首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 452 毫秒
1.
Trioxalatocobaltates of bivalent metals KM2+[Co(C2O4)3x H2O, with M2+ = Ba, Sr, Ca and Pb, have been prepared, characterized and their thermal behaviour studied. The compounds decompose to yield potassium carbonate, bivalent metal carbonate or oxide and cobalt oxide as final products. The formation of the final products of decomposition is influenced by the surrounding atmosphere. Bivalent metal cobaltites of the types KM2+CoO3 and M2+CoO3—x are not identified among the final products of decomposition. The study brings out the importance of the decomposition mode of the precursor in producing the desired end products.  相似文献   

2.
The chloro complexes of cobalt, nickel and copper with 3-phenylpyridine were prepared in ethanolic solution from which solid compounds were isolated. The cobalt and copper complexes have stoichiometry M2LCl4 while the nickel complex has stoichiometry NiLCl2. The suggested structure for the cobalt and copper complexes is tetrahedral, while for the nickel complex it is octahedral. Thermal analysis studies show that the cobalt and copper complexes form intermediate complexes before their metal oxides are produced. The nickel complex also forms an intermediate complex and then nickel chloride before the nickel oxide is obtained.  相似文献   

3.
Complex Formation of 5,6-Dihalogeno-7-oxa-bicyclo[2.2.1]heptane-2,3-dicarboxylic Acid with 3d Transition Elements Carboxylate complexes of bivalent manganese, cobalt, nickel and copper with 5,6-dichloro- and 5,6-dibromo-7-oxa-bicyclo[2.2.1]heptane-2,3-dicarboxylic acid ( 3 and 4 ) have been prepared. For cobalt and nickel two types of complexes are formed: [ML3/4(H2O)3] · H2O and [ML3/4(H2O)2], the latter is thermodynamically more stable. Manganese and copper form only complexes [MnL3/4] and [CuL3/4(H2O)2], respectively. The stereochemical configuration of the compounds have been deduced from their spectroscopic and magnetic properties. The metal atoms have been found to be in an octahedral environment. The stability constants of the complexes have been determined by potentiometric measurements. The thermal decomposition of the complexes has been studied by thermogravimetry and differential thermal analysis. The complexes of 3 are thermally more stable than the corresponding ones of 4 . The X-ray structure analysis of [CoL3(H2O)3] · H2O shows a monomeric structure of the complex within the crystal and an octahedral coordination of the metal ion. The dicarboxylate anion acts as a tridentate ligand, the other octahedral sites are occupied by three water molecules. The chlorine atoms are not involved in the network of hydrogen bonds within the crystal packing.  相似文献   

4.
Triammonium-N-dithiocarboxyiminodiacetate, (NH4)3L, a new dithiocarbamato derivative of iminodiacetate, has been synthesized. The coordination properties of the ligand were tested in reactions with copper(II), nickel(II) and palladium(II) salts in acidic solutions. Complexes with a general formula M(H2L)2 were obtained, with the coordination taking place through the sulfur atoms of the dithiocarbamate moiety. The new compounds were characterized by elemental analysis, UV/VIS and IR spectroscopy, thermal analysis and magnetic measurements. In addition, the ligand was characterized by 1H- and 13C-NMR spectroscopy and molar conductivity measurements. The copper(II) complex is paramagnetic, while the nickel(II) and palladium(II) compounds are diamagnetic. The thermal decomposition of all compounds is continuous and the thermal stability of the complexes is higher than that of the ligand, as expected.  相似文献   

5.
Asymmetric bidentate Schiff base ligand (HL) and its cobalt(III), nickel(II), and copper(II) complexes have been synthesized (where L = 2-[(4-methoxy-2-nitrophenyl)iminomethyl]phenol). The ligand and its metal complexes have been characterized by elemental analyses (CHN) and FTIR spectroscopy. Thermogravimetric analyses of the compounds reveal their thermal stabilities along with their thermal decomposition pattern. In addition, the complexes have been used for the preparation of corresponding metal oxide nanoparticles by controlled aerobic thermal decomposed at 500 °C. The FTIR pattern of the obtained solids receals the formation of the metal oxides nanoparticles.  相似文献   

6.
Four different types of new ligands Ar[COC(NOH)R] n (Ar=biphenyl, n = 1 H2L1; Ar=biphenyl, n = 2 H4L2; Ar=diphenylmethane, n = 1 H2L3; Ar=diphenylmethane, n = 2 H4L4; R=2-amino-4-chlorophenol in all ligands) have been obtained from 1 equivalent of chloroketooximes Ar[COC(NOH)Cl] n (HL1-H2L4) and 1 equivalent of 2-amino-4-chlorophenol (for H2L1 and H2L3) or 2 equivalent of 2-amino-4-chlorophenol (for H4L2 and H4L4). (Mononuclear or binuclear cobalt(II), nickel(II), copper(II) and zinc(II) complexes were synthesized with these ligands.) These compounds have been characterized by elemental analyses, AAS, infra-red spectra and magnetic susceptibility measurements. The ligands have been further characterized by 1H NMR. The results suggest that the dinuclear complexes of H2L1 and H2L3 have a metal:ligand ratio of 1:2; the mononuclear complexes of H4L2 and H4L4 have a metal:ligand ratio of 1:1 and dinuclear complexes H4L2 and H4L4 have a metal:ligand ratio of 2:1. The binding properties of the ligands towards selected transition metal ions (MnII, CoII, NiII, CuII, ZnII, PbII, CdII, HgII) have been established by extraction experiments. The ligands show strong binding ability towards mercury(II) ion. In addition, the thermal decomposition of some complexes is studied in nitrogen atmosphere.  相似文献   

7.
Synthesis and characterization of benzyl-monohydrazone-3-hydrazino-4-benzyl-6-phenyl pyridazine (BHP) and its complexes with copper(II), nickel(II), cobalt(II), zinc(II), manganese(II), cadmium(II), thorium(IV), dioxyuranium(VI), samarium(III) and erbium(III) are presented. The protonation equilibrium of BHP ion and complex formation equilibrium with the metal ions have been studied by potentiometry in 75% (v/v) dioxane-water and 0.10M KNO3 at different temperatures (10, 20, 30 and 40°C). A series of mononuclear complexes [ML n ](1? z )+ (L? =?BHP and n =?1 ??z) were found in solution and their formation constants, enthalpies and entropies were determined.

The solid metal complexes and corresponding thermal products were elucidated by elemental analysis, conductance, IR and electronic spectra, magnetic moments, 1H NMR and TG-DSC measurements as well as by mass spectroscopy. The use of BHP as analytical reagents for the determination of copper(II), nickel(II) and cobalt(II) as well as extracting agents for these metal ions are discussed.  相似文献   

8.
2‐Mercaptopyridine N ‐oxide (pyrithione, PTOH) along with several transition metal ions forms coordination compounds displaying notable biological activities. Gas‐phase complexes formed between pyrithione and manganese (II), cobalt (II), nickel (II), copper (II), and zinc (II) were investigated by infusion in the electrospray source of a quadrupole‐time of flight mass spectrometer. Remarkably, positive ion mode spectra displayed the singly charged metal adduct ion [C10H8MN2O2S2]2+ ([M(PTO)2]+• or [M(DPTO)]+•), where DPTO is dipyrithione, 2,2′‐dithiobis(pyridine N ‐oxide), among the most abundant peaks, implying a change in the oxidation state of whether the metal ion or the ligands. In addition, doubly charged ions were recognized as metal adduct ions containing DPTO ligands, [M(DPTO)n]2+. Generation of [M(PTO)2]+• / [M(DPTO)]+• could be traced by CID of [M(DPTO)2]2+, by observation of the sequential losses of a charged (PTO+) and a radical (PTO) deprotonated pyrithione ligand. The fragmentation pathways of [M(PTO)2]+• / [M(DPTO)]+• were compared among the different metal ions, and some common features were noticed. Density functional theory (DFT) calculations were employed to study the structures of the observed adduct ions, and especially, to decide in the adduct ion [M(PTO)2]+• / [M(DPTO)]+• whether the ligands are 2 deprotonated pyrithiones or a single dipyrithione as well as the oxidation state of the metal ion in the complex. Characterization of gas‐phase pyrithione metal ion complexes becomes important, especially taking into account the presence of a redox‐active ligand in the complexes, because redox state changes that produce new species can have a marked effect on the overall toxicological/biological response elicited by the metal system.  相似文献   

9.
N-Picolyl polyurethanes (PUPY) were synthesized by nucleophilic substitution. The blends of these polyurethanes with various of transition metal chlorides [cobalt(II), nickel(II), and copper(II)] were studied by spectroscopic and thermal analysis. Ultraviolet-visible and infrared spectroscopic evidence indicates that a tetrahedral cobalt(II) complex with two pendent picolyl groups in the first-shell coordination sphere of Co2+ is formed in a series of blends with different molar ratio (from 10/1 to 2/1) of picolyl groups to cobalt(II) ions. According to the result of Small-Angle X-ray Scattering (SAXS), Differential Scanning Calorimetry (DSC), and Dynamic Mechanical Thermal Analysis (DMTA), coordination interaction between ligands in hard segments and metal ions provides a driving force for phase separation. The coordination strength of pyridine with Ni2+ is stronger than Co2+ and Cu2+. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1539–1546, 1998  相似文献   

10.
The homopolynuclear coordination compound [CoL · 2.5H2O]n with L=C2O4 2− was synthesized by a new unconventional method. It consist in the redox reaction between 1,2-ethanediol and cobalt nitrate in presence of nitric acid. The coordination compound was characterized by chemical analysis, electronic and vibrational spectra respectively, thermal analysis. In the coordination compound the Co(II) ion exists in a high spin octahedral configuration and oxalate anion acts as double-bridge ligand, tetradentate, similar as in CoC2O4 · 2H2O obtained by the classical method. Nonstoichiometric oxide, Co3O4+0.25 with deficit in cobalt and normal spinel Co3O4 where identified as thermal decomposition intermediates. As final product of decomposition, the oxide CoO was obtained.  相似文献   

11.
The thermal decompositions of cobalt(II), nickel(II) and copper(II) complexes of4-(3'-sulfonylazido-6'-methoxyphenylazo)-1-phenyl-3-methyl-2-pyrazolin-5-one H(D1–SO2N3) and 4-(4'-sulfonylazido phenylazo)-3-phenyl-3-methyl-2-pyrazolin-5-one H(D2–SO2N3) were studied by thermogravimetry. The decomposition in all cases takes place along two stages. The first stage is due to the elimination of water and nitrogen molecules with the formation of tetracoordinate complexes containing nitrene reactive species[M(DSO2N:)2]. The second stage represents the decomposition of the material to the metal oxide. The kinetics of the decomposition were examined by using Coats–Redfern, the decomposition in all complexes was found to be first order for the first and second stages. The activation energies and other activation parameters (H* and S* and G*) were computed and related to the bonding and stereochemistry of the complexes.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

12.
The synthesis, spectroscopic, and magnetic characterization of two new copper(II) and cobalt(II) complexes are described. Both two compounds have the general formula [M(L)2(Cl)2] (M = Cu (I), Co (II); L = 2-amino-5-bromopyridine). These complexes were prepared in one-step synthesis and characterized by elemental analysis, FT-IR, UV-Vis, and EPR spectroscopy. Moreover, the single crystal structure of complex I was studied by the X-ray diffraction method. This compound consists of mononuclear units consisting of two ligands linked to metal via the nitrogen of pyridine ring. The UV-Vis spectra of copper(II) and cobalt(II) complexes show three and five absorption bands, respectively, attributed to the d-d transition of the metal ion, ligand → metal charge transfer and π → π* or n → π* transitions of the ligand. The FT-IR spectra show MN2Cl2 vibrations at 500–300 cm?1. The complexes show room temperature magnetic moments of 1.78 and 4.12 μB for Cu(II) and Co(II), respectively. The X-band electron spin resonance (ESR) spectra of Cu(II) complex in DMF or DMSO frozen at liquid nitrogen temperature show the typical ΔMS = ±1 transition.  相似文献   

13.
Complexes represented by the general formula [MCl2L2] (M(II)=Zn, Mn, Co) and complexes of [Cu3Cl6L4] and CuSO4L2·4H2O, CoSO4L2·3H2O, [ZnSO4L3] where L stands for 3-amino-5-methylpyrazole were prepared. The complexes were characterized by elemental analysis, FT-IR spectroscopy, thermal (TG, DTG, DSC and EGA) methods and molar conductivity measurements. Except for the Zn-complexes, the magnetic susceptibilities were also determined. Thermal decomposition of the sulphato complexes of copper(II) and cobalt(II) and the chloro complexes of cobalt(II) and manganese(II) resulted in well-defined intermediates. On the basis of the IR spectra and elemental analysis data of the intermediates a decomposition scheme is proposed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
Novel cobalt, nickel and copper complexes were synthesized by regular reflux method and nano sized Co(II), Ni(II) and Cu(II) metal complexes were synthesized by a facile hydrothermal method using green solvent at various temperatures without the addition of any capping agent. The structural characterization was done by magnetic susceptibility, molar conductance, elemental analysis, thermal analysis, FT‐IR, 1H NMR, 13C NMR, ESI mass, UV–Visible analysis. The morphology and size of the nano metal complexes were determined using FE‐Scanning electron microscopy, powder X‐ray diffraction data and atomic force microscopic techniques. All the spectral and analytical results reveal 1:2 metal to ligand ratios having [ML2(H2O)2] stoichiometry, here M=Co(II), Ni(II) and Cu(II), L=deprotonated ligand. The non‐electrolytic nature of the compound was confirmed by molar conductance experiment. The synthesized Schiff base and its metal complexes (7, 8 and 9) were tested for their biological activity. All the tested compounds exhibit decent anticancer and DNA cleavage activity and copper complex shows better activity results than other tested compounds.  相似文献   

15.
Four new mixed ligand complexes were prepared by the reaction of title metal dichloroacetates and 2,4'-bipyridine. The general formulae of synthesized compounds are M(2,4'-bpy)2(CCl2HCOO)2·nH2O (where M(II)=Mn, Co, Ni, Cu; 2,4'-bpy=2,4'-bipyridine, n=2 or 4). The complexes have been isolated from aqueous media and characterized by chemical analysis, molar conductance (in MeOH, DMSO and DMF), magnetic, IR and VIS spectral studies. The nature of metal(II)-ligand coordination is discussed. The thermal behaviour of obtained complexes was studied by thermal analysis and TG-MS techniques in air. IR, X-ray powder diffraction and thermoanalytical data were used for the determination of solid intermediate products of the thermal decomposition. The principal volatile products of thermal decomposition of complexes were proved by mass spectroscopy: H2O+, CO+ 2, HCl+ 2, Cl+ 2, NO+ and other. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
Summary The thermal behavior of copper(II), nickel(II) and palladium(II) complexes with two anionic varieties of 2-OH-aryloximes (ox), [M(ox)2] (2-hydroxypropiophenonoxime and 2-hydroxy-4-methoxy-benzophenonoxime) was studied by using simultaneous TG/DTG-DTA technique under nitrogen in the temperature range 40-700°C. The behavior was compared with that in static air, which had been previously studied. It was found that the metal, the substituents on the ligand and the heating rate influenced their thermal decomposition. The thermal stability of the complexes with the same ligand depended on the metallic cation, following the order Pd(II)>Ni(II)>Cu(II). It also depended on the type of ligand, increasing with bulky substituents on the oximic carbon and the benzene ring. The sample mass almost did not affect their decomposition mode. The residues at 700°C of all complexes consisted of a carbonaceous oxide, determined by energy dispersive spectrometry (EDS) and IR spectroscopy  相似文献   

17.
A phosphorus-containing Schiff base was prepared from bis{3-[2-(4-amino-1,5-dimethyl-2-phenylpyrazol-3-ylideneamino)ethyl]indol-1-ylmethyl}phosphinic acid and paraformaldehyde as a novel antibacterial compound. The reaction of the Schiff base ligand with VO(IV), Ni(II), Co(II), Cu(II), Zn(II), Cd(II), Hg(II), Pd(II) and Pt(IV) led to binuclear species of metal complexes, depending on the ratio of metal ion and ligand. The ligand and its complexes were investigated using elemental analysis, Fourier transform infrared, 1H NMR, 13C NMR, UV–visible and mass spectra, thermogravimetric analysis, conductivity measurements and thermal analysis. The results showed that the Schiff base behaves as a tetradentate ligand; moreover, on the basis of conductance results, of all the prepared complexes are non-electrolytes, excepting the Pt(IV) complex. The metal complexes were found to be formed with a metal-to-ligand ratio of 2:1, except for the Pt(IV) complex with a ratio of 1:1. The activation thermodynamic parameters (ΔE*, ΔH*, ΔS*, ΔG* and K) and the activation energy of thermal decomposition were determined from thermogravimetric analysis using the Coats–Redfern method. The biological activities of the metal complexes were screened against the growth of bacteria and fungi in vitro to assess the antimicrobial potential and study the toxicity of the compounds. The prepared compounds have noteworthy antimicrobial properties.  相似文献   

18.
Complexation of the zinc(II) ion with 2,2-bipyridine (bpy) and 1,10-phenanthroline (phen) has been calorimetrically studied in 4-methylpyridine (4Me-py) containing 0.1 mol dm–3 (n-C4H9)4NClO4 as a constant ionic medium at 25°C. The formation of [ZnL]2+, [ZnL2]2+, and [ZnL3]2+ (L=bpy, phen), and their formation constants, reaction enthalpies and entropies were determined. Our EXAFS (extended X-ray absorption fine structure) measurements showed that the solvation structure of the manganese(II), cobalt(II), and nickel(II) ions is six-coordinate octahedral in 4Me-py and 3-methylpyridine (3Me-py), while that of the zinc(II) ion is four-coordinate tetrahedral in 4Me-py. Since [ZnL3]2+ is expected to have an octahedral structure, a tetrahedral-to-octahedral structural change should take place at a certain step of complexation. The thermodynamic parameters, especially reaction entropies, indicate that the structural change occurs at the formation of [Zn(bpy)2]2+ and [Zn(phen)]2+.  相似文献   

19.
Complexes of Ni(II), Co(II), Cu(II), Zn(II), Cd(II), Hg(II) and U(VI)O2 with 2-acetylpyridine-[N-(3-hydroxy-2-naphthoyl)] hydrazone (H2APHNH) have been prepared and characterized by elemental analysis, molar conductance, thermal (TG, DTG), spectral (1H NMR, IR, UV–Vis, ESR) and magnetic measurements. 1H NMR spectrum of the ligand suggests the presence of intramolecular hydrogen bonding. IR spectra show that H2APHNH is a bidentate, tridentate and/or tetradentate ligand. Thermal decomposition of some complexes ended with metal oxide as a final product. ESR spectra gave evidence for the proposed structure and the bonding for some Cu(II) complexes. Biological activity measurements were carried out.  相似文献   

20.
Double sulfates of cobalt(II), nickel(II), copper(II) and zinc with the monomethylammonium cation were obtained from the reaction mixture of the corresponding metal sulfate and monomethylammonium sulfate in a molar ratio of 13.The obtained compounds were studied by the methods of X-ray powder diffraction, TG and DSC analysis and elemental analysis.It was found that the double sulfates have the formula (CH3NH3)2M(SO4)2· 6H2O, and that the cobalt, nickel and zinc compounds are isostructural. The relationship between crystal structure and thermal decomposition is discussed.The financial support of the Research Council of Macedonia, Yugoslavia, is gratefully acknowledged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号