首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Erigeroside was extracted from Satureja khuzistanica Jamzad (Marzeh Khuzistani in Persian, family of lamiaceae), and (1)H, (13)C, (13)C{(1)H}, (1)H-(1)H COSY, HMQC and J-HMBC were obtained to identify this compound and determine a complete set of J-coupling constants ((1)J(C-H), (2)J(C-H), (3)J(C-H) and (3)J(H-H)) values within the exocyclic hydroxymethyl group (CH(2)OH) and anomeric center. In parallel, density functional theory (DFT) using B3LYP functional and split-valance 6-311++G** basis set has been used to optimized the structures and conformers of erigeroside. In all calculations solvent effects were considered using a polarized continuum (overlapping spheres) model (PCM). The dependencies of (1)J, (2)J and (3)J involving (1)H and (13)C on the C(5')-C(6') (omega), C(6')-O(6') (theta) and C(1')-O(1') (phi) torsion angles in erigeroside were computed using DFT method. Complete hyper surfaces for (1)J(C1',H1'), (2)J(C5',H6'R), (2)J(C5',H6'S), (2)J(C6',H5'), (3)J(C4',H6'R), (3)J(C4',H6'S) and (2)J(H6'R-H5'S) as well as (3)J(H5',H6'R) were obtained and used to derive Karplus equations to correlate these couplings to omega, theta and phi. These calculated J-couplings are in agreement with experimental values. These results confirm the reliability of DFT calculated coupling constants in aqueous solution.  相似文献   

2.
13C-13C Spin-spin coupling constants (JCC) have been measured in a group of aldohexopyranoses and methyl aldopyranosides singly labeled with 13C at different sites to confirm and extend prior correlations between JCC magnitude and sign and saccharide structure. Structural correlations for 2JC1,C3, 2JC2,C4, 2JC4,C6, and 2JC1,C5 have been confirmed using density functional theory calculations to test empirical predictions. These geminal couplings depend highly on the orientation of C-O bonds appended to the terminal coupled carbons, but new evidence suggests that 2JCCC values are also affected by intervening carbon structure and C-O bond rotation. 3JC1,C6 and 3JC3,C6 values show Karplus-like dependences but also are affected by in-plane terminal hydroxyl substituents. In both cases, rotation about the C5-C6 bond modulates the coupling due to the alternating in-plane and out-of-plane O6. 3JC3,C6 is also affected by C4 configuration. Both 3JC1,C6 and 3JC3,C6 are subject to remote effects involving the structure at C3 and C1, respectively. New structural correlations have been determined for 2JC3,C5, which, like 3JC3,C6, shows a remote dependence on anomeric configuration. Investigations of dual pathway 13C-13C couplings, 3+3JC1,C4 and 3+3JC2,C5, revealed an important additional internal electronegative substituent effect on 3JCC in saccharides, a structural factor undocumented previously and one of importance to the interpretation of trans-glycoside 3JCOCC in oligosaccharides.  相似文献   

3.
Methyl alpha- and beta-pyranosides of d-glucose and d-galactose 1-4 were prepared containing single sites of (13)C-enrichment at C4, C5, and C6 (12 compounds), and (1)H and (13)C[(1)H] NMR spectra were obtained to determine a complete set of J-couplings ((1)J, (2)J, and (3)J) involving the labeled carbon and nearby protons and carbons within the exocyclic hydroxymethyl group (CH(2)OH) of each compound. In parallel theoretical studies, the dependencies of (1)J, (2)J, and (3)J involving (1)H and (13)C on the C5-C6 (omega) and C6-O6 (theta;) torsion angles in aldohexopyranoside model compounds were computed using density functional theory (DFT) and a special basis set designed to reliably recover the Fermi contact contribution to the coupling. Complete hypersurfaces for (1)J(C5,C6), (2)J(C5,H6)(R), (2)J(C5,H6)(S), (2)J(C6,H5), (2)J(C4,C6), (3)J(C4,H6)(R), (3)J(C4,H6)(S), and (3)J(C6,H4), as well as (2)J(H6)(R)(,H6)(S), (3)J(H5,H6)(R), and (3)J(H5,H6)(S), were obtained and used to parametrize new equations correlating these couplings to omega and/or theta;. DFT-computed couplings were also tested for accuracy by measuring J-couplings in (13)C-labeled 4,6-O-ethylidene derivatives of d-glucose and d-galactose in which values of omega and theta; were constrained. Using a new computer program, Chymesa, designed to utilize multiple J-couplings sensitive to exocyclic CH(2)OH conformation, the ensemble of experimental couplings observed in 1-4 were analyzed to yield preferred rotamer populations about omega and theta;. Importantly, due to the sensitivity of some couplings, most notably (2)J(H6)(R)(,H6)(S), (2)J(C5,H6)(R), and (2)J(C5,H6)(S), to both omega and theta;, unique information on correlated conformation about both torsion angles was obtained. The latter treatment represents a means of evaluating correlated conformation in 1,6-linked oligosaccharides, since psi and theta; are redundant in these linkages. In the latter regard, multiple, redundant scalar couplings originating from both sides of the glycosidic linkage can be used collectively to evaluate conformational correlations between psi/theta; and C5-C6 bond rotamers.  相似文献   

4.
The reaction of D-mannose and D-allose with [PtMe(3)(Me(2)CO)(3)]BF(4) 1 in acetone affords complexes [PtMe(3)L]BF(4) 5 and 6 (5, L = alpha-D-mannofuranose; 6, L = beta-D-allofuranose). The coordination mode and conformation of the carbohydrate ligands in 5 and 6 in acetone-d(6) have been determined from an analysis of J(HH), J(CH), and J(CC) in complexes formed using site-specific (13)C-labeled D-mannose and D-allose. These coupling data are compared to those measured in (13)C-labeled complex [PtMe(3)L]BF(4) 2 (L = 1, 2-O-isopropylidene-alpha-D-glucofuranose) and 1, 2-O-isopropylidene-alpha-D-glucofuranose 3, whose solid-state structures are known, and in (13)C-labeled 1,2;5, 6-di-O-isopropylidene-alpha-D-glucofuranose 4. The preferred furanose ring conformations in 2 and 5 are very similar ((3)E/E(4) and E(4)/(o)E/E(1), respectively; eastern hemisphere of the pseudorotational itinerary), with platinum coordination involving O3, O5, and O6 of the saccharide. In contrast, the furanose ring of 6 prefers an (4)E/E(o)/(1)E geometry (western hemisphere of the pseudorotational itinerary) resulting from altered complexation involving O1, O5, and O6. Couplings within the exocyclic fragments of 2, 5, and 6 also support the existence of two different platinum coordination modes. In addition to establishing the structures and conformations of 2, 5, and 6 in solution, one-, two-, and three-bond J(CH) and J(CC) observed in these complexes provide new insights into the effect of structure and conformation on the magnitudes of these couplings in saccharides. Weak platinum(IV) complexation with the carbohydrate conformationally restricts the furanose and exocyclic fragment without introducing undesirable structural strain, thereby allowing more reliable correlations between structure and coupling magnitude.  相似文献   

5.
Experimental and theoretical methods have been used to correlate (2)J(HH) and (3)J(HH) values within the exocyclic hydroxymethyl groups (CH(2)OH) of saccharides with specific molecular parameters, and new equations are proposed to assist in the structural interpretation of these couplings. (3)J(HH) depends mainly on the C-C torsion angle (omega) as expected, and new Karplus equations derived from J-couplings computed from density functional theory (DFT) in a model aldopyranosyl ring are in excellent agreement with experimental values and with couplings predicted from a previously reported general Karplus equation. These results confirm the reliability of DFT-calculated (1)H-(1)H couplings in saccharides. (2)J(HH) values depend on both the C-C (omega) and C-O (theta) torsions. Knowledge of the former, which may be derived from other parameters (e.g., (3)J(HH)), allows theta to be evaluated indirectly from (2)J(HH). This latter approach complements more direct determinations of theta from (3)J(HCOH) and potentially extends these more conventional analyses to O-substituted systems lacking the hydroxyl proton. (1)J(CH) values within hydroxymethyl fragments were also examined and found to depend on r(CH), which is modulated by specific bond orientation and stereoelectronic factors. These latter factors could be largely, but not completely, accounted for by C-C and C-O torsional variables, leading to only semiquantitative treatments of these couplings (details discussed in the Supporting Information). New equations pertaining to (2)J(HH) and (3)J(HH) have been applied to the analysis of hydroxymethyl group J-couplings in several mono- and oligosaccharides, yielding information on C5-C6 and/or C6-O6 rotamer populations.  相似文献   

6.
Aqueous solutions of N-acetyl-neuraminic acid (Neu5Ac, 1) labeled with (13)C at C1, C2, and/or C3 were analyzed by (13)C NMR spectroscopy to detect and quantify the acyclic forms (keto, keto hydrate, enol) present at varying pHs. In addition to pyranoses, solutions contained the keto form, based on the detection of C2 signals at approximately 198 ppm (approximately 0.7% at pH 2). Spectra of [2-(13)C] and [3-(13)C] isotopomers contained signals arising from labeled carbons at approximately 143 and approximately 120 ppm, respectively, which were attributed to enol forms. Solution studies of [1,2,3-(13)C3] 1 substantiated the presence of enol (approximately 0.5% at pH 2). Enol was not detected at pH > 6.0. A C2 signal observed at approximately 94 ppm was identified as C2 of the keto hydrate (approximately 1.9% at pH 2), based partly on its abundance as a function of solution pH. Density functional theory (DFT) calculations were used to study the effect of enol and hydrate structure on J(CH) and J(CC) values involving C2 and C3 of these forms. Solvated DFT calculations showed that (2)J(C2,H3) in cis and trans enols have similar magnitudes but opposite signs, making this J-coupling potentially useful to distinguish enol configurations. Solvent deuterium exchange studies of 1 showed rapid incorporation of (2)H from (2)H2O at H3 axial in the pyranoses at p(2)H 8.0, followed by slower exchange at H3 equatorial. The acyclic keto form, which presumably participates in this reaction, must assume a pseudo-cyclic conformation in solution in order to account for the exchange selectivity. Weak (13)C signals arising from labeled species were also observed consistently and reproducibly in aqueous solutions of (13)C-labeled 1, possibly arising from products of lactonization or intermolecular esterification.  相似文献   

7.
A very large set of one-bond spin-spin carbon carbon coupling constants, 1J(CC), has been measured for 32 variously mono- and disubstituted pyridine N-oxides and for 14 substituted pyridines. The N-oxides studied were 2-, 3- and 4-monosubstituted isomers, and a series of disubstituted compounds. A variety of substituents has been employed (CH3, COCH3, C5H4NO, CN, F, Br, Cl, OH, OCH3, NH2, N(CH3)2 and NO2), which allowed us to study substituent effects thoroughly. Good linear relationships between 1J(C3C4) in 3- and/or 4-substituted pyridine N-oxides and 1J(CipsoCortho) in benzenes and between 1J(C2C3) in 2- and/or 3-substituted pyridine N-oxides and 1J(CipsoCortho) in benzenes have been found. An analogous linear relationship has been observed between 1J(C3C4) in 3- and/or 4-substituted pyridines and 1J(CipsoCortho) in benzenes. It has been also concluded that, by analogy to 1J(CC) couplings in substituted benzenes, those in pyridines and their N-oxides are the substituent electronegativity dependent. The estimated total range covered by 1J(CC), couplings in substituted compounds varies, in the case of 1J(C2C3) couplings for example, from 25 Hz in 2-lithiopyridine N-oxide to ca. 100 Hz in 2,3-difluoropyridine N-oxide and from 18 Hz in 2-lithiopyridine to 92 Hz in 2,3-difluoropyridine. The DFT calculations have been carried out for the parent compounds and for a set of their 2-lithio, and variously substituted fluoro derivatives. The DFT data reproduced very well the experimental coupling values and revealed that the Fermi contact contribution is the dominating factor which governs the magnitude of the CC coupling across one bond.  相似文献   

8.
[reaction: see text] A series of 2-amino-2-deoxy-D-[1-13C]aldohexoses and their methyl glycosides was prepared with use of a simplified cyanohydrin reduction route. Four d-aldopentosylamines (arabino, lyxo, ribo, xylo) were prepared from the corresponding D-aldopentoses by reaction with NH3(g) in MeOH solvent, isolated in solid form, and characterized by 13C and 1H NMR. Hydrolysis of beta-D-xylopyranosylamine was studied using 13C-labeled substrates to establish optimal solution conditions for cyanohydrin formation. Major hydrolytic intermediates were observed and identified by time-lapse 1D and 2D NMR analyses of reaction mixtures. The aldopentosylamines were subsequently employed in cyanohydrin reduction reactions with K13CN to yield C2-epimeric [1-13C]2-aminosugars, which were separated by chromatography on ion-exchange columns. N-Acetylation and methyl glycosidation followed by chromatography gave pure 2-acetamido-2-deoxy-D-[1-13C]aldohexopyranosides. J(CH) and J(CC) spin-spin coupling constants involving the labeled anomeric carbon were measured and compared to those observed previously in methyl D-[1-13C]aldohexopyranosides. In parallel studies, theoretical J-couplings were calculated in model N-acetylated aldopyranosides using density functional theory (DFT) to predict the effect of OH vs NHCOCH(3) substitution at C2 on J(CH) and J(CC) values in aldopyranosyl rings. The synthetic method was also modified to accommodate (15)N- and (13)C-labeling within the N-acetyl side-chain, and some J-couplings involving 1H, 13C, and 15N atoms in 2-[1,2-13C2;15N]acetamido-2-deoxy-D-[1-13C]glucose were measured and interpreted.  相似文献   

9.
The effect of hydroxymethyl conformation (gg, gt, and tg rotamers about the C4-C5 bond) on the conformational energies and structural parameters (bond lengths, bond angles, bond torsions) of the 10 envelope forms of the biologically relevant aldopentofuranose, 2-deoxy-beta-D-erythro-pentofuranose (2-deoxy-D-ribofuranose) 2, has been investigated by ab initio molecular orbital calculations at the HF/6-31G level of theory. C4-C5 bond rotation induces significant changes in the conformational energy profile of 2 (2gt and 2tg exhibit one global energy minimum, whereas 2gg exhibits two nearly equivalent energy minima), and structural changes, especially those in bond lengths, are consistent with predictions based on previously reported vicinal, 1,3- and 1,4-oxygen lone pair effects. HF/6-31G-optimized envelope geometries of 2gg were re-optimized using density functional theory (DFT, B3LYP/6-31G), and the resulting structures were used in DFT calculations of NMR spin-spin coupling constants involving 13C (i.e., J(CH) and J(CC) over one, two, and three bonds) in 2gg according to methods described previously. The computed J-couplings were compared to those reported previously in 2gt to assess the effect of C4-C5 bond rotation on scalar couplings within the furanose ring and hydroxymethyl side chain. The results confirm prior predictions of correlations between 2J(CH), 3J(CH), 2J(CC) and 3J(CC), and ring conformation, and verify the usefulness of a concerted application of these couplings (both their magnitudes and signs) in assigning preferred ring and C4-C5 bond conformations in aldopentofuranosyl rings. The new calculated J-couplings in 2gg have particular relevance to related J-couplings in DNA (and RNA indirectly), where the gg rotamer, rather than the gt rotamer, is observed in most native structures. The effects of two additional structural perturbations on 2 were also studied, namely, deoxygenation at C5 (yielding 2,5-dideoxy-beta-D-erythro-pentofuranose 4) and methyl glycosidation at O1 (yielding methyl 2-deoxy-beta-D-erythro-pentofuranoside 5) at the HF/6-31G level. The conformational energy profile of 4 resembles that found for 2gt, not 2gg, indicating that 4 is an inappropriate structural mimic of the furanose ring in DNA. Glycosidation failed to induce differential stabilization of ring conformations containing an axial C1-O1 bond (anomeric effect), contrary to experimental data. The latter discrepancy indicates that either the magnitude of this differential stabilization depends on ring configuration or that solvent effects, which are neglected in these calculations, play a role in promoting this stabilization.  相似文献   

10.
We propose the 13C-detecting 1D DEPT long-range C-C relay to detect super long-range H-C connectivity via four bonds (1H-13C-X-X-13C, X represents 12C or heteronuclear). It is derived from the DEPT C-C relay which detects the H-C correlations via two bonds (1H-13C-13C) by setting the delays for J(CC) in the C-C relay sequence to the (LR)J(CC). This sequence gives correlation signals split by small (LR)J(CC), which seriously suffers from residual center signal. The unwanted signal is due to long-range C-H couplings ((LR)J(CH)). The expected relayed magnetization transfer 1J(CH) --> (LR)J(CC) occurs in the 1H-13C-X-(X)-13C isotopomer, whereas the unwanted signal of (LR)J(CH) comes from 1H-12C-(X)-13C isotopomers, whose population is 100 times larger than that of the 1H-13C-X-(X)-13C isotopomer. The large dispersive line of this unwanted center signal would be a fatal problem in the case of detecting small (LR)J(CC) couplings. This central signal could be removed by an insertion of BIRD pulse or X-filter. DEPT spectrum editing solved a signal overlapping problem and enabled accurate determination of particular (LR)J(CC) values. We demonstrate here the examples of structure determination using connectivity between 1H and 13C via four bonds, and the application of long-range C-C coupling constants to discrimination of stereochemical assignments.  相似文献   

11.
Side-chain dynamics in proteins can be characterized by the NMR measurement of (13)C and (2)H relaxation rates. Evaluation of the corresponding spectral densities limits the slowest motions that can be studied quantitatively to the time scale on which the overall molecular tumbling takes place. A different measure for the degree of side-chain order about the C(alpha)-C(beta) bond (chi(1) angle) can be derived from (3)J(C)(')(-)(C)(gamma) and (3)J(N)(-)(C)(gamma) couplings. These couplings can be measured at high accuracy, in particular for Thr, Ile, and Val residues. In conjunction with the known backbone structures of ubiquitin and the third IgG-binding domain of protein G, and an extensive set of (13)C-(1)H side-chain dipolar coupling measurements in oriented media, these (3)J couplings were used to parametrize empirical Karplus relationships for (3)J(C)(')(-)(C)(gamma) and (3)J(N)(-)(C)(gamma). These Karplus curves agree well with results from DFT calculations, including an unusual phase shift, which causes the maximum (3)J(CC) and (3)J(CN) couplings to occur for dihedral angles slightly smaller than 180 degrees, particularly noticeable in Thr residues. The new Karplus curves permit determination of rotamer populations for the chi(1) torsion angles. Similar rotamer populations can be derived from side-chain dipolar couplings. Conversion of these rotamer populations into generalized order parameters, S(J)(2) and S(D)(2), provides a view of side-chain dynamics that is complementary to that obtained from (13)C and (2)H relaxation. On average, results agree well with literature values for (2)H-relaxation-derived S(rel)(2) values in ubiquitin and HIV protease, but also identify a fraction of residues for which S(J,D)(2) < S(rel)(2). This indicates that some of the rotameric averaging occurs on a time scale too slow to be observable in traditional relaxation measurements.  相似文献   

12.
1,2,3,4-tetrachloro-5,6,7,8-tetrafluoro-9-methyltriptycene was studied in NMR spectra at low temperatures where the methyl group dynamics is frozen. Values of 5J(19F,1H), 1J(13C,1H), and 2J(1H,1H) for the individual methyl protons were measured. They are in a fair agreement with the corresponding theoretical values calculated at a density functional theory (DFT) level. The 5J(19F,1H) couplings involve the peri-F nucleus and occur via the 'through space' mechanism. Both the natural bond orbital analysis (at a HF level) and the observed pattern of 1J(13C,1H) coupling values corroborate occurrence in this molecule of intramolecular, blue-shifting hydrogen bonds engaging the methyl hydrogens. The 'through space' 5J(19F,1H) couplings may indicate the routes of electron density transfers that escape detection by the natural bond analysis. A consideration of these effects can enrich the chemical intuition involving this specific sort of H-bonds.  相似文献   

13.
Spin-spin carbon-carbon coupling constants across one bond and carbon proton coupling constants across one, two and three bonds have been measured for a large series of derivatives of five-membered heterocyclic compounds. This included 2-methyl and 2-lithio derivatives of furan, N-methyl pyrrole and thiophene and a series of 2-R-substituted thiophenes where R = O-t-Bu, Cl, Br, I, Si(CH3)3, MgBr and MgTh. For the long-range C-H couplings their signs have been determined in several compounds by the use of modern 2D NMR techniques, and in all the cases they have been found to be positive. A good linear dependence upon electronegativity of the substituent has been observed for 1J(CC), 2J(C2H3), and 3J(C2H4). Very small 1J(CC) couplings of ca. 30 Hz only have been found in all three lithio compounds; they belong to the smallest couplings of this type reported up to now. They are accompanied by very large and positive two-bond couplings, 2J(C2H3) of ca. +20 Hz, which in turn are the largest couplings of this type reported so far. In both cases the changes observed are interpreted in terms of the changes in the Fermi contact contribution.  相似文献   

14.
Recombinant HIV-1 protease was obtained from bacteria grown on a 98% D(2)O medium containing 3-(13)C pyruvic acid as the sole source of (13)C and (1)H. The purified protein is highly deuterated at non-methyl carbons, but contains significant populations of (13)CHD(2) and (13)CH(2)D methyl isotopomers. This pattern of isotope labeling permitted measurements of (1)H and (13)C relaxation rates of (13)CHD(2) isotopomers and (2)H (D) relaxation rates of (13)CH(2)D isotopomers using a single sample. The order parameters S(axis)(2), which characterize the motions of the methyl rotation axes, were derived from model-free analyses of R(1) and R(2) data sets measured for (13)C and (2)H spins. Our primary goal was to compare the S(axis)(2) values derived from the two independent types of data sets to test our understanding of the relaxation mechanisms involved. However, S(axis)(2) values derived from the analyses depend strongly on the geometry of the methyl group, the sizes of the quadrupolar and dipolar couplings, and the effects of bond vibrations and librations on these couplings. Therefore uncertainties in these basic physical parameters complicate comparison of the order parameters. This problem was circumvented by using an experimental relationship, between the methyl quadrupolar, (13)C-(13)C and (13)C-(1)H dipolar couplings, derived from independent measurements of residual static couplings of weakly aligned proteins by Ottiger and Bax (J. Am. Chem. Soc. 1999, 121, 4690-4695) and Mittermaier and Kay (J. Am. Chem. Soc. 1999, 121, 10608-10613). This approach placed a tight experimental restraint on the values of the (2)H quadrupolar and (13)C-(1)H dipolar interactions and greatly facilitated the accurate comparison of the relative values of the order parameters. When applied to our data this approach yielded satisfactory agreement between the S(axis)(2) values derived from the (13)C and (2)H data sets.  相似文献   

15.
(29)Si-(13)C spin-spin couplings over one, two, and three bonds as well as other NMR parameters [delta((29)Si), delta((13)C), delta((1)H), (1)J((13)C-(1)H), and (2)J((29)Si-C-(1)H)] were calculated and measured for a series of trimethylsilylated alcohols of the types Me(3)Si-O-(CH(2))(n)CH(3) and Me(3)Si-O-CH(3-n)R(n)(n = 0-3; R = Me, Ph, or Vi). The signs of the coupling constants determined for selected compounds can likely be extended to all such compounds, as supported by theoretical calculations. Similar to couplings between other pairs of nuclei, the 2-bond and 3-bond (29)Si-O-(13)C couplings are of opposite signs ((2)J > 0 and (3)J < 0), and their relative magnitudes depend on the extent of branching at the alpha-carbon.  相似文献   

16.
Theoretical examination [B3LYP/6-31G(d,p), PP/IGLO-III//B3LYP/6-31G(d,p), and NBO methods] of six-membered cyclohexane 1 and carbonyl-, thiocarbonyl-, or methylidene-containing derivatives 2-27 afforded precise structural (in particular, C-H bond distances) and spectroscopic (specifically, one-bond (1)J(C)(-)(H) NMR coupling constants) data that show the consequences of stereoelectronic hyperconjugative effects in these systems. Major observations include the following. (1) sigma(C)(-)(H)(ax)() -->(C)(=)(Y) and pi(C)(=)(Y) --> sigma(C)(-)(H)(ax)() (Y = O, S, or CH(2)) hyperconjugation leads to a shortening (strengthening) of the equatorial C-H bonds adjacent to the pi group. This effect is reflected in smaller (1)J(C)(-)(H)(ax)() coupling constants relative to (1)J(C)(-)(H)(eq)(). (2) Comparison of the structural and spectroscopic consequences of sigma(C)(-)(H)(ax)() --> pi(C)(=)(Y) hyperconjugation in cyclohexanone 2, thiocyclohexanone 3, and methylenecyclohexane 4 suggests a relative order of acceptor orbital ability C=S > C=O > C=CH(2), which is in line with available pK(a) data. (3) Analysis of the structural and spectroscopic data gathered for heterocyclic derivatives 5-12 reveals some additivity of sigma(C)(-)(H)(ax)() --> pi(C)(=)(Y), pi(C)(=)(Y) --> sigma(C)(-)(H)(ax)(), n(X) --> sigma(C)(-)(H)(ax)(), n(beta)(O) --> sigma(C)(-)(H)(eq)(), and sigma(S)(-)(C) --> sigma(C)(-)(H)(eq)() stereoelectronic effects that is, nevertheless, attenuated by saturation effects. (4) Modulation of the C=Y acceptor character of the exocyclic pigroup by conjugation with alpha-heteroatoms O, N, and S in lactones, lactams, and methylidenic analogues 13-24 results in decreased sigma(C)(-)(H)(ax)() --> pi(C)(=)(Y) and pi(C)(=)(Y) --> sigma(C)(-)(H)(ax)() hyperconjugation. (5) Additivity of sigma(C)(-)(H)(ax)() --> pi(C)(=)(Y) and pi(C)(=)(Y) --> sigma(C)(-)(H)(ax)() hyperconjugative effects is also apparent in 1,3-dicarbonyl derivative 25 (C=Y equal to C=O), 1,3-dithiocarbonyl derivative 26 (C=Y equal to C=S), and 1,3-dimethylidenic analogue 27 (C=Y equal to C=CH(2)).  相似文献   

17.
One- two- and three 13C, 13C (n = 1, 2, 3) scalar couplings, (n)J(C,C) in a set of pyrimidine derivatives were studied both experimentally at natural abundance and theoretically by their DFT calculation of all four contributions. Trends of non-contact terms are discussed and substituent effects are rationalized, comparing some of them with the corresponding values in benzene and pyridine. Although substituent effects on non-contact terms are relatively important, the whole trend is dominated by the Fermi contact term. According to the current literature, substituent effects on 1J(C,C) couplings in benzene derivatives are dominated by the inductive effect, which, apparently, is also the case in nitrogen heteroaromatic compounds. However, some differences observed in this work for substituent effects on 1J(C,C) couplings in pyrimidine derivatives suggest that in the latter type of compounds substituent effects can be affected by the orientation of the ring nitrogen lone pairs.  相似文献   

18.
A preliminary study of the long-range (i.e. two-bond or longer) (13)C--(13)C coupling constants in natural abundance C(70) shows, consistent with recent theoretical calculations by Peralta et al. that the largest long-range J(CC) values for the polar and equatorial sites are clearly smaller than the largest long-range J(CC) values for the other three sites. The unusually large size of the (2)J(CC) couplings between inequivalent carbons in a nonpolar pentagon in C(70) has no analog among (2)J(CC) data reported for planar aromatic compounds. No long-range J(CC) values appear to have been reported for any curved aromatic compounds. In addition, much more precise (1)J(CC) values were obtained for C(70) than was possible about 15 years ago. Comparing the chemical shifts for each of the five isotopomers of C(70) containing only one (13)C nucleus and the frequencies of the satellites for each of the four isotopomers containing two adjacent and inequivalent (13)C nuclei indicates that replacing (12)C with (13)C shields the adjacent (13)C nucleus by 15 to 23 ppb, consistent with the limited (1)Delta(13)C((13/12)C) isotope effect data available on a few small aromatic molecules. Such measurements become possible with natural abundance C(70) only by using a (13)C cryoprobe and a high-field spectrometer (700 MHz). The additional information that could be obtained from a spectrum obtained under ultrahigh resolution conditions is discussed. Secure identification of the singlets arising from the four (12)C(68) (13)C(2) isotopomers with equivalent adjacent (13)C nuclei is necessary to allow the largest long-range J(CC) values to be precisely determined. The presence of numerous isotopomers containing two or more (13)C nuclei would present a great challenge in interpreting the various signals in a spectrum obtained under ultrahigh resolution conditions.  相似文献   

19.
The complete analysis of the complex (1)H NMR spectra of some monosubstituted cyclobutanes was achieved to give all the (1)H chemical shifts and (n)J(HH) (n = 2, 3 and 4) coupling constants in these molecules. The substituent chemical shifts of the substituents in the cyclobutane ring differ significantly from those in acyclic systems. For example, the OH and the NH(2) groups in cyclobutanol and cyclobutylamine produce a large shielding of the hydrogens of the opposite CH(2) group of the ring compared with little effect on the comparable methylene protons of butane. These effects and the other (1)H shifts in the cyclobutanes were modelled successfully in the CHARGE program. The RMS error (calculated vs observed shifts) for the 34 (1)H shifts recorded was 0.053 ppm. The conformational equilibrium in these compounds between the axial and the equatorial conformers was obtained by comparing the observed and the calculated (4)J(HH) couplings. These couplings in cyclobutanes, in contrast to the corresponding (3)J(HH) couplings, show a pronounced orientation dependence; (4)J(eq-eq) is ca 5 Hz and (4)J(ax-ax) ca 0 Hz. The couplings in the individual conformers were calculated at the B3LYP/EPR-III level. The conformer energy differences ΔG(ax-eq) vary from 1.1 kcal mol(-1) for OH to 0.2 kcal mol(-1) for the CH(2)OH substituent. The values of the conformer energy differences are compared with the previous IR data and the corresponding theoretical values from molecular mechanics (MM) and DFT theory. Generally, good agreement is observed although both the MM and the DFT calculations deviate significantly from the observed values for some substituents.  相似文献   

20.
29Si-13C couplings were measured in para substituted silylated phenols, X--C6H4--O--SiR1R2R3 (X = NO2, CF3, Cl, F, H, CH3, CH3O). The SiR1R2R3 silyl groups included trimethylsilyl (Si(CH3)3, TMS), tert-butyldimethylsilyl (Si(CH3)2C(CH3)3, TBDMS), dimethylsilyl (SiH(CH3)2, DMS), and tert- butyldiphenylsilyl (Si(C6H5)2C(CH3)3, TBDPS). Previously developed (Si,C,Si)gHMQC methods and narrow 29Si lines allowed the determination of coupling constants over up to five bonds. Besides the number of intervening bonds between the silicon and carbon atoms, all the measurable couplings depend also on the nature of the substituents on the silicon. The two- and three-bond couplings are not affected by ring substitution in the para position. These properties render the 29Si-13C couplings suitable for line assignment in the spectra of silylated polyphenols. The experimental results are in reasonable agreement with theoretical calculations. The calculations show, in agreement with the data reported in the literature for couplings between other nuclei, that the two-bond and three-bond couplings, which are of similar magnitudes, are of opposite signs. If the signs of these geminal and vicinal couplings could be determined experimentally, they would greatly facilitate the line assignment. The four- and five-bond couplings are affected by the substituent X in a nontrivial manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号