首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Ta2O5 is reduced to Ta(IV)O2 with the rutile structure by shock-loading to 50–60 GPa. Tetragonal unit cell parameters at room conditions are measured to be a = 4.7518(5)Å, c = 3.0878(4) Å, ca = 0.6498(1), and V = 69.72(1) Å3. The chemical composition is thermogravimetrically determined to be Ta0.97±0.04O2 by heating shock-reduced products in an oxygen gas flow to 1200°C. In the oxidation process a cation-deficient rutile-type compound Ta0.8O2 is found to be metastably formed.  相似文献   

2.
Vanadium ditelluride, V1.04Te2, has a Cd(OH)2-type structure with unit cell dimensions ah = 3.638 Å and ch = 6.582 Å above the transition temperature Tt of 482 K. Below Tt the structure is monoclinic, space group C2m, with cell dimensions am = 18.984 Å(≈3ah√3), bm = 3.5947 Å (≈ah), cm = 9.069 Å (≈√(3a2h + c2h)), β = 134.62°. This low-temperature form is isostructural with NbTe2 and TaTe2 (which do not show a phase transition); the vanadium atoms form double zigzag chains with VV distances of 3.316 Å, which distort the Te lattice. Complex diffraction patterns were observed due to the simultaneous occurrence of the distortion of the Cd(OH)2-type structure of vanadium ditelluride in three equivalent directions. Similar patterns were found for the Nb and Ta ditellurides.  相似文献   

3.
The MIPO3Sm(PO3)3(MI = Li, Na, Ag) systems were studied. Differential thermal analysis and X-ray diffraction were used to investigate the liquidus and solidus relations. Three compounds LiSm(PO3)4, NaSm(PO3)4, and AgSm(PO3)4 were obtained which melt incongruently at 1248, 1143, and 1078 K, respectively. These compounds are isomorphous with their homologs LiLn(PO3)4, NaLn(PO3)4, AgLn(PO3)4 (Ln = Ce, La, Nd). They belong to the monoclinic system. The LiSm(PO3)4 unit cell parameters refined by least squares method are a = 16.43(3) Å, b = 7.16(1) Å, c = 9.65(3) Å, β = 125,9°(1), with the space group C2c and Z = 4. NaSm(PO3)4 and AgSm(PO3)4 are isotypic; they cristallize in the P21c space group, Z = 4; their unit cell parameters are, respectively, a = 12.18(1) Å, b = 13.05(1) Å, c = 7.25(5) Å, β = 126,53°(4), a = 12.25(1)A?, b = 13.06(1) Å, c = 7.201(9) Å, β = 126,57°(7). The ir spectra of the last two compounds indicate that these phosphates are chain phosphates.  相似文献   

4.
CsCrI3 has been investigated by neutron powder diffraction at room temperature and 77 and 1.2 K. It undergoes a phase transition at 150 K due to the cooperative Jahn-Teller effect. The high-temperature form, α-CsCrI3 (hexagonal, space group P63mmc, a = 8.127(1)Å, c = 6.944(1)Å, Z = 2), adopts the BaNiO3 structure with a local Jahn-Teller distortion. The low-temperature form, β-CsCrI3 (orthorhombic, space group Pbcn, a = 8.102(1)Å, b = 13.792(1)Å, c = 6.900(1)Å, Z = 4), has a structure not yet been reported for a Jahn-Teller distorted BaNiO3 structure. It is shown that the low-temperature form can be derived from the BaNiO3 structure by means of a canting of triangles, formed by the three common I? ions of two adjacent CrI64? octahedra. The magnetic structure of β-CsCrI3 at 1.2 K is found to consist of an antiparallel sequence of ferromagnetic (0 0 1) planes with a magnetic moment in the ∥1 0 0∥ direction of 3.16 μB.  相似文献   

5.
LLi2Mo4o13 crystallizes in the triclinic system with unit-cell dimensions a = 8.578 Å, b = 11.450 Å, c = 8.225 Å, α = 109.24°, β = 96.04°, γ = 95.95° and space group P1, Z = 3. The calculated and measured densities are 4.02 g/cm3 and 4.1 g/cm3 respectively. The structure was solved using three-dimensional Patterson and Fourier techniques. Of the 2468 unique reflections collected by counter methods, 1813 with I ? 3σ(I) were used in the least-squares refinement of the model to a conventional R of 0.031 (ωR = 0.038). LLi2Mo4O13 is a derivative of the V6O13 structure with oxygen ions arranged in a face-centred cubic type array with octahedrally coordinated molybdenum and lithium ions ordered into layers.  相似文献   

6.
Single crystals of the title compounds have been grown by the Czochralski technique. Pb4P2O9 crystallizes in the space group P21c with the parameters a = 9.4812 Å, b = 7.1303 Å, c = 14.390 Å, β = 104.51° and Pb8P2O13 in C2m with a = 10.641 Å, b = 10.206Å c = 14.342 Å, β = 98.34°.  相似文献   

7.
The stoichiometric lanthanum disulfide LaS2 presents a reversible phase transition at about 750°C. The α low-temperature form is monoclinic with the LaSe2 type. All the crystals are twinned with the same twin law (100). The cell parameters are a = 8.18, b = 8.13, c = 4.03Å, γ = 90°, space group P21a. The β high-temperature form has the orthorhombic structure previously described with the parameters a = 8.13, b = 16.34, c = 4.14 Å; space group Pnma. The two structures are compared.  相似文献   

8.
Single crystals of BaTiF5 and CaTiF5 were obtained by the Czochralski and Bridgman techniques, respectively. The crystal structures were determined by X-ray diffraction; BaTiF5: 14m, a = 15.091(5)Å, c = 7.670(3)Å; CaTiF5: I2c, a = 9.080(4)Å, b = 6.614Å, c = 7.696(3)Å, β = 115.16(3)°. Both structures are characterized by the presence of either branched or straight chains of TiF6 octahedra. BaTiF5 contains the unusual dimeric unit (Ti2F10)4?. Magnetic susceptibility measurements were performed on both compounds in the temperature range 4.2 to 300 K, however, no evidence for magnetic interactions between the Ti3+ moments were observed.  相似文献   

9.
The crystal structure of NbS3 was determined from single-crystal diffractometer data obtained with Mo radiation. The compound is triclinic, space group P1, with: a 4.963(2) Å; b = 6.730(2) Å; c = 9.144(4)Å; α = 90°; β = 97.17(1)°; γ = 90°. The structure is closely related to the ZrSe3 structure type; it shows that the compound can be formulated as Nb4+(S2)2?S2?, in agreement with XPS spectra. The main difference with ZrSe3 is that the Nb atoms are shifted from the mirror planes of the surrounding bicapped trigonal prisms of sulfur atoms to form NbNb pairs (NbNb = 3.04 Å); this causes a doubling of the b axis relative to ZrSe3 and a decrease of the symmetry to triclinic.  相似文献   

10.
The high-temperature form of (NH4)3In(SO4)3 is rhombohedral, R3c, with a = 15.531 (12), c = 9.163 (8)Å, Z = 6. The structure was solved to R = 0.023 for 570 independent reflections measured at about 140°C. The structure is built up of [In(SO4)3] columns extending along the c axis and composed of InO6 octahedra and SO4 tetrahedra linked together; this arrangement is very similar to that found in the low-temperature form. To explain the transition mechanism, the existence of an intermediate phase of point symmetry 3 is postulated and the whole sequence of possible forms would be 2m3 → 3m → 3m. This last phase would be the prototypic structure of the possibly ferroelastic low-temperature modification, which can apparently exist only with nonspherical monovalent cations.  相似文献   

11.
The new compound BaSb2S4 crystallizes in the monoclinic system (space group: P21c, No. 14) with a = 8.985(2) Å, b = 8.203(3) Å, c = 20.602(5) Å, β = 101.36(3)°. SbS3 ψ tetrahedra and ψ-trigonal SbS4 bipyramids are connected by common corners and edgers to infinite strings. These are arraged cross-wise in sheets perpendicular to the c axis.  相似文献   

12.
Compounds formed by the insertion of lithium into the rutile structure hosts RuO2 and IrO2 were studied by X-ray and neutron powder diffraction techniques. Compositions in the range LixMO2, M = Ru or Ir, 0 < x < 1 are two-phase materials consisting of unreacted host, x = 0, and limiting compositions x = 0.9 in both cases. Preparation of compounds with x > 1 was unsuccessful. Li0.9RuO2 and Li0.9IrO2 have orthorhombic cells with a = 5.062(3), b = 4.967(4), c = 2.771(4) and a = 4.962(4), b = 4.758(4), c = 3.108(6), respectively. Compared to the host rutile (tetragonal) cells those of the insertion compounds are greatly expanded along [100] and [010], ~0.5 Å for both, and contracted along [001], by ~0.3 Å for Li0.9RuO2 and 0.05 Å for Li0.9IrO2. The space group for both insertion phases appears to be Pnnm, a subgroup of the rutile space group P42mnm. The structure of Li0.9RuO2 was solved from neutron diffraction data. Lithium exists as Li+ in octahedral sites. The LiO coordination is highly regular with two bonds at 2.05(1) Å and four at 2.08(2) Å. The overall structure is essentially an ordered NiAs-type very similar to but more regular than the previously reported LiMoO2. Attempts to solve the structure of Li0.9IrO2 from both X-ray and neutron powder data were unsuccessful due, presumably, to severe preferred orientation.  相似文献   

13.
Anhydrous Li2SeO4 crystallizes in the trigonal space group R3 with a = 13.931(2), c = 9.304(3) Å, V = 1563.7 Å3, Z = 18, Dc = 2.988 g cm?3. The unit cell transforms to the rhombohedral coordinate system as a = 8.620 Å, α = 107.81(2)°, V = 521.2 Å3, Z = 6. The structure contains selenate anions bridged by Li in the phenacite structural type. Data collection was performed at low temperature for precise placement of the Li cations which are tetrahedrally surrounded by oxygen atoms. Some problems with secondary extinction were apparent and a correction was made. The structure refined to an R value of 0.034.  相似文献   

14.
NaBaCr2F9 and NaBaFe2F9 are monoclinic (SG P21n, No. 14). Lattice constants are found to be a = 7.318(2) Å, b = 17.311(4) Å, c = 5.398(1) Å, β = 91.14°(3) for chromium, and a = 7.363(2) Å, b = 17.527(4) Å, c = 5.484(1) Å, β = 91.50°(5) for iron. The structures were solved from 507 and 1113 X-ray reflections, respectively, for the Cr and Fe compounds; the corresponding Rw values are 0.025 and 0.037. The network is built from tilted double cis chains of octahedra (M2F9)3n?n [M = Cr, Fe], linked by Na+ and Ba2+ ions. The structures are compared to the previously described structures, particularly KPbCr2F9, whose symmetry and parameters are different. The difference is analyzed first in terms of tilted octahedra, but principally in terms of bond strengths and steric activity of the Pb2+ lone pair. A mechanism is proposed for the transformation between the structures of NaBaCr2F9 and KPbCr2F9.  相似文献   

15.
Crystal structures of the ordered phases of V3S4 and V5S8 were refined with single crystal data. Both are monoclinic. Chemical compositions, space groups and lattice constants are as follows: VS1.47, I2m (No. 12), a = 5.831(1), b = 3.267(1), c = 11.317(2)Å, β = 91.78(1)° and VS1.64, F2m (No. 12), a = 11.396(11), b = 6.645(7), c = 11.293(4), Å, β = 91.45(6)°. In both structures, short metal-metal bonds were found between the layers as well as within them. In comparison with the structure of Fe7S8, the stability of NiAs-type structure was discussed based on the detailed metal-sulfur distances.  相似文献   

16.
Crystal structures for the fluorite-related phases CaHf4O9ф1) and Ca6Hf19O44 (ф2) have been determined from X-ray powder diffraction data. qf1 is monoclinic, C2c, with a = 17.698 Å, b = 14.500Å, c = 12.021 Å, β = 119.47° and Z = 16. qf2 is rhombohedral, R3c, with a = 12.058 Å, α = 98.31° and Z = 2.Both phases are superstructures derived from the defect fluorite structure by ordering of the cations and of the anion vacancies. The ordering is such that the calcium ions are always 8-coordinated by oxygen ions, while the hafnium ions may be 6-, 7-, or 8-coordinated. The closest approach of anion vacancies is a 12〈111〉 fluorite subcell vector, and in each structure vacancies with this separation form strings.  相似文献   

17.
Single crystals of Pb2P2O7 have been grown by the Czochralski technique. They have the triclinic space group P1 with cell dimensions a = 6.9627 Å, b = 6.9754Å, c = 12.764 Å, α = 96.78°, β = 91.16°, γ = 89.68°. There are four molecules per unit cell. Dielectric properties for this compound have been measured and are discussed.  相似文献   

18.
The crystalline compound Li4P2S6 is obtained either by devitrification of Li4P2S7 glass at 450°C with sulfur formation or by crystallisation at 450°C of a Li2S, P and S melt. The structure determination has been solved by X-ray diffraction on a monocrystal. The unit cell is hexagonal P63mcm with a = 6.070(4), c = 6.577(4) Å, V = 209 Å3, Z = 1. Intensities were collected at 293°K with (λ = 0.71069 Å) Mo radiation on an automatic Nonius CAD-4 diffractometer. The structure was solved under the assumption of random disorder of P atoms over two sites (occupancy factor of 0.5). Anisotropic least-squares refinement with W = 1 gave R = 0.047 for 90 independent reflections and 9 variables. The structure is built according to an ABAB sequence sulfur packing. Per unit cell, four out of six octahedral sites are occupied by Li ions, and the other two are statistically filled (0.5) by PP pairs. The PP central bond (2.256(13) Å) links two staggered PS3 groups (PS = 2.032(5) Å) to form the D3d symmetry P2S4?6 anion. Infrared and Raman spectra show features very similar to those of Na4P2S6, 6H2O and MIIPS3 compounds. A new assignment in terms of symmetry species is proposed for the P2S6 internal modes, which is confirmed by a normal coordinate calculation using a valence force field; the stretching force constants fPP and fPS are equal to 1.6 and 2.7 mdyne Å?1, respectively.  相似文献   

19.
β-TeVO4 crystallizes in the monoclinic system with the space group P21c and the parameters: a = 4.379 Å, b = 13.502 Å, c = 5.446 Å, and β = 91.72°. Vanadium occupies the center of a square pyramid of oxygens, an extra oxygen is at VO = 2.77 Å. These distorted octahedra share corners forming puckered sheets parallel to (010). The sheets are held together by [Te2O6]4? groups in which tellurium is one-side coordinated by four oxygen atoms.  相似文献   

20.
The system MgOSiO2H2O was investigated at pressures between 40 and 95 kbar and at temperatures between 500 and 1400°C. The reaction products were examined by X-ray, optical and thermal analysis techniques and the density of phase A discovered by Ringwood and Major was also measured. It was found that phase A was hydrated and its chemical formula was H6Mg7Si2O14. When the MgSi ratio of the system is 2, phase A + clinoenstatite, and forsterite are stable at temperatures lower and higher than a boundary curve T (°C) = 10P (kbar), respectively. When the MgSi ratio of the system is 3, phase A + phase D (which is completely different from the phases, A, B and C discovered by Ringwood and Major, and any other known phases of magnesium silicate) and phase D + brucite are stable at temperatures lower and higher than a boundary curve T(°C) = 10P (kbar) + 200. Phase A has approximately an hexagonal symmetry and the space group and the lattice parameters are determined as P63 or P63m and a = 7.866(2) Å and c = 9.600(3) Å, respectively. The measured density is 2.96 ± 0.02 g/cm3. The optical observations show that phase A is biaxial positive crystal with refractive indices α = 1.638 ± 0.001, β = 1.640 ± 0.002, and γ = 1.649 ± 0.001. Some interpretation is given on the inconsistency between the symmetry determined by the X-ray diffraction and the optical observation. The new phase D belongs to the space group P21c with lattice parameters a = 7.914(2)Å, b = 4.752(1) Å, c = 10.350(2) Å and β = 108.71(5)° and is a biaxial crystal with refractive indices α = 1.630 ± 0.002, β = 1.642 ± 0.002 and γ = 1.658 ± 0.001.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号