1-Chloro-1-phenylethyl-telechelic polyisobutylene (PIB) was synthesized by living carbocationic polymerization (LCCP). LCCP of isobutylene was induced by a difunctional initiator in conjunction with TiCl4 as coinitiator in the presence of N,N-dimethylacetamide in CH2Cl2/hexane (40:60 v/v) solvent mixture at −78°C. After complete isobutylene conversion a small amount of styrene was added leading to a rapid crossover reaction and thus to the attachment of short outer polystyrene (PSt) blocks to the PIB segment. Quenching the living polymerization of styrene yielded 1-chloro-1-phenylethyl terminal groups. The resulting telechelic polymer (Cl-PSt-PIB-PSt-Cl) is a potential new macroinitiator for atom transfer radical polymerization of a variety of vinyl monomers.  相似文献   

13.
Abstract

Polystyrene-polyisobutylene-polystyrene triblock copolymer thermoplastic elastomers have been synthesized by living carbocationic sequential copolymerization using the tert-butyl dicumyl chloride/TiCl4/methylcyclohexane:methyl chloride (60:40 v:v)/ ?80°C system in the presence of the proton trap 2,6-di-tert-butylpyridine. Structure-property relationships have been examined by varying the Mn of the PIB middle block (39,000 to 156,000) and that of the PSt end-segment (1,000 to 19,000). The tensile strength is controlled by the molecular weight of the PSt segment and independent of the PIB middle block length in the studied range. Phase separation starts when the Mn of the PSt segment reaches ~ 5,000, and it is complete when the Mn reaches ~ 15,000. These triblocks exhibited 23-25 MPa tensile strength, similar to that of styrenic thermoplastic elastomers obtained by anionic polymerization.  相似文献   

14.
Two structurally closely related three‐arm star blocks were synthesized and characterized: tCum(PIB‐b‐PNBD)3 and tCum(PNBD‐b‐PIB)3 [where tCum (tricumyl) stands for the phenyl‐1,3,5‐tris(‐2‐propyl) fragment and PIB and PNBD are polyisobutylene and polynorbornadiene, respectively]. The syntheses were accomplished in two stages: (1) the preparation of the first (or inner) block fitted with appropriate chlorine termini capable of initiating the polymerization of the second (or outer) block with TiCl4 and (2) the mediation of the polymerization of the second block. Therefore, the synthesis of tCum(PIB‐b‐PNBD)3 was effected with tCum(PIB‐Clt)3 [where Clt is tert‐chlorine and number‐average molecular weight (Mn) = 102,000 g/mol] by the use of TiCl4 and 30/70 CH3Cl/CHCl3 solvent mixtures at ?35 °C. PNBD homopolymer contamination formed by chain transfer was removed by selective precipitation. According to gel permeation chromatography, the Mn's of the star blocks were 107,300–109,200 g/mol. NMR spectroscopy (750 MHz) was used to determine structures and molecular weights. Differential scanning calorimetry (DSC) indicated two glass‐transition temperatures (Tg's), one each for the PIB (?65 °C) and PNBD (232 °C) phases. Thermogravimetric analysis thermograms showed 5% weight losses at 293 °C in air and at 352 °C in N2. The synthesis of tCum(PNBD‐b‐PIB)3 was achieved by the initiation of isobutylene polymerization with tCum(PNBD‐Clsec)3 (where Clsec is sec‐chlorine and Mn = 2900 g/mol) by the use of TiCl4 in CH3Cl at ?60 °C. DSC for this star block (Mn = 14,200 g/mol) also showed two Tg's, that is, at ?67 and 228 °C for the PIB and PNBD segments, respectively. It is of interest that the Clsec terminus of PNBD, , readily initiated isobutylene polymerization. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 740–751, 2003  相似文献   

15.
Linear, multi-functional polyisobutylene (PIB) macromers bearing pendent and terminal (meth)acrylate moieties were prepared via electrophilic cleavage/alkylation of butyl rubber in the presence of (3-bromopropoxy)benzene, followed by displacement of the resulting bromide moieties with potassium (meth)acrylate. Number average functionality (Fn) ranged from 2.8–7.9; functional equivalent weights ranged from 2.3–4.7 kg/mol. For comparison, a three-arm, end-functional PIB triacrylate with equivalent weight of 3.3 kg/mol was also synthesized via living polymerization and end quenching with 4-phenoxy-1-butyl acrylate. All polymers were photocured using Darocur 1173 photoinitiator, and curing kinetics were monitored by real time Fourier-transform infrared spectroscopy. All systems reached ~100% conversion by 1,800 s, but the linear macromers displayed slower curing rates compared to the PIB triacrylate. The curing rate of linear macromers increased as molecular weight decreased. Cured networks were characterized using dynamic mechanical analysis and tensile testing. Tensile strength varied from 0.15–0.80 MPa. Young's modulus varied from 0.13–1.8 MPa. Strain at break for most networks ranged from 34–54%, but the network derived from the lowest molecular weight PIB reached 113% at failure. Percent extractables, measured using solvent extraction, was about 2% for linear macromers and about 4% for PIB triacrylate.  相似文献   

16.
The oxidative/hydrolytic stability of polyurethanes (PUs) containing exclusively polyisobutylene (PIB), or mixed PIB/polytetramethylene oxide (PTMO), or mixed PIB/polyhexamethylene carbonate (PC) soft segments was investigated. The tensile strengths and elongations of various PUs were determined before and after agitating in 35% HNO3 or 20% H2O2/0.1 M CoCl2 solutions and retentions were quantified. The presence of PIB imparts significant oxidative/hydrolytic resistance. The tensile strength and elongation of PUs containing 70% PIB, or those of mixed PIB/PC soft segments with 50% PIB, remained essentially unchanged upon exposure to HNO3; in contrast, PUs containing mixed PIB/PTMO soft segments with 50% PIB underwent significant degradation. The tensile strength of PUs with mixed PIB/PC (60/10%) soft segment increased after exposure to HNO3, most likely because of oxidative crosslinking of PC segments. PIB/PTMO‐ and PIB/PC‐based PUs and commercially available PUs (Elast‐Eon® and Carbothane®) were exposed to H2O2/CoCl2 solutions for up to 14 weeks. Although the experimental PIB/PC‐based PUs exhibited negligible change in mechanical properties and no surface damage, Elast‐Eon® and Carbothane® showed significant surface damage. PIB‐based polyureas and Bionate® were implanted in rats for 4 weeks in vivo, and their biocompatibility was investigated. The biocompatibility of PIB‐based materials was superior to Bionate®. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2194–2203, 2010  相似文献   

17.
A series of novel block anionomers consisting of polyisobutylene (PIB) and poly(methacrylic acid) (PMAA) segments were prepared and characterized. The specific targets were various molecular weight diblocks (PIB‐b‐PMAA?), triblocks (PMAA?b‐PIB‐b‐PMAA?), and three‐arm star blocks [Φ(PIB‐b‐PMAA?)3] consisting of rubbery PIB blocks with a number‐average degree of polymerization of 50–1000 (number‐average molecular weight = 3000–54,000 g/mol) connected to blocks of PMAA? anions with a number‐average degree of polymerization of 5–20. The overall strategy for the synthesis of these constructs consisted of four steps: (1) synthesis by living cationic polymerization of t‐chloro‐monotelechelic, t‐chloro‐ditelechelic, and t‐chloro‐tritelechelic PIBs; (2) site transformation to obtain PIBs fitted with termini capable of mediating the atom transfer radical polymerization (ATRP) of tert‐butyl methacrylate (tBMA); (3) ATRP of tBMA, and (4) hydrolysis of poly(tert‐butyl methacrylate) to PMAA?. The architectures created and the synthesis steps employed are summarized. Kinetic and model experiments greatly assisted in the development of convenient synthesis methods. The microarchitectures of the various block anionomers were confirmed by spectroscopy and other techniques. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3662–3678, 2002  相似文献   

18.
The synthesis of novel polyisobutylene (PIB)/poly(dimethylsiloxane) (PDMS) bicomponent networks is described. The synthesis strategy (see Figure 1) was to prepare well-defined and -characterized allyl-tritelechelic polyisobutylenes [ϕ(PIB—C—C=C)3] and SiH-ditelechelic poly(dimethylsiloxanes) (HSi–PDMS–SiH) and then crosslink these moieties by hydrosilation. The ϕ(PIB—C—C=C)3 was prepared by living isobutylene polymerization followed by end-quenching with allyltrimethylsilane, whereas the HSi–PDMS–SiH was obtained by equilibrium polymerization of octamethylcyclotetrasiloxane and tetramethyldisiloxane. The detailed structures of the starting polymers were characterized by GPC and 1H-NMR spectroscopy. A series of PIB/PDMS bicomponent networks of varying compositions and average molecular weights between crosslinks (M c) of ∼ 20,000 g/mol were assembled. Optimum crosslinking conditions were defined in terms of H2PtCl6 catalyst concentration, nature of solvent, time, temperature, and stoichiometry of ∼ CH2CH=CH2/∼SiH groups, allowing for the convenient synthesis of well-defined model bicomponent networks. Swelling studies and elemental analysis confirm the correctness of the synthetic strategy. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1891–1899, 1998  相似文献   

19.
A new amphiphilic diblock copolymer containing an ionomer segment, poly[(4‐vinylbenzyl triethyl ammonium bromide)‐co‐(4‐methylstyrene)‐co‐(4‐bromomethylstyrene)]‐b‐polyisobutene [poly(4‐VBTEAB)‐b‐PIB], was synthesized by the chemical modification of poly(4‐methylstyrene)‐b‐polyisobutene [poly(4‐MSt)‐b‐PIB]. First, the 4‐methylstyrene moiety in poly(4‐MSt)‐b‐PIB was brominated with azobisisobutyronitrile as an initiator at 60 °C in CCl4, and then the highly reactive benzyl bromide groups were ionized by a reaction with triethylamine in a toluene/isopropyl alcohol (80/20 v/v) mixture at about 85 °C to produce the ionomer diblock copolymer poly(4‐VBTEAB)‐b‐PIB. The solubility of the ionomer block copolymer was quite different from that of the corresponding poly[(4‐methylstyrene)‐co‐(4‐bromomethylstyrene)]‐b‐polyisobutene {poly[(4‐MSt)‐co‐(4‐BrMSt)]‐b‐PIB}. Transmission electron microscopy observations demonstrated that all three diblock copolymers had microphase‐separation structures in which polyisobutene (PIB) domains existed in the continuous phase of the poly(4‐methylstyrene) segment or its derivative segment matrix. Dynamic mechanical thermal analysis measurements showed that poly[(4‐MSt)‐co‐(4‐BrMSt)]‐b‐PIB had two glass‐transition temperatures (Tg's), ?56 °C for the PIB segment and 62 °C for the poly[(4‐MSt)‐co‐(4‐BrMSt)] domain, whereas poly(4‐VBTEAB)‐b‐PIB showed one Tg at ?8 °C of the PIB domain; Tg of the poly[(4‐vinylbenzyl triethyl ammonium bromide)‐co‐(4‐methylstyrene)‐co‐(4‐bromomethylstyrene)] domain was not observable because of the strong ionic interactions resulting in a higher Tg and a retention of modulus up to 124 °C. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2755–2764, 2003  相似文献   

20.
The synthesis of polyvalent functionalized polyisobutylene (PIB) oligomers containing multiple polar groups via radical polymerization is described. Polymerizations from PIB macroinitiators via alkylborane intermediates can form block copolymers but the polar block is consistently larger than the PIB block and unless a hydrophobic monomer is used, the products are insoluble in alkanes. Block copolymer products from ATRP macroinitiators are formed with more control over the degree of polymerization of a polar block from a 1000 Da PIB starting material but are still alkane insoluble because the degree of polymerization of the polar block was consistently equal to or greater than the degree of polymerization of the PIB block. RAFT polymerization using 5 mol % of azoisobutyronitrile relative to a PIB macroinitiator however was successful in producing acceptable yields of alkane soluble block copolymers using a 1000 Da PIB starting material and monomers like methyl methacrylacrylate, ethyl methacrylate, N,N‐dimethylacrylamide, and N‐isopropylacrylamide. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1860–1867  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号