首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
In this paper, we present a novel strategy for fabricating polyoxometalate (POM)-based photochromic silica hybrid films. To combine metal nanoparticles (NPs) into the POMs embedded silica matrix, furthermore, we realized the controllable in situ synthesis of metal NPs in the film by utilizing the reduction property of POMs existing in the reduced state. Through electrostatic encapsulation with hydroxyl-terminated surfactants, the POMs with good redox property can be covalently grafted onto a silica matrix by means of a sol-gel approach, and stable silica sol-gel thin films containing surfactant-encapsulated POMs can be obtained. The functional hybrid film exhibits both the transparent and easily processible properties of silica matrix and the stable and reversible photochromism of POMs. In addition, well-dispersed POMs in a hydrophobic microenvironment within the hybrid film can be used as reductants for the in situ synthesis of metal NPs. More significantly, the size and location of NPs can be tuned by controlling the adsorption time of metal ions and mask blocking the surface. The hybrid film containing both POMs and metal NPs with patterned morphology can be obtained, which has potential applications in optical display, memory, catalysis, microelectronic devices and antibacterial materials.  相似文献   

2.
The coming big-data era has created a huge demand for next-generation memory technologies with characters of higher data-storage densities, faster access speeds, lower power consumption and better environmental compatibility. In this field, the design of resistive switching active materials is pivotal but challengeable. Polyoxometalates (POMs) are promising candidates for next-generation molecular memristors due to their versatile redox characters, excellent electron reservoirs and good compatibility/convenience in microelectronics processing. In this review, five kinds of POM-based active materials in nonvolatile memories (inorganic POMs, crystalline organic-inorganic hybrid POMOFs, polymer modified POMs, POM/transition metal oxides composites and the deposition of POM on metal surfaces) were described. The components of POMs active materials, device fabrications, device parameters, and resistive switching mechanisms relative to their structures were summarized. Finally, challenges and future perspectives of POMs-based memristors were also presented.  相似文献   

3.
Polypyrrole (PPy) films doped with macrocyclic calixarene anions are attractive materials for the development of selective sensor materials and membrane systems as the incorporation of the macrocycles can confer specific recognition sites within the polymer matrix. However, unlike many other PPy films a calixarene‐doped system is more complicated as calixarenes are themselves electroactive. Here we present results on the electroactivity, impedance properties and morphology of polypyrrole doped with p‐sulfonatocalix[4]arene. The calixarene in the polymer was found to be irreversibly oxidised at potentials greater than 0.500 V vs. SCE and reacted to form a new redox active species that was trapped within the polymer matrix. The results from the impedance and EQCM studies indicated that the calixarene was permanently trapped within the polymer matrix and the polymer acted as a cation exchange material. In addition, the data acquired from the EQCM experiments showed that while the material displayed simple cation exchange properties at high scan rates, at lower scan rates the transport of neutral species was also observed. Overall, our findings indicate that the PPy‐C4S system is suitable for use as a stable conducting polymer doped with an immobile anion within the potential window of ?0.800 V to 0.500 V vs. SCE.  相似文献   

4.
The potentiometric response of electrodes coated with polypyrrole or poly(N-methylpyrrole) films with different doping anions was studied in solutions containing the redox couples: Fe(CN)63−/4−, Ru(NH3)63+/2+ and Fe(Ill)/Fe(II). The stable potential measured with the electrodes was the potential of the redox couple. The response time was instant for polypyrrole doped with dodecylsulphate ions, PPy(DS) and slow for the polymers doped with mobile anions. On the basis of electrochemical measurements and chemical analysis by EDAX spectroscopy it was found that with the PPy(DS) electrode the potentiometric response was of the ‘metallic’ type, with no change in the oxidation state of the bulk polymer. With the other polymer systems studied reduction or oxidation of the polymer bulk took place when it was in contact with a redox couple in the solution.  相似文献   

5.
Amphiphilic organo‐polyoxometalates (POMs) used in the radical emulsion polymerization of styrene allowed the preparation in aqueous medium of stable 50–100 nm polystyrene–POM composite latexes. Thanks to the presence of a trithiocarbonate group in the POM amphiphile, POMs could be covalently linked to the polymer particle surface. The chemical and catalytic integrity of the POMs was confirmed, and the POM‐mediated surface photoactivity of the latexes was demonstrated by the spatially controlled nucleation of silver nanoparticles at the periphery of the composites.  相似文献   

6.
Efficient polyoxometalate (POM)-based Lewis acid-base catalysts of the rare-earth-metal-containing POMs (TBA(6)RE-POM, RE = Y(3+), Nd(3+), Eu(3+), Gd(3+), Tb(3+), or Dy(3+)) were designed and synthesized by reactions of TBA(4)H(4)[γ-SiW(10)O(36)] (TBA = tetra-n-butylammonium) with RE(acac)(3) (acac = acetylacetonato). TBA(6)RE-POM consisted of two silicotungstate units pillared by two rare-earth-metal cations. Nucleophilic oxygen-enriched surfaces of negatively charged POMs and the incorporated rare-earth-metal cations could work as Lewis bases and Lewis acids, respectively. Consequently, cyanosilylation of carbonyl compounds with trimethylsilyl cyanide ((TMS)CN) was efficiently promoted in the presence of the rare-earth-metal-containing POMs via the simultaneous activation of coupling partners on the same POM molecules. POMs with larger metal cations showed higher catalytic activities for cyanosilylation because of the higher activation ability of C═O bonds (higher Lewis acidities) and sterically less hindered Lewis acid sites. Among the POM catalysts examined, the neodymium-containing POM showed remarkable catalytic performance for cyanosilylation of various kinds of structurally diverse ketones and aldehydes, giving the corresponding cyanohydrin trimethylsilyl ethers in high yields (13 substrates, 94-99%). In particular, the turnover frequency (714,000 h(-1)) and the turnover number (23,800) for the cyanosilylation of n-hexanal were of the highest level among those of previously reported catalysts.  相似文献   

7.
《Electroanalysis》2017,29(9):2167-2176
In this work a novel concept of monitoring of occurrence of redox reactions between conducting polymer nanospheres and redox species in a solution is proposed. The redox process is monitored in the emission mode (without wiring of the probe to an electrochemical measuring set‐up) as a change in emission spectrum of a dye (not participating in the redox process itself) but reporting the alteration of properties of highly sensitive conducting polymer nanoparticles. This approach is possible due to applied unique method of synthesis of conducting polymers nanospheres of highly active, unblocked surface. Thus the nanospheres redox state is affected by the solution redox potential, leading to change of their properties. If solvatochromic probe of sufficiently high brightness (pyrene) is present in nanospheres, a redox reaction between the conducting polymer and solution can be observed as change of emission spectrum of the probe. Thus a localized redox potential optical probe can be obtained. The emission properties of the dye incorporated were preserved in the nanospheres, moreover, the emission spectrum of the probe was affected by the change in redox potential of the solution, thus influencing the redox state and ultimately the properties of the conducting polymer. The emission changes observed were dependent on ion‐exchange properties of polypyrrole, i.e. depending on the dopant ions present in the polymer, the sensitivity of the optical probe can be tuned.  相似文献   

8.
In this study vitamin B12 covered magnetite nanoparticles have been incorporated into a conducting polypyrrole. This polymer was electrochemically synthesized in the presence of the B12-coated magnetite. The adsorption of B12 was demonstrated by the decrease in absorbance of the vitamin in the supernatant liquid after B12 has been in contact with magnetite sol overnight. The composition of the layers was studied by the electrochemical quartz crystal microbalance technique during the polymerization. The slope of the mass change–charge curves indicate the incorporation of 27 m/m% magnetite and 15 m/m% B12. The redox transformation of the film in monomer- and nanoparticle-free solutions was also investigated by this method and the difference in the virtual molar masses of the moving species was evidenced. The morphology and the composition of the layers were characterized by scanning electron microscopy combined with energy dispersive X-ray microanalysis measurements, which latter proved the successful incorporation of the magnetic and bio-active components. The electrochemical behavior of the films unambiguously showed the complex redox activity of the composites and the current surplus were quantified by the redox capacity of the layers. These data show the doubling of the redox capacity in case of the hybrid material compared to the neat polymer. The successful enrichment of B12 can be exploited in the recently evidenced redox mediation process performed by a PPy/B12 film.  相似文献   

9.
A series of polyoxometalates (POMs) that incorporate the highest‐nuclearity Ln clusters that have been observed in such structures to date (Ln26 , Ln=La and Ce) are described, which exhibit giant multishell configurations (Ln⊂W6⊂Ln26⊂W100). Their structures are remarkably different from known giant POMs that feature multiple Ln ions. In particular, the incorporated Ln–O clusters with a nuclearity of 26 are significantly larger than known high‐nuclearity (≤10) Ln–O clusters in POM chemistry. Furthermore, they also contain the largest number of La and Ce centers for any POM reported to date and represent a new kind of rare giant POMs with more than 100 W atoms. Interestingly, the La26‐containing POM can undergo a single‐crystal to single‐crystal structural transformation in the presence of various transition‐metal ions, such as Cu2+, Co2+, and Ni2+, from an inorganic molecular nanocluster into an inorganic–organic hybrid extended framework that is built from POM building blocks with even higher‐nuclearity La28 clusters bridged by transition‐metal complexes.  相似文献   

10.
A novel construction of solution free (pseudo)reference electrodes, compatible with all-solid-state potentiometric indicator electrodes, has been proposed. These electrodes use conducting polymers (CP): polypyrrole (PPy) or poly(3,4-ethylenedioxythiophene) (PEDOT). Two different arrangements have been tested: solely based on CP and those where the CP phase is covered with a poly(vinyl chloride) based outer membrane of tailored composition. The former arrangement was designed to suppress or compensate cation- and anion-exchange, using mobile perchlorate ions and poly(4-styrenesulfonate) or dodecylbenzenesulfonate anions as immobilized dopants. The following systems were used: (i) polypyrrole layers doped simultaneously by two kinds of anions, both mobile and immobilized in the polymer layer; (ii) bilayers of polypyrrole with anion exchanging inner layer and cation-exchanging outer layer; (iii) polypyrrole doped by surfactant dodecylbenzenesulfonate ions, which inhibit ion exchange on the polymer/solution interface. For the above systems, recorded potentials have been found to be practically independent of electrolyte concentration. The best results, profound stability of potentials, have been obtained for poly(3,4-ethylenedioxythiophene) or polypyrrole doped by poly(4-styrenesulfonate) anions covered by a poly(vinyl chloride) based membrane, containing both anion- and cation-exchangers as well as solid potassium chloride and silver chloride with metallic silver. Differently to the cases (i)-(iii) these electrodes are much less sensitive to the influence of redox and pH interferences. This arrangement has been also characterized using electrochemical impedance spectroscopy and chronopotentiometry.  相似文献   

11.
Responses of polypyrrole based ion-selective chloride electrode were investigated in chloride and redox media. Bifunctional character of the potentiometric response of the polypyrrole films doped with chloride ions was observed being sensitive both to chloride ions and to the redox potential of the solution, however the redox response seems to predominate.  相似文献   

12.
聚萘二胺的合成及其对重金属离子的高效反应吸附   总被引:10,自引:0,他引:10  
聚萘二胺是继聚苯胺和聚吡咯之后的又一类新型导电高分子,因聚合物中含有活性 的自由胺基和亚胺基而具有新的多功能性.作者根据近期研究工作和国外最新文献,系统论述了聚1,8-、1,5-、2,3-萘二胺的化学氧化合成和电化学氧化合成及其对重金属离子的络合和还原吸附功能,详细比较了两种聚合方法的特点. 指出通过萘二胺的电化学氧化聚合可以方便地获得对重金属离子如Ag+、Pb2+、Hg2+、Cu2+、VO2+敏感的修饰电极,而通过化学 氧化聚合可以高产率地获得对Ag+具有极大的还原吸附容量的聚合物颗粒.聚萘二胺在痕量 金属离子的分析与探测、工业废水中贵金属离子的回收和重金属离子的清除等领域展现了广阔的应用前景.  相似文献   

13.
Original and simple procedures for glassy carbon electrode modification with polyoxometalates (POMs), phosphotungstate [H7P8W48O184]33-, and Co(II)-containing silicotungstates [Co6(H2O)30{Co9Cl2(OH)3(H2O)9(beta-SiW8O31)3}]5- and [{Co3(B-beta-SiW9O33(OH))(B-beta-SiW8O29OH)2}2]22- give stable and very active surfaces for the hydrogen-evolution reaction (HER). For this purpose, the selected POMs fixed on Vulcan XC-72 were adsorbed on the electrode surface or were directly entrapped in polyvinylpyridine films on the electrode. Cyclic voltammetry and confocal microscopy results converge to indicate that the activation is related to the proton and electron reservoir-like behaviors of these molecular oxides and not to any electrode surface area increase. However, the Tafel parameters of the HER process, which are different from one POM to the next, are in the range of those of the best metallic electrodes.  相似文献   

14.
A simple, rapid, and highly sensitive method for simultaneous analysis of anti‐inflammatory drugs (naproxen, ibuprofen, and mefenamic acid) in diluted human serum was developed using the electrochemically controlled solid‐phase microextraction coupled to ion mobility spectrometry. A conducting molecularly imprinted polymer film based on polypyrrole was synthesized for the selective uptake and release of drugs. The film was prepared by incorporation of a template molecule (naproxen) during the electropolymerization of pyrrole onto a platinum electrode using cyclic voltammetry method. The measured ion mobility spectrometry intensity was related to the concentration of analytes taken up into the films. The calibration graphs (naproxen, ibuprofen, and mefenamic acid) were linear in the range of 0.1–30 ng/mL and detection limits were 0.07–0.37 ng/mL and relative standard deviation was lower than 6%. On the basis of the results obtained in this work, the conducting molecularly imprinted polymer films as absorbent have been applied in the electrochemically controlled solid‐phase microextraction and ion mobility spectrometry system for the selective clean‐up and quantification of trace amounts of anti‐inflammatory drugs in human serum samples. Scanning electron microscopy has confirmed the nano‐structure morphology of the polypyrrole film.  相似文献   

15.
Nanoparticles of ATO (antimony doped tin oxide) were used to produce thick conductive, free standing mats of nanofibers via electrospinning. These fibrous mats were incorporated into polymer films to produce a transparent conducting polymer foil. Moreover, the fiber mats can serve as porous electrodes for electrodeposition of Prussian Blue and TiO(2) and were tested in dye-sensitized solar cells.  相似文献   

16.
Since polyoxometalates (POMs) can undergo reversible multi-electron redox transformations, they have been used to modulate the electronic environment of metal nanoparticles for catalysis. Besides, POMs possess unique electronic structures and acid-responsive self-assembly ability. These properties inspired us to tackle the drawbacks of the copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction in biomedical applications, such as low catalytic efficiency and unsatisfactory disease selectivity. Herein, we construct molybdenum (Mo)-based POM nanoclusters doped with Cu (Cu-POM NCs) as a highly efficient bioorthogonal catalyst, which is responsive to pathologicallyacid and H2S for selective antibiofilm therapy. Leveraging the merits of POMs, the Cu-POM NCs exhibit biofilm-responsive self-assembly behavior, efficient CuAAC-mediated in situ synthesis of antibacterial molecules, and a NIR-II photothermal effect selectively triggered by H2S in pathogens. The consumption of bacterial H2S at the pathological site by Cu-POM NCs extremely decreases the number of persisterbacteria, which is conducive to the inhibition of bacterial tolerance and elimination of biofilms. Unlocked at pathological sites and endowed with NIR-II photothermal property, the constructed POM-based bioorthogonal catalytic platform provides new insights into the design of efficient and selective bioorthogonal catalysts for disease therapy.  相似文献   

17.
Polypyrrole is one of the most frequently studied conducting polymers, having high electrical conductivity and stability, suitable for multi-functionalised applications. Coatings of chemically synthesised polypyrrole applied onto various organic and inorganic materials, such as polymer particles and films, nanoparticles of metal oxides, clay minerals, and carbon nanotubes are reviewed in this paper. Its primary subject is the formation of new materials and their application in which chemical oxidative polymerisation of pyrrole was used. These combined materials are used in antistatic applications, such as anti-corrosion coating, radiation-shielding, but also as new categories of sensors, batteries, and components for organic electronics are created by coating substrates with conducting polymer layers or imprinting technologies.  相似文献   

18.
The effect of the nature of the dopant on the response of a sensor array based on films of polypyrrole under the influence of the vapor of various organic solvents was studied. It was found the electric conductivity of the polymer can both increase and decrease during the action of analytes on electropolymerized films of polypyrrole. It is suggested that the main factors determining the response of polypyrrole are the morphology of the films and the type of charge carriers in the polymer, which depend on the nature of the dopant anion, and also the polarity and nucleophilicity/electrophilicity of the analyte. The responses of polypyrrole and polyaniline are compared, and the effect of the nature of the conducting polymer on them is analyzed. __________ Translated from Teoreticheskaya i Eksperimental'naya Khimiya, Vol. 41, No. 5, pp. 265–271, September–October, 2005.  相似文献   

19.
Polyoxometalates (POMs), as inorganic ligands, can endow metal nanocrystals (NCs) with unique reactivities on account of their characteristic redox properties. In the present work, we present a facile POM‐mediated one‐pot aqueous synthesis method for the production of single‐crystalline Pd NCs with controlled shapes and sizes. The POMs could function as both reducing and stabilizing agents in the formation of NCs, and thus gave a fine control over the nucleation and growth kinetics of NCs. The prepared POM‐stabilized Pd NCs exhibited excellent catalytic activity and stability for electrocatalytic (formic acid oxidation) and catalytic (Suzuki coupling) reactions compared to Pd NCs prepared without the POMs. This shows that the POMs play a pivotal role in determining the catalytic performance, as well as the growth, of NCs. We envision that the present approach can offer a convenient way to develop efficient NC‐based catalyst systems.  相似文献   

20.
A copper containing Prussian Blue analogue was incorporated into a conducting polypyrrole film. The modified electrode was synthesized through an electrochemical two-step methodology leading to very stable and homogeneous hybrid films. These electrodes were proved to show excellent catalytic properties towards H2O2 detection, with a performance higher than those observed for Prussian Blue and other analogues. Electrochemical impedance spectroscopy experiments demonstrated that the excellent performance of these hybrid films is strongly related to the electronic conductivity of the polymeric matrix that is wiring the copper hexacyanoferrate sites. A glucose biosensor was built-up by the immobilization of glucose oxidase; the sensitivity obtained being higher than other biosensors reported in the literature even in Na+ containing electrolytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号