首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
端羟基聚丁二烯/增塑剂共混物相容性的分子动力学模拟   总被引:10,自引:0,他引:10  
固体推进剂和炸药的力学性能在很大程度上依赖于配方中高分子粘结剂与增塑剂的相容性. 本文对相容和非相容两种体系进行了分子动力学(MD)模拟, 以考察分子模拟方法的实用性. 为预测固体推进剂中端羟基聚丁二烯(HTPB)与增塑剂癸二酸二辛酯(DOS)、硝化甘油(NG)的相容性, 采用MD模拟方法在COMPASS力场下, 对HTPB、DOS、NG和共混物HTPB/DOS、HTPB/NG的密度、内聚能密度及溶度参数等进行了模拟计算. 通过比较溶度参数差值(△δ)的大小、分子间径向分布函数和模拟前后体系密度变化情况均可以预测HTPB/DOS属于相容体系,而HTPB/NG属于不相容体系, 与实验结果一致. 径向分布函数分析同时揭示了HTPB/增塑剂组分之间的相互作用及本质. 本文的模拟方法可以作为预测聚合物与增塑剂相容性的有利工具, 也可以为固体推进剂和炸药的配方设计提供理论指导.  相似文献   

2.
Glycidyl azide polymer (GAP) based binders have poor mechanical characteristics in comparison with hydroxyl terminated polybutadiene (HTPB) binders. In this study, advanced cross‐linker was used to improve the mechanical properties of GAP binder. GAP was prepared and characterized in comparison with HTPB prepolymer. Density, characteristics groups, nitrogen content, humidity, viscosity, and milligram equivalent of (OH) per binders were determined. A cross‐linker consists of trimethylol propane (TMP) and curing catalyst, dibutyltin dilaurate (DBTDL), was used as an additive to GAP polymeric matrix to enhance its functionality. Polymeric matrices based on GAP and HTPB were prepared with different curing ratio (NCO/OH) ranging from 0.7 to 1.5. Different weight percentages of cross‐linker were added to study its effect on the mechanical properties of GAP matrix. Five samples based on HTPB polymer and twenty samples based on GAP polymer were prepared. A LLOYD testing machine was used to determine the stress‐strain curves of all the studied samples. It was concluded that the cross‐linker used has significant influence on the characteristics of GAP polymeric matrix. Also the addition of 5 wt % of cross‐linker to GAP matrix at curing ratio = 1 produced optimum mechanical characteristics very close to that of HTPB matrix used in composite solid rocket propellants (CSRP). The optimum GAP polymeric matrix is candidate to replace the traditional HTPB binder in advanced CSRP.  相似文献   

3.
Bis(diisopropyl)thiophosphoryl disulfide (DIPDIS) has been used as a coupling cum curing agent for the compatibilization of blends of ethylene propylene diene monomer rubber (EPDM) with chloroprene rubber (CR). Electrical and mechanical properties of the blend vulcanizates have been studied to find the efficiency of the vulcanizing cum coupling activity of DIPDIS. The study reveals that CR in the presence of DIPDIS greatly improves the physical properties of EPDM. It is noted that the physical properties of the vulcanizates obtained from CR‐EPDM blend depend upon CR:EPDM ratio. The scanning electron microscopy (SEM) study reveals that it is possible to form a coherent blend of CR and EPDM in the presence of DIPDIS. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
HTPB/增塑剂玻璃化转变温度及力学性能的分子动力学模拟   总被引:1,自引:0,他引:1  
为了预测高分子粘结剂端羟基聚丁二烯(HTPB)与增塑剂癸二酸二辛酯(DOS)、硝化甘油(NG)的相容性及HTPB/增塑剂共混物的玻璃化转变温度(Tg)和力学性能,在COMPASS力场条件下采用分子动力学(MD)模拟方法对相容体系(HTPB-DOS)和不相容体系(HTPB-NG)进行了研究.结果表明,通过比较溶度参数差值(Δδ)的大小可以预测HTPB与增塑剂的相容性,即HTPB与DOS属于相容体系,而HTPB与NG不相容.通过温度-比容曲线可以得到HTPB、HTPB/DOS与HTPB/NG的Tg分别为197.54,176.30和200.03K.力学性能分析结果表明,添加DOS增塑剂后使HTPB的弹性模量(E),体积模量(K)和剪切模量(G)下降,材料刚性减弱,柔性增强,力学性能得到改善.本模拟方法可以作为预测聚合物/增塑剂共混物性能的有利工具,也可以为固体推进剂和高聚物粘结炸药的配方设计提供理论指导.  相似文献   

5.
Bis(diisopropyl) thiophosphoryl disulfide (DIPDIS) being a rubber accelerator has a definite role as a coupling agent in the silica filled polychloroprene rubber with ethylene propylene diene rubber (CR‐EPDM) blends. Diethylene glycol can further improve the beneficial effect of DIPDIS in silica filled CR‐EPDM blends. Two‐stage vulcanization technique further improves the physical properties of silica filled CR‐EPDM blends. The results have been compared with non‐reinforcing calcium carbonate filled systems. Scanning electron microscopy (SEM) studies further indicate the coherency and homogeneity in the silica filled CR‐EPDM blend vulcanizates obtained from this two‐stage process. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
This work scrutinizes the utilization of ethylene propylene diene monomer rubber matrix (EPDM) with an embodiment of aramid fiber for the heat shielding applications in solid rocket motor (SRM). Aramid fibers are aromatic poly‐paraphenylene terephthalamide, here deployed are Kevlar fibers (KF). However, the literature that encompasses the thermal and mechanical behavior with the fiber loading is reported nowhere else. The effect of fiber addition on the surface morphology and density was thoroughly studied, and it revealed that the EHSMs were of lower density to act as an efficient payload for the SRM. In this regard, the thermal conductivity, heat capacity, thermal diffusivity, fire behavior, and mechanical properties of the EPDM/KF‐based EHSMs were explored. The results revealed that the EHSMs are thermally insulating and thermally stable material with balanced mechanical properties that can engender the thermal and mechanical strains of the rocket motor. Furthermore, other analytical techniques such as scanning electron microscopy and energy dispersive X‐ray spectroscopy have been exploited to monitor the performance of the char residues of the EHSM to delineate its performance in the fire atmosphere.  相似文献   

7.
In this study, waste tire dust is recycled as filler and blended with ethylene-propylene diene monomer (EPDM) rubber. Three different polyfuntional monomers (PFMs) are incorporated into the standard formulation and irradiated under electron beam at different doses up to maximum of 100 kGy. The combined effects of PFMs and absorbed dose on the physical properties of EPDM/WTD blend are measured and compared with sulfur crosslinked formulation. Thermogravimetric analysis showed that radiation developed better crosslinked network with higher thermal stability than sulfur crosslinked structure. The physical properties of radiation crosslinked blend are similar to the sulfur crosslinked blend. The absence of toxic chemicals/additives in radiation crosslinked blends made them an ideal candidate for many applications such as roof sealing sheets, water retention pond, playground mat, sealing profile for windows etc.  相似文献   

8.
A possibility of extending the pot life of the HTPB-TDI based propellant binder system without adverse modification of mechanical properties is explored in the present study. It is proposed that by tailoring functionality distribution of the base HTPB polymer and changing the binder composition concurrently, the pot life of the binder system can be extended while the mechanical characteristics are kept within the acceptability window. Using an existing empirical relationship between fraction of high molecular weight (Fh) in HTPB and r-value corresponding to a more optimized set of mechanical properties, the r-values were calculated for different HTPB resins. HTPB resins with widely varying fractions of high molecular weight (Fh) were chosen and binder networks were prepared at different r values. Viscosity build up and chemical kinetics were studied for different formulations. From the studies, it is shown that the extension of pot-life is achievable by about 150 minutes without sacrificing the mechanical characteristics.  相似文献   

9.
The results are given on the effect of γ‐irradiation on properties of blends of high and low‐density polyethylene (HDPE, LDPE) with elastomers ‐ethylene/propylene/diene rubber (EPDM) and chlorinated polyethylene (CPE), and thermotropic liquid crystalline polymer (LCP). The morphological, thermal, mechanical properties (including thermosetting properties) and adhesion properties of blended composites were investigated. A special attention was paid to the applicability of the blends as thermosetting materials (TSM). The LCP used was a copolyester of poly(ethylene terephthalate) with p‐(hydroxybenzoic acid) in the ratio 40 : 60. It was found that addition of LCP essentially influenced the thermomechanical and adhesion properties of PE composites, irradiated up to the absorbed dose 150 kGy, as well as the dimensional stability of thermosetting products, made from polyethylene/elastomer mixtures. The results show that such ternary blends considerably improve the exploitation conditions of irradiated polyethylene and useful thermosetting materials can be obtained.  相似文献   

10.
The present paper reports the results about a study of mechanical, thermal, dynamic mechanical and electrical properties of housing (weather shed) materials for outdoor polymeric insulators. Silicone rubber, ethylene-propylene-diene monomer (EPDM) and alloys of silicon-EPDM are known polymers for use as housing in high voltage insulators. The result of dynamical mechanical measurement shows that the storage modulus of blends enhances with increase EPDM in formulation. It can be seen from the result of TGA measurement that initial thermal degradation of silicone rubber improves by the effect of EPDM in blends. The blends of silicone-EPDM show good breakdown voltage strength compared to silicone rubber. Surface and volume resistance of silicone rubber improve by EPDM content. The mechanical properties of EPDM such as strength, modulus and elongation at break improve by silicone.  相似文献   

11.
The mechanical and rheological behavior of dynamically vulcanized PP/EPDM blends is examined and compared with those of unvulcanized blends. The effect of blend ratio and dynamic vulcanization of EPDM rubber on tensile properties and flow are investigated. The mechanical properties of the blends are strongly influenced by the blend ratio. With the increasing of EPDM content the value of yield stress in a solid state decreases with the elastomer volume fractions less than 0.45 for the unvulcanized blends. For the dynamically vulcanized blends the interval of EPDM content, at which the yield peak is seen, is rather limited below 0.25 elastomer volume fractions. It is shown that dynamic vulcanization changes the deformational behavior of PP/EPDM blends. The rheological properties of dynamically vulcanized blends depending on the ratio of the components may be similar to the properties of polymer composites containing the highly disperse structuring filler. The distinction between the rheological behavior of unvulcanized and dynamically vulcanized blends is related to differences of their structures and viscoelastic characteristics of unvulcanized and vulcanized EPDM phase.  相似文献   

12.
The electrical conductivity and impact strength of polypropylene(PP)/EPDM/carbon black ternary composites were investigated in this paper. Two processing methods were employed to prepare these ternary composites. One was called one‐step processing method, in which the elastomer and the filler directly melt blended with PP matrix. Another one was called two‐step processing method, in which the elastomer and the filler were mixed first, and then melt blended with pure PP. To get an optimal phase morphology that favors the electrical conductivity and impact strength, controlling the distribution of CB in PP/EPDM blend was a crucial factor. Thus the interfacial tension and the work of adhesion were first calculated based on the measurement of contact angle, and the results showed that CB tended to be accumulated around EPDM phases to form filler‐network structure. Expectably, the filler‐network structure was observed in PP/EPDM/CB(80/20/3) composite prepared by two‐step processing method. The formation of this filler‐network structure decreased the percolation threshold of CB particles in polymer matrix, and the electrical conductivity as well as Izod impact strength of the composite increased dramatically. This work provided a new way to prepare polymer composites with both improved conductivity and impact strength. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Nitrile–butadiene rubber (NBR) has been blended with polychloroprene (CR) in a weight ratio of 1:1. The vulcanizing systems in the blend formulations were varied to obtain non crosslinked CR embedded in vulcanized NBR and non crosslinked NBR embedded in vulcanized CR. The effects of these two different phases on the rheological and mechanical characteristics were evaluated. In addition, the dynamic compliance of the blends was measured over wide ranges of frequency and temperature. It has been found that the mechanical and rheological properties of the vulcanized blends depend on the type of vulcanizing system, its concentration and the presence of reinforcing filler. The mechanical properties of the blend containing N‐cyclohexyl‐2‐benzthiazyl sulphenamide/S as vulcanizing system suitable for NBR are higher than those of the blend containing non‐sulfur vulcanizing system (Zno/Mgo and ethylene thiourea) suitable for CR. Both types of rubber (CR and NBR) in the blend are incompatible as two glass transition temperatures have been observed. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

14.
Even though literature available on EPDM is abundant, the data on physical, mechanical, thermal, interface properties and ablative performance as specifically required for the design and acceptance of internal insulation of large Composite Rocket Motor Casing is scant in the plethora of literature available in the subject of EPDM insulation. This gave the impetus to take up this experimental work wherein most promising formulation of EPDM with Kevlar and silica as reinforcing fillers and with only silica as reinforcing filler were thoroughly characterized for the insulation requirements of large Composite Rocket Motor Casing and compared with the performance of proven Nitrile rubber based insulation. The significant findings which are unique, are discussed in this paper.  相似文献   

15.
A special class of engineered copolymers, called ionomers, comprising both electrically neutral repeating units and a fraction of ionized units was melt blended to weather resistant acrylonitrile/styrene/acrylate (ASA) terpolymer for improved electrical conductivity, heat sealing ability, direct adhesion to several polymers, glass and metals without affecting the aesthetics and colorability of ASA. The similar chemical nature of one of the components of each blended materials viz. acrylate rubber in ASA and acrylic acid of Na‐ionomer in addition to the presence of ionic crosslinking within Na‐ionomer, polar acrylonitrile group in ASA affects chain dynamics as compared to neat polymers. In this context, dynamic rheological properties, DMA properties, creep behavior and DSC of the newly developed ASA/Na‐ionomer blends were analyzed. Based on Na‐ionomer content, the blend system either forms “mushroom” or “brush” type conformation and formation of ionic crosslinking in “brush regime” leads to three tiers Caylay tree conformation. The different chain topology resulted into characteristic loss modulous (G″) curve during stress relaxation process. The chain conformation as well as ionic crosslinking and ion–dipole interaction between the blend components also affected DSC endotherm peak and glass transition temperature. The tan δ peak temperature from DMA also revealed the similar observation. The creep compliance of the blends was dependent on Na‐ionomer content and with temperature. The Findley model analysis of creep compliance suggested that the creep compliance was depended on Na‐ionomer content and ionic crosslinking controlled the creep. The findings can be utilized to design weather resistant smart polymer using suitable filler system. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
The effect of γ radiation on the morphological and physical properties of Styrene–butadiene rubber (SBR) and Ethylene–propylene–diene monomer (EPDM) blends has been investigated. An attempt has been made to establish a correlation between various parameters like Gordon–Taylor parameter (k), hydrodynamic interaction parameter (Δ[η]mix), chemical shift factor (b), Charlesby–Pinner parameter (p0/q0) and polymer–polymer interaction parameter (χ). The results showed a close dependence of mechanical and physical properties of irradiated blends on these parameters. The probability of spur overlap has been found to increase with the increase in EPDM content in the blends, which in turn results in significant improvement in the mechanical properties of the irradiated SBR–EPDM blends with higher EPDM fraction. The efficiency of four multifunctional acrylates as crosslinking aid for the radiation‐induced vulcanization of SBR–EPDM blend was also studied. The results established lower efficiency of methacrylates over acrylates in the process and indicated that among the crosslinking agents studied trimethylolpropane triacrylate is the most efficient one. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1676–1689, 2006  相似文献   

17.
Chlorinated nitrile rubber (Cl-NBR) has been blended with chlorinated ethylene propylene diene rubber (Cl-EPDM) in different ratios by a conventional mill mixing method. The effect of the blend ratio on processing characteristics, mechanical properties (such as tensile and tear strength, elongation at break, hardness, abrasion resistance, heat build-up and resilience), structure, morphology, glass transition temperature (Tg), thermal stability, flame retardancy, oil resistance, AC conductivity, dielectric properties and transport behavior of petrol, diesel and kerosene were investigated. The shift in absorption bands of blends studied from FTIR spectra, single Tg from DSC analysis and decrease in amorphous nature from XRD showed the molecular miscibility in Cl-NBR/Cl-EPDM blends. SEM images showed the uniform mixing of both Cl-NBR and Cl-EPDM in a 50/50 blend ratio. The TGA curves indicated the better thermal stability of the polymer blend. The elongation at break, heat build-up, resilience and hardness of the polymer blend decreases with an increase in Cl-NBR content in the blend whereas the flame and oil resistance were increased with increase in Cl-NBR content. Among the polymer blends, the maximum torque, tensile strength, tear and abrasion resistance was obtained for the 50/50 blend ratio because of the effective interfacial interactions between the blend components. AC conductivity and dielectric properties of polymer blend increased with increase in the ratio of Cl-NBR in the blend. Different transport properties such as diffusion, permeation and sorption coefficient were measured with respect to nature of solvent and different blend ratios. Temperature dependence of diffusion was used to estimate the activation parameters and the mechanism of transport found to be anomalous.  相似文献   

18.
In situ silica was synthesized in three non‐vulcanized rubber matrices, namely natural rubber, styrene‐butadiene rubber, and EPDM (ethylene‐propylene diene ter‐polymer), using the sol–gel method with tetra‐ethoxysilane (TEOS) as silica precursor and hexylamine as catalyst. The effect of the reaction parameters such as the amount of TEOS, the reaction time (15–120 min), and the type of rubber was explored. Transmission electron microscopy was used to study the gradient in silica content and particle size over the sample thickness. The diffusion gradient of TEOS and catalyst solution in the rubber matrix responsible for the gradient was studied with Fick's law. An excellent dispersion of silica was obtained for all rubbers, even for the very non‐polar EPDM, without the use of any additives to improve the dispersion. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 967–978  相似文献   

19.
Polystyrene (PS), being an amorphous polymer is immiscible with other polymers. To engender miscible blends, PS has been functionalized with an active amino‐functional group on the molecular chains of PS to yield amino‐substituted polystyrene (APS), which serves as a reactive compatibilizer. The compatibilization effect of amino functionalized polystyrene on the rubber toughening was explored and results were compared in terms of morphology, thermal, and mechanical properties of PS/SEBS‐g‐MA versus APS/SEBS‐g‐MA blends. In addition, the effect of rubber content on the blend morphology and mechanical properties were investigated. An appreciable change in the thermal stability of APS blends in comparison with PS blend has been probed. A marked correlation has been observed between phase morphology and thermal stability. Use of APS produced the compatibilized blends which render improved blend morphology, enhanced thermal and mechanical properties. Optimal thermal, morphological and mechanical profiles were depicted by 20‐wt% APS blend. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
Varying compositions of styrene–butadiene rubber (SBR) and ethylene–propylene diene monomer (EPDM) 50:50 blend containing multiple walled carbon nanotube (MWNT) as nanoparticulate filler (0.5–5%) were prepared and their efficacy for radiation vulcanization was analyzed by gel‐content, Charlesby‐Pinner parameter, and crosslinking density measurements. Radiation sensitivity of the nanocomposites increased with increase in the MWNT fraction and radiation dose in the dose range studied. The elastic modulus, tensile strength increased with the radiation dose, while elongation at break exhibited downward trend. The extent of reinforcement as assessed using Kraus equation suggested high reinforcement of blend on MWNT addition. The reinforcing mechanism of nanocomposites was studied by various micromechanics models which predicted higher modulus than the experimentally observed results, indicating agglomeration in the nanocomposites. The thermal stability of the composites increased with increase in MWNT loading has been attributed to the antioxidancy induced by nanotubes and higher crosslinking extent of the nanocomposites. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号