首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cd(1-x)Mn(x)S nanoparticles (NPs) were successfully grown in a glass matrix and investigated by optical absorption (OA), magnetic circularly polarized photoluminescence (MCPL) measurements, and magnetic force microscopy (MFM). The room temperature OA spectra have revealed the formation of two groups of Cd(1-x)Mn(x)S NPs with different sizes: bulk-like nanocrystals (NCs) and quantum dots (QDs). The MCPL spectra were recorded at 2.0 K with several magnetic fields up to 15 T, allowing a detailed comparison between the degrees of circular polarization of the two groups of NPs. The different behaviours of magneto-optical properties of bulk-like NCs and QDs were explained by taking into account a considerable alteration of exchange interaction between the carrier spins and the substitutional doping magnetic ions incorporated into the NPs. As a main result, we have demonstrated that self-purification is the dominant mechanism that controls the doping in semiconductor QDs grown by the melting-nucleation synthesis approach due to the relatively high temperature that was used in thermal annealing of samples.  相似文献   

2.
Zn(1-x)Mn(x)Te nanocrystals (NCs), at various concentrations x, were successfully grown in a host glass matrix by the fusion method after appropriate annealing. Growth of these NCs was evidenced by optical absorption (OA), X-Ray Diffraction (XRD), magnetic force microscopy (MFM) and photoluminescence (PL) measurements. From the room temperature OA spectra, it was possible to observe the formation of two well defined, different sized groups of NCs, one attributed to quantum dots (QDs) and the other to bulk-like nanocrystals (NCs). XRD results have confirmed that the cubic zincblend structure of nanoparticles is not altered by the substitutional incorporation of Mn(2+) ions into the ZnTe NCs. MFM images supported the OA spectra results and thus provided additional confirmation of the formation of Zn(1-x)Mn(x)Te magnetic nanoparticles in the host glass matrix. The two groups of NCs were also observed in the PL spectra as well as deep defects attributed to the presence of oxygen centers in the electronic structure of the Zn(1-x)Mn(x)Te NCs. Strong agreement between the fitting model, based on rate equation, and experimental PL intensity data at different temperatures demonstrates that this model adequately describes the energy transfer processes between the NCs and the defects of the Zn(1-x)Mn(x)Te system at different temperatures.  相似文献   

3.
Zhang W  Zhou X  Zhong X 《Inorganic chemistry》2012,51(6):3579-3587
Unlike Mn doped quantum dots (d-dots), the emission color of Cu dopant in Cu d-dots is dependent on the nature, size, and composition of host nanocrystals (NCs). The tunable Cu dopant emission has been achieved via tuning the particle size of host NCs in previous reports. In this paper, for the first time we doped Cu impurity in Zn(x)Cd(1-x)S alloyed NCs and tuned the dopant emission in the whole visible spectrum via variation of the stoichiometric ratio of Zn/Cd precursors in the host Zn(x)Cd(1-x)S alloyed NCs. A facile noninjection and low cost approach for the synthesis of Cu:Zn(x)Cd(1-x)S d-dots was reported. The optical properties and structure of the obtained Cu:Zn(x)Cd(1-x)S d-dots have been characterized by UV-vis spectroscopy, photoluminescence (PL) spectroscopy, transmission electron microscopy (TEM), and X-ray diffraction (XRD). The influences of various experimental variables, including Zn/Cd ratio, reaction temperature, and Cu dopant concentration, on the optical properties of Cu dopant emission have been systematically investigated. The as-prepared Cu:Zn(x)Cd(1-x)S d-dots did show PL emission but with quite low quantum yield (QY) (typically below 6%). With the deposition of ZnS shell around the Cu:Zn(x)Cd(1-x)S core NCs, the PL QY increased substantially with a maximum value of 65%. More importantly, the high PL QY can be preserved when the initial oil-soluble d-dots were transferred into aqueous media via ligand replacement by mercaptoundeconic acid. In addition, these d-dots have thermal stability up to 250 °C.  相似文献   

4.
A silanization technique of hydrophobic quantum dots (QDs) was applied to SiO(2)-coated CdSe/Cd(x)Zn(1-x)S QDs to precisely control the SiO(2) shell thickness and retain the original high photoluminescence (PL) properties of the QDs. Hydrophobic CdSe/Cd(x)Zn(1-x)S core-shell QDs with PL peak wavelengths of 600 and 652 nm were prepared by a facile organic route by using oleic acid (OA) as a capping agent. The QDs were silanized by using partially hydrolyzed tetraethyl orthosilicate by replacing surface OA. These silanized QDs were subsequently encapsulated in a SiO(2) shell by a reverse micelles synthesis. The silanization plays an important role for the QDs to be coated with a homogeneous SiO(2) shell and retain a high PL efficiency in water. Transmission electron microscopy observation shows that the shells are 1-9 nm with final particle sizes of 10-25 nm, depending on the initial QD size. In the case of short reaction time (6 h), the QDs were coated with a very thin SiO(2) layer because no visible SiO(2) shell was observed but transferred into the water phase. The silica coating does not change the PL peak wavelength of the QDs. The full width at half-maximum of PL was decreased 4 nm after coating for QDs emitting at both 600 and 652 nm. The PL efficiency of the SiO(2)-coated is up to 40%, mainly determined by the initial PL efficiency of the underlying CdSe/Cd(x)Zn(1-x)S QDs.  相似文献   

5.
Semimagnetic Pb(1-x)Mn(x)Se nanocrystals were synthesized by a fusion method in a glass matrix and characterized by optical absorption (OA), atomic/magnetic force microscopy (AFM/MFM), and photoluminescence techniques. MFM images strongly indicated the formation of Pb(1-x)Mn(x)Se magnetic phases in the glass system. Quantum dot size was manipulated by tuning annealing time. It was shown that Mn(2+) impurity affects nucleation, where Mn(2+)-doped samples present a redshift of the OA peak after a short annealing time and a blueshift after long annealing time compared to undoped PbSe NCs. This behavior was linked to the dependence of band-gap energy and the absorption selection rule on Mn(2+) concentration. Photoluminescence in the Pb(1-x)Mn(x)Se nanocrystals increases as the temperature rises up to a point and then decreases at higher temperatures. Anomalous increases in emission efficiency were analyzed by considering temperature induced carrier-transfer in semimagnetic Pb(1-x)Mn(x)Se quantum dots nanocrystals of different sizes.  相似文献   

6.
High-quality Zn(x)Cd(1-x)Se nanocrystals have been successfully prepared at high temperature by incorporating stoichiometric amounts of Zn and Se into pre-prepared CdSe nanocrystals. With increasing Zn content, a composition-tunable emission across most of the visible spectrum has been demonstrated by a systematic blue-shift in emission wavelength. The photoluminescence (PL) properties for the obtained Zn(x)Cd(1-x)Se nanocrystals (PL efficiency of 70-85%, fwhm = 22-30 nm) are comparable to those for the best reported CdSe-based QDs. In particular, they also have good PL properties in the blue spectral range. Moreover, the alloy nanocrystals can retain their high luminescence (PL efficiency of over 40%) when dispersed in aqueous solutions and maintain a symmetric peak shape and spectral position under rigorous experimental conditions. A rapid alloying process was observed at a temperature higher than "alloying point". The mechanism of the high luminescence efficiency and stability of Zn(x)Cd(1-x)Se nanocrystals is explored.  相似文献   

7.
A non-cadmium and water-soluble Mn-doped ZnO(x)S(1-x) QDs was synthesized with denatured bovine serum albumin (dBSA) as stabilizer under nitrogen atmosphere, and the as-prepared products were characterized by X-ray powder diffraction (XRD), UV-vis absorption spectroscopy, fluorescence (FL) emission spectroscopy, high resolution transmission electronmicroscopy (HRTEM) and Raman spectrum. XRD patterns indicate that the Mn-doped ZnO(x)S(1-x) QDs have a zinc-blende structure, and that manganese emerges in the form of divalent manganese (Mn(2+)) and trivalent manganese (Mn(3+)) (the intermediate of the reaction). The size of Mn-doped ZnO(x)S(1-x) QDs is about 3.2±0.7 nm according to HRTEM imaging. The FL spectra reveal that the Mn-doped ZnO(x)S(1-x) QDs have two distinct emission bands: the defect-related emission and the Mn(2+)-related emission, which exhibit a competing process. A good FL signal of the transition of Mn(2+) ((4)T(1)-(6)A(1)) is observed when the doping amounts are 1.0% and 20% respectively, and the as-prepared solutions are stable for more than 6 months at 4°C. This method has the advantages of good stability and environment-friendly stabilizer, for involving no heavy metal ions or toxic reagents.  相似文献   

8.
High-quality alloyed Zn(x)Cd(1-x)S nanocrystals have been synthesized at high temperature by the reaction of a mixture of CdO- and ZnO-oleic acid complexes with sulfur in the noncoordinating solvent octadecene system. A series of monodisperse wurtzite Zn(x)Cd(1-x)S (x = 0.10, 0.25, 0.36, 0.53) nanocrystals were obtained with corresponding particle radii of 4.0, 3.2, 2.9, and 2.4 nm, respectively. With the increase of the Zn content, their photoluminescence (PL) spectra blue-shift systematically across the visible spectrum from 474 to 391 nm, indicating the formation of the alloyed nanocrystals. The alloy structure is also supported by the characteristic X-ray diffraction (XRD) patterns of these nanoalloys with different Zn mole fractions, in which their diffraction peaks systematically shift to larger angles as the Zn content increases. The lattice parameter c measured from XRD patterns decreases linearly with the increase of Zn content. This trend is consistent with Vegard's law, which further confirms the formation of homogeneous nanoalloys. These monodisperse wurtzite Zn(x)Cd(1-x)S nanoalloys possess superior optical properties with PL quantum yields of 25-50%, especially the extremely narrow room-temperature emission spectral width (full width at half-maximum, fwhm) of 14-18 nm. The obtained narrow spectral width stems from the uniform size and shape distribution, the high composition homogeneity, and the relatively large particle radius, which is close to or somewhat larger than the exciton Bohr radius. The process by which the initial structure with random spatial composition fluctuations turns into an alloy (solid solution) with homogeneous composition is clearly demonstrated by the temporal evolution of the PL spectra during the annealing progress.  相似文献   

9.
Single crystals of Cd(1-x)Mn(x)Te for x = 0.1, 0.2, 0.3, 0.4 and 0.5 were grown by a modified vapour phase growth technique. ac magnetic susceptibility studies were carried out in the temperature range 14-300 K. Both the real and the imaginary parts of susceptibility indicated the formation of spin-glass phase at low temperatures. ESR spectra were recorded at room temperature (300 K) at 9.4 GHz for samples of all compositions. The line width (DeltaH) increased with Mn content.  相似文献   

10.
以聚酰胺-胺树形分子为模板制备了分散好、尺寸均匀的CdS量子点,并用分光光度滴定法研究了Cd2+、Zn2+、Pb2+、Cu2+、Mn2+几种金属离子对其光致发光性能的影响。发现不同离子对CdS量子点的发光性能影响不同:Cd2+和Zn2+使量子点荧光增强,Pb2+、Cu2+和Mn2+使其荧光有不同程度淬灭。这归因于金属离子对CdS量子点表面的修饰作用。Cd2+能减少由S2-悬键构成的非辐射复合中心,增强树形分子对量子点表面缺陷的钝化作用,并能在量子点周围形成类肖特基能垒,从而显著增大CdS量子点的光致发光效率。由于ZnS与CdS的晶格参数非常接近,Zn2+能起到与Cd2+类似的作用,使CdS量子点的发光效率大大增强。Pb2+和Cu2+能取代Cd2+在CdS量子点表面生成窄带隙的壳层,对其发光有很强的淬灭作用。由于块体PbS的带隙比块体CuS窄,故Pb2+的淬灭能力强于Cu2+。Mn2+能破坏Cd2+与PAMAM树形分子的配位键,降低树形分子对CdS量子点表面缺陷的钝化作用,且其本身在量子点表面构成了新的荧光淬灭中心,但Mn2+也能形成较弱的类肖特基能垒,故对量子点的发光淬灭作用较弱。  相似文献   

11.
The optical properties of stoichiometric copper chalcogenide nanocrystals (NCs) are characterized by strong interband transitions in the blue part of the spectral range and a weaker absorption onset up to ~1000 nm, with negligible absorption in the near-infrared (NIR). Oxygen exposure leads to a gradual transformation of stoichiometric copper chalcogenide NCs (namely, Cu(2-x)S and Cu(2-x)Se, x = 0) into their nonstoichiometric counterparts (Cu(2-x)S and Cu(2-x)Se, x > 0), entailing the appearance and evolution of an intense localized surface plasmon (LSP) band in the NIR. We also show that well-defined copper telluride NCs (Cu(2-x)Te, x > 0) display a NIR LSP, in analogy to nonstoichiometric copper sulfide and selenide NCs. The LSP band in copper chalcogenide NCs can be tuned by actively controlling their degree of copper deficiency via oxidation and reduction experiments. We show that this controlled LSP tuning affects the excitonic transitions in the NCs, resulting in photoluminescence (PL) quenching upon oxidation and PL recovery upon subsequent reduction. Time-resolved PL spectroscopy reveals a decrease in exciton lifetime correlated to the PL quenching upon LSP evolution. Finally, we report on the dynamics of LSPs in nonstoichiometric copper chalcogenide NCs. Through pump-probe experiments, we determined the time constants for carrier-phonon scattering involved in LSP cooling. Our results demonstrate that copper chalcogenide NCs offer the unique property of holding excitons and highly tunable LSPs on demand, and hence they are envisaged as a unique platform for the evaluation of exciton/LSP interactions.  相似文献   

12.
Zn(x)Cd(1-x)Se alloy nanowires, with composition x = 0, 0.2, 0.5, 0.7, and 1, have been successfully synthesized by a chemical vapor deposition (CVD) method assisted with laser ablation. The as-synthesized alloy nanowires, 60-150 nm in diameter and several tens of micrometers in length, complied with a typical vapor-liquid-solid (VLS) growth mechanism. The Zn(x)Cd(1-x)Se nanowires are single crystalline revealed from high-resolution transmission electron microscopic (HRTEM) images, selected area electron diffraction (SAED) patterns, and X-ray diffraction (XRD) measurement. Compositions of the alloy nanowires can be adjusted by varying the precursor ratios of the laser ablated target and the CVD deposition temperature. Crystalline structures of the Zn(x)Cd(1-x)Se nanowires are hexagonal wurtzite at x = 0, 0.2, and 0.5 with the [0 1 -1 0] growth direction and zinc blende at x = 0.7 and 1 with the [1 -1 1] growth direction. Energy gaps of the Zn(x)Cd(1-x)Se nanowires, determined from micro-photoluminescence (PL) measurements, change nonlinearly as a quadratic function of x with a bowing parameter of approximately 0.45 eV. Strong PL from the Zn(x)Cd(1-x)Se nanowires can be tuned from red (712 nm) to blue (463 nm) with x varying from 0 to 1 and has demonstrated that the alloy nanowires have potential applications in optical and sensory nanotechnology. Micro-Raman shifts of the longitudinal optical (LO) phonon mode observed in the Zn(x)Cd(1-x)Se nanowires show a one-mode behavior pattern following the prediction of a modified random element isodisplacement (MREI) model.  相似文献   

13.
We present a novel way of synthesising highly ordered arrays of hollow Cd(1-x)Mn(x)S quantum wires with lateral dimensions of 3-4 nm separated by 1-2 nm SiO2 barriers by forming Cd(1-x)Mn(x)S (0 < or = x < or = 1) semiconductors inside the pore system of mesoporous MCM-41 SiO2 host structures. X-ray diffraction and transmission electron microscopy (TEM) studies reveal the hexagonal symmetry of these arrays (space group p6m) and confirm the high degree of order. Physisorption measurements show the filling of the pores of the MCM-41 SiO2. The X-ray absorption near-edge structure (XANES), extended X-ray absorption fine structure (EXAFS), electron paramagentic resonance (EPR), and Raman studies confirm the good crystalline quality of the incorporated (Cd,Mn)S guest. The effects of reducing the lateral dimensions on the magnetic and electronic properties of the diluted magnetic semiconductor were studied by photoluminescence (PL) and PL excitation spectroscopy and by SQUID and EPR measurements in the temperature range 2-400 K. Due to the quantum confinement of the excitons in the wires, an increase of about 200 meV in the direct band gap was observed. In addition, the p-d hybridisation-related bowing of the band gap as a function of Mn concentration in the wires is much stronger than in the bulk. This effect is related to the increase in the band gap due to quantum confinement, which shifts the p-like valence band edge closer to the 3d-related states of Mn in the valence band. Thus, the p-d hybridisation and the strength of the band gap bowing are increased. Compared to bulk (II,Mn)VI compounds, antiferromagnetic coupling between the magnetic moments of the Mn2+ ions is weaker. For the samples with high Mn concentrations (x > 0.8) this leads to a suppression of the phase transition of the Mn system from paramagnetic to antiferromagnetic. This effect can be explained by the fact that the lateral dimensions of the wires are smaller than the magnetic length scale of the antiferromagnetic ordering.  相似文献   

14.
Here we report a new "green" method to synthesize Zn(1-x)Cd(x)Se (x = 0-1) and stable red-green-blue tricolor Zn(1-x)Cd(x)Se core/shell nanocrystals using only low cost, phosphine-free and environmentally friendly reagents. The first excitonic absorption peak and photoluminescence (PL) position of the Zn(1-x)Cd(x)Se nanocrystals (the value of x is in the range 0.005-0.2) can be fixed to any position in the range 456-540 nm. There is no red or blue shift in the entire reaction process. Three similar sizes of alloyed Zn(1-x)Cd(x)Se nanocrystals with blue, green, and yellow emissions were successfully selected as cores to synthesize high quality blue, green, and red core/shell nanocrystal emitters. For the synthesis of core/shell nanocrystals with a high quantum yield (QY) and stability, the selection of shell materials has been proven to be very important. Therefore, alternative protocols have been used to optimize thick shell growth. ZnSe/ZnSe(x)S(1-x) and CdS/Zn(1-x)Cd(x)S have been found as an excellent middle multishell to overcoat between the alloyed Zn(1-x)Cd(x)Se core and ZnS outshell. The QYs of the as-synthesized core/shell alloyed Zn(1-x)Cd(x)Se nanocrystals can reach 40-75%. The Cd content is reduced to less than 0.1% for Zn(1 -x)Cd(x)Se core/shell nanocrystals with emissions in the range 456-540 nm. More than 15 g of high quality Zn(1-x)Cd(x)Se core/shell nanocrystals were prepared successfully in a large scale, one-pot reaction. Importantly, the emissions of such thick multishell nanocrystals are not susceptible to ligand loss and stability in various physiological conditions.  相似文献   

15.
以油酸为配体,十八烯为溶剂,采用一步法合成了CdS量子点,研究了反应温度、反应时间和Cd/S的摩尔比对量子点光谱性能的影响.X射线衍射(XRD)和高分辨透射电镜(HRTEM)测试结果表明,所获得的CdS量子点为立方闪锌矿结构,且尺寸分布均一,结晶度高,其较强的带边发光、尖锐的紫外吸收峰以及狭窄的荧光发射峰进一步表明量子...  相似文献   

16.
丛日敏  罗运军  靳玉娟 《化学学报》2007,65(21):2479-2483
为了研究温度对聚酰胺-胺(PAMAM)树形分子的模板法制备硫化镉(CdS)量子点的影响, 以4.5代(G4.5, 64个甲酯端基)PAMAM树形分子为模板, 在-10~30 ℃的温度范围内制备了分散良好的CdS量子点. 用透射电子显微镜(TEM)表征了CdS量子点的形貌、尺寸; 用紫外-可见光谱(UV-Vis)和光致发光光谱(PL)表征了CdS量子点的光学性能. 发现在相同条件下, 制备温度从-10 ℃升高到30 ℃, CdS量子点粒径从1.8 nm增大到3.4 nm, 其中在10 ℃时制备的量子点的尺寸分布最窄; CdS量子点的吸收和发射光谱均随温度增大而红移, 其中10 ℃时制备的量子点的室温光致发光效率最高. 这表明制备温度决定了树形分子的配位基团与Cd2+的分离速度, 并影响了CdS量子点的成核和生长过程, 从而最终决定了CdS量子点的尺寸及尺寸分布、光致发光颜色和发光效率.  相似文献   

17.
EuS nanocrystals (NCs) were doped with Gd resulting in an enhancement of their magnetic properties. New EuS and GdS single source precursors (SSPs) were synthesized, characterized, and employed to synthesize Eu(1-x)Gd(x)S NCs by decomposition in oleylamine and trioctylphosphine at 290 °C. The doped NCs were characterized using X-ray diffraction, transmission electron microscopy, and scanning transmission electron microscopy, which support the uniform distribution of Gd dopants through electron energy loss spectroscopy (EELS) mapping. X-ray absorption spectroscopy (XAS) revealed the dopant ions in Eu(1-x)Gd(x)S NCs to be predominantly Gd(3+). NCs with a variety of doping ratios of Gd (0 ≤ x < 1) were systematically studied using vibrating sample magnetometry and the observed magnetic properties were correlated with the Gd doping levels (x) as quantified with ICP-AES. Enhancement of the Curie temperature (T(C)) was observed for samples with low Gd concentrations (x ≤ 10%) with a maximum T(C) of 29.4 K observed for NCs containing 5.3% Gd. Overall, the observed T(C), Weiss temperature (θ), and hysteretic behavior correspond directly to the doping level in Eu(1-x)Gd(x)S NCs and the trends qualitatively follow those previously reported for bulk and thin film samples.  相似文献   

18.
Alloyed ZnxCd1-xSe quantum dots (QDs) have been successfully prepared at low temperatures by reacting a mixture of Cd(ClO4)2 and Zn(ClO4)2 with NaHSe using cysteine as a surface-stabilizing agent. The photoluminescence (PL) spectra of the alloyed QDs are determined on the basis of the Zn2+/Cd2+ molar ratio, reaction pH, intrinsic Zn2+and Cd2+ reactivities toward NaHSe, concentration of NaHSe, and the kind of thiols. A systematic blue shift in emission wavelength of the alloyed QDs was found with the increase in the Zn mole fraction. This result provides clear evidence of the formation of ZnxCd1-xSe QDs by the simultaneous reaction of Zn2+ and Cd2+ with NaHSe, rather than the formation of separate CdSe and ZnSe nanocrystals or core-shell structure CdSe/ZnSe nanocrystals. The size and inner structure of these QDs are also corroborated by using high-resolution transmission electron microscopy and X-ray powder diffraction. To further understand the formation mechanism, the growth kinetics of Zn0.99Cd0.01Se was studied by measuring the PL spectra at different growth intervals. The results demonstrated that, in the initial stage of growth, Zn0.99Cd0.01Se has a structure with a Cd-rich core and a Zn-rich shell. The post-preparative irradiation of these QDs improved their PL properties, resulting in stronger emission.  相似文献   

19.
The photoluminescence quantum yield (PL-QY) of ternary colloidal CdSe(x)S(1-x) quantum dots (QDs), which were prepared by a one-injection method, enhances with increasing S content. The possible enhancement mechanism was explored by structural analysis via X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS). Both found that the enhancement of PL-QY of ternary CdSe(x)S(1-x) QDs strongly correlated with self-formed core/shell conformation in the non-coordination solution.  相似文献   

20.
Manganese doped nanocrystalline willemite powder phosphors Zn(2-x)Mn(x)SiO(4) (0.1(6)A(1) ground state. The mechanism involved in the generation of a green emission has been explained in detail. The effect of Mn content on luminescence has also been studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号