首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
This paper discusses chain of command networks that are most likely to exhibit the scale-free (SF) property in organizational networks, explaining why organizational networks do not show SF distributions. We propose an evolving hierarchical tree network model without explicit preferential attachment. The model simulates several kinds of chain of command networks with the span of control ranging from extreme homogeneity to extreme heterogeneity. In addition to traditional degree distribution, a new kind of cumulative-outdegree distribution p(K cum =k cum ) is introduced and discussed that gives a probability that a randomly selected node has exactly k cum children nodes. Theoretical analysis and simulation results show that even if the network size is large enough to meet the demand of large-scale networks, the SF property can emerge only when a hierarchical tree lies in two extreme situations: (1) the exact same span of control exists at all levels of an organization; (2) the node outdegree (i.e. span of control) distribution obeys a power-law distribution. The empirical investigations show that real organization networks are between the two extreme situations. This is why organizational networks in reality do not show an SF degree distribution or SF cumulative-outdegree distribution. This finding shows that the SF property is the consequence of extreme situations, even though it is very common in nature and in society. In fact, the SF property is of no value in the study of problems in organizations.  相似文献   

2.
This paper assumes the organization as a distributed decision network. It proposes an approach based on application and extension of information theory concepts, in order to analyze informational complexity in a decision network, due to interdependence between decision centers.Based on this approach, new quantitative concepts and definitions are proposed in order to measure the information in a decision center, based on Shannon entropy and its complement in possibility theory, U uncertainty. This approach also measures the quantity of interdependence between decision centers and informational complexity of decision networks.The paper presents an agent-based model of organization as a graph composed of decision centers. The application of the proposed approach is in analyzing and assessing a measure to the organization structure efficiency, based on informational communication view. The structure improvement, analysis of information flow in organization and grouping algorithms are investigated in this paper. The results obtained from this model in different systems as distributed decision networks, clarifies the importance of structure and information distribution sources effect’s on network efficiency.  相似文献   

3.
Scholars engaged in the study of work group and organizational behavior are increasingly calling for the use of integrated methods in conducting research, including the wider adoption of computational models for generating and testing new theory. Our review of the state of modern computational modeling incorporating social structures reveals steady increases in the incorporation of dynamic, adaptive, and realistic behaviors of agents in network settings, yet exposes gaps that must be addressed in the next generation of organizational simulation systems. We compare 28 models according to more than two hundred evaluation criteria, ranging from simple representations of agent demographic and performance characteristics, to more richly defined instantiations of behavioral attributes, interaction with non-agent entities, model flexibility, communication channels, simulation types, knowledge, transactive memory, task complexity, and resource networks. Our survey assesses trends across the wide set of criteria, discusses practical applications, and proposes an agenda for future research and development. Michael J. Ashworth is a doctoral candidate in computational organization science at Carnegie Mellon University, where he conducts research on social, knowledge, and transactive memory networks along with their effects on group and organizational learning and performance. Practical outcomes of his work include improved understanding of the impact of technology, offshoring, and turnover on organizational performance. Mr. Ashworth has won several prestigious grants from the Sloan Foundation and the National Science Foundation to pursue his research on transactive memory networks. Journals in which his research has appeared include Journal of Mathematical Sociology, International Journal of Human Resource Management, and Proceedings of the International Conference on Information Systems. His recent work on managing human resource challenges in the electric power industry has been featured in the Wall Street Journal and on National Public Radio's ``Morning Edition.' Mr. Ashworth received his undergraduate degree in systems engineering from the Georgia Institute of Technology. Kathleen M. Carley is a professor at the Institute for Software Research International in the School of Computer Science at Carnegie Mellon University. She is the director of the center for Computational Analysis of Social and Organizational Systems (CASOS), a university-wide interdisciplinary center that brings together network analysis, computer science and organization science (www.casos.ece.cmu.edu). Prof. Carley carries out research that combines cognitive science, dynamic social networks, text processing, organizations, social and computer science in a variety of theoretical and applied venues. Her specific research areas are computational social and organization theory; dynamic social networks; multi-agent network models; group, organizational, and social adaptation, and evolution; statistical models for dynamic network analysis and evolution, computational text analysis, and the impact of telecommunication technologies on communication and information diffusion within and among groups. Prof. Carley has undergraduate degrees in economics and political science from MIT and a doctorate in sociology from Harvard University.  相似文献   

4.
The Enron email corpus is appealing to researchers because it represents a rich temporal record of internal communication within a large, real-world organization facing a severe and survival-threatening crisis. We describe how we enhanced the original corpus database and present findings from our investigation undertaken with a social network analytic perspective. We explore the dynamics of the structure and properties of the organizational communication network, as well as the characteristics and patterns of communicative behavior of the employees from different organizational levels. We found that during the crisis period, communication among employees became more diverse with respect to established contacts and formal roles. Also during the crisis period, previously disconnected employees began to engage in mutual communication, so that interpersonal communication was intensified and spread through the network, bypassing formal chains of communication. The findings of this study provide valuable insight into a real-world organizational crisis, which may be further used for validating or developing theories and dynamic models of organizational crises; thereby leading to a better understanding of the underlying causes of, and response to, organization failure. Jana Diesner is a Research Associate and Linguistic Programmer at the Center for Computational Analysis of Social and Organizational Systems at the School of Computer Science (CASOS), Carnegie Mellon University (CMU). She received her Masters in Communications from Dresden University of Technology in 2003. She had been a research scholar at the Institute for Complex Engineered System at CMU in 2001 and 2002. Her research combines computational linguistics, social network analysis and computational organization theory. Terrill L. Frantz is a post-doc researcher at the Center for Computational Analysis of Social and Organizational Systems (CASOS) in the School of Computer Science at Carnegie Mellon University. His research involves studying the dynamics of organization social-networks and behavior via computer modeling and simulation. He is developing an expertise in workforce integration strategy and policy evaluation during organization mergers. He earned his doctorate (Ed.D. in Organization Change) from Pepperdine University, a MBA from New York University and a BS in Business Administration (Computer Systems Management) from Drexel University. Prior to entering academic research, for nearly 20 years he was a software applications development manager in the global financial services and industrial chemicals industries; most recently as a Vice President in Information Technology at Morgan Stanley in Hong Kong, New York and London. Kathleen M. Carley is a professor at the Institute for Software Research International in the School of Computer Science at Carnegie Mellon University. She is the director of the center for Computational Analysis of Social and Organizational Systems (CASOS) <http://www.casos.cs.cmu.edu/>, a university wide interdisciplinary center that brings together network analysis, computer science and organization science (www.casos.ece.cmu.edu) and has an associated NSF funded training program for Ph.D. students. She carries out research that combines cognitive science, social networks and computer science to address complex social and organizational problems. Her specific research areas are computational social and organization theory, group, organizational and social adaptation and evolution, social and dynamic network analysis, computational text analysis, and the impact of telecommunication technologies and policy on communication, information diffusion, disease contagion and response within and among groups particularly in disaster or crisis situations.  相似文献   

5.
Classical queueing network processes are useful for modeling the movement of discrete units in a network in which the nodes operate independently, the routing of units is independent of the congestion, only one unit moves at a time and its equilibrium distribution is a well-understood product form. Actual networks, however, typically have dependent nodes and concurrent movement of units. Imagine the dependencies associated with the network movements of telephone calls, manufacturing material, computer data packets, messages in a parallel-processing simulation, etc. A second generation of queueing network processes is beginning to evolve for modeling such “intelligent” networks with dependent nodes and concurrent movements. This paper describes the following fundamental processes that have been developed in this regard:
  • ? A basic queueing network process for dependent nodes and single-unit movements. Examples include the classical Jackson, BCMP, Kelly and Kelly-Whittle networks and networks with interacting subpopulations.
  • ? Reversible queueing network processes for dependent nodes and concurrent movements. An example is a multivariate, compound birth-death process.
  • ? Miscellaneous partially balanced queueing networks. Examples include extensions of the basic network processes and weakly coupled and quasi-reversible networks.
  •   相似文献   

    6.
    CONNECTIVITYOFCARTESIANPRODUCTDIGRAPHSANDFAULT┐TOLERANTROUTINGSOFGENERALIZEDHYPERCUBEXUJUNMINGAbstract.Inthispaper,theproblem...  相似文献   

    7.
    Recent management research has evidenced the significance of organizational social networks, and communication is believed to impact the interpersonal relationships. However, we have little knowledge on how communication affects organizational social networks. This paper studies the dynamics between organizational communication patterns and the growth of organizational social networks. We propose an organizational social network growth model, and then collect empirical data to test model validity. The simulation results agree well with the empirical data. The results of simulation experiments enrich our knowledge on communication with the findings that organizational management practices that discourage employees from communicating within and across group boundaries have disparate and significant negative effect on the social network’s density, scalar assortativity and discrete assortativity, each of which correlates with the organization’s performance. These findings also suggest concrete measures for management to construct and develop the organizational social network.  相似文献   

    8.
    Structural comparison (i.e., the simultaneous analysis of multiple structures) is a problem which arises frequently in such diverse arenas as the study of organizational forms, social network analysis, and automated text analysis. Prior work has demonstrated the applicability of a range of standard multivariate analysis procedures to the structural comparison problem. Here, some simple algorithms are provided which elucidate several of these methods in an easily implemented form. Carter T. Butts is Assistant Professor at the University of California-Irvine in the Department of Sociology, and is a member of the Institute for Mathematical Behavioral Sciences and the California Institute for Telecommunications and Information Technology. His current research focuses on communication during disasters, Bayesian inference for network data, network comparison, and the structure of spatially embedded interpersonal networks. Kathleen M. Carley is Professor at Carnegie Mellon University, with appointments in the Institute for Software Research International, the H.J. Heinz III School of Public Policy and Management, and the Department of Engineering and Public Policy. Her research centers around areas of social, organizational, knowledge and information networks, organizational design, change, adaptivity and and performance, computational organization theory, crisis management, social theory, impacts on information diffusion of changes in social policy and changes in communication technology, and mapping experts' and executives' knowledge networks using textual analysis techniques.  相似文献   

    9.
    Until recently, network science has focused on the properties of single isolated networks that do not interact or depend on other networks. However it has now been recognized that many real-networks, such as power grids, transportation systems, and communication infrastructures interact and depend on other networks. Here, we will present a review of the framework developed in recent years for studying the vulnerability and recovery of networks composed of interdependent networks. In interdependent networks, when nodes in one network fail, they cause dependent nodes in other networks to also fail. This is also the case when some nodes, like for example certain people, play a role in two networks, i.e. in a multiplex. Dependency relations may act recursively and can lead to cascades of failures concluding in sudden fragmentation of the system. We review the analytical solutions for the critical threshold and the giant component of a network of n interdependent networks. The general theory and behavior of interdependent networks has many novel features that are not present in classical network theory. Interdependent networks embedded in space are significantly more vulnerable compared to non-embedded networks. In particular, small localized attacks may lead to cascading failures and catastrophic consequences. Finally, when recovery of components is possible, global spontaneous recovery of the networks and hysteresis phenomena occur. The theory developed for this process points to an optimal repairing strategy for a network of networks. Understanding realistic effects present in networks of networks is required in order to move towards determining system vulnerability.  相似文献   

    10.
    This paper proposes a mathematical model of financial markets as networks. The model examines the effect of network structure on market behavior (price volatility and trading volume). In the model, investors are arrayed in various network configurations through which they gather information to make trading decisions. The basic network considered is a chain graph with two parameters, number of investors (n) and the length of time in which information is transmitted (k). Closed‐form expressions for price volatility and expected trading volume are provided. The model is generalized to more complex networks, focusing on the hub‐and‐spoke network. The network configurations analyzed do not represent the real (and unknown) communication network among investors, but predictions from the model are consistent with price and volume patterns observed in sociological and economic research on financial markets. The main result is that network structure alone influences price volatility and expected trading volume even though investors are homogeneous and the information introduced into the system is unbiased and random. This result suggests that the structure of the real communication network among investors may influence market behavior.  相似文献   

    11.
    A wide range of applications for wireless ad hoc networks are time-critical and impose stringent requirement on the communication latency. One of the key communication operations is to broadcast a message from a source node. This paper studies the minimum latency broadcast scheduling problem in wireless ad hoc networks under collision-free transmission model. The previously best known algorithm for this NP-hard problem produces a broadcast schedule whose latency is at least 648(rmax/rmin)^2 times that of the optimal schedule, where rmax and rmin are the maximum and minimum transmission ranges of nodes in a network, respectively. We significantly improve this result by proposing a new scheduling algorithm whose approximation performance ratio is at most (1 + 2rmax/rmin)^2+32, Moreover, under the proposed scheduling each node just needs to forward a message at most once.  相似文献   

    12.
    Dündar  P.  Aytaç  A. 《Mathematical Notes》2004,76(5-6):665-672

    Communication networks have been characterized by high levels of service reliability. Links cuts, node interruptions, software errors or hardware failures, and transmission failures at various points can interrupt service for long periods of time. In communication networks, greater degrees of stability or less vulnerability is required. The vulnerability of communication network measures the resistance of the network to the disruption of operation after the failure of certain stations or communication links. If we think of a graph G as modeling a network, many graph-theoretic parameters can be used to describe the stability of communication networks, including connectivity, integrity, and tenacity. We consider two graphs with the same connectivity, but with unequal orders of theirs largest components. Then these two graphs must be different in respect to stability. How can we measure that property? The idea behind the answer is the concept of integrity, which is different from connectivity. Total graphs constitute a large class of graphs. In this paper, we study the integrity of total graphs via some graph parameters.

      相似文献   

    13.
    We consider telecommunication network design in which each pair of nodes can communicate via a direct link and the communication flow can be delivered through any path in the network. The cost of flow through each link is discounted if and only if the amount of flow exceeds a certain threshold. This exploitation of economies of scale encourages the concentration of flows and use of relatively small number of links. We will call such networks hub-like networks. The cost of services delivered through a hub-like network is distributed among its users who may be individuals or organizations with possibly conflicting interests. The cooperation of these users is essential for the exploitation of economies of scale. Consequently, there is a need to find a fair distribution of the cost of providing the service among users of such network. In order to describe this cost allocation problem we formulate the associated cooperative game, to be referred to as the hub-like game. Special attention is paid to users' contribution to economies of scale. We then demonstrate that certain cost allocation solutions (the core and the nucleolus of the hub-like game), which provide users with the incentive to cooperate, can be efficiently characterized.  相似文献   

    14.
    The double loop network (DLN) is a circulant digraph with n nodes and outdegree 2. DLN has been widely used in the designing of local area networks and distributed systems. In this paper, a new method for constructing infinite families of k-tight optimal DLN is presented. For k = 0, 1, ..., 40, the infinite families of k-tight optimal DLN can be constructed by the new method, where the number n k (t, a) of their nodes is a polynomial of degree 2 in t and contains a parameter a. And a conjecture is proposed.  相似文献   

    15.
    While the agility of networked organizational structures is important for organizational performance, studies on how to evaluate it remain scant, probably because the difficulty in measuring network evolution. In this conceptual paper, we propose two measures - network entropy and mutual information - to characterize the agility of networked organizational structure. Rooted in graph theory and information theory, these two measures capture network evolution in a comprehensive and parsimonious way. They indicate the uncertainty (or disorder) at the network level as well as the degree distribution at the individual level. We also propose an algorithm for applying them in the scenario of adding links to a network while holding the number of nodes fixed. Both simulated and real networks are used for demonstration. Implications and areas for future research are discussed in the end.  相似文献   

    16.
    We study a model of controlled queueing network, which operates and makes control decisions in discrete time. An underlying random network mode determines the set of available controls in each time slot. Each control decision “produces” a certain vector of “commodities”; it also has associated “traditional” queueing control effect, i.e., it determines traffic (customer) arrival rates, service rates at the nodes, and random routing of processed customers among the nodes. The problem is to find a dynamic control strategy which maximizes a concave utility function H(X), where X is the average value of commodity vector, subject to the constraint that network queues remain stable.We introduce a dynamic control algorithm, which we call Greedy Primal-Dual (GPD) algorithm, and prove its asymptotic optimality. We show that our network model and GPD algorithm accommodate a wide range of applications. As one example, we consider the problem of congestion control of networks where both traffic sources and network processing nodes may be randomly time-varying and interdependent. We also discuss a variety of resource allocation problems in wireless networks, which in particular involve average power consumption constraints and/or optimization, as well as traffic rate constraints.  相似文献   

    17.
    Individuals simultaneously choose and are affected by their web of connections. This paper explores this co‐evolution of individual and network in the context of longitudinal attitudinal and sociometric data collected from a government agency, the Office of Information and Regulatory Affairs. Analysis of these data suggests that networks vary in their elasticity ‐ where the internal network of the agency was rigid, but the extra‐organizational network quite fluid. Further, the data suggest that, consistent with theories of socialization, individuals differ in plasticity ‐ how they are affected by the network ‐ where the cross‐sectional analysis of the data suggest that individuals were molded by the organization, but that the attitudes of individuals who left were unaffected by the change in milieu.  相似文献   

    18.
    The purpose of this study is two-fold. First, a validation study on Construct-TM is conducted to show that modeling the actual and cognitive knowledge networks of a group can produce agent interactions within the model that correlate significantly with the communication network obtained from empirical data. Second, empirically grounded theory is produced by combining empirical data with simulation experiments run on empirically validated models.  相似文献   

    19.
    The cumulative degree distributions of transport networks, such as air transportation networks and respiratory neuronal networks, follow power laws. The significance of power laws with respect to other network performance measures, such as throughput and synchronization, remains an open question. Evolving methods for the analysis and design of air transportation networks must be able to address network performance in the face of increasing demands and the need to contain and control local network disturbances, such as congestion. Toward this end, we investigate functional relationships that govern the performance of transport networks; for example, the links between the first nontrivial eigenvalue, λ2, of a network's Laplacian matrix—a quantitative measure of network synchronizability—and other global network parameters. In particular, among networks with a fixed degree distribution and fixed network assortativity (a measure of a network's preference to attach nodes based on a similarity or difference), those with small λ2 are shown to be poor synchronizers, to have much longer shortest paths and to have greater clustering in comparison to those with large λ2. A simulation of a respiratory network adds data to our investigation. This study is a beginning step in developing metrics and design variables for the analysis and active design of air transport networks. © 2008 Wiley Periodicals, Inc. Complexity, 2009  相似文献   

    20.
    The aim of this paper is to explain principles of object oriented modeling in the scope of modeling dynamic social networks. As such, the approach of object oriented modeling is advocated within the field of organizational research that focuses on networks.We provide a brief introduction into the field of social networks and present an overview of existing network models and methods. Subsequently we introduce an elementary problem field in the social sciences in general, and in studies of organizational change and design in particular: the micro-macro link. We argue that the most appropriate way to hadle this problem is the principle of methodological individualism. For social network analysis, to contribute to this theoretical perspective, it should include an individual choice mechanism and become more dynamically oriented. Subsequently, object oriented modeling is advocated as a tool to meet these requirements for social network analysis. We show that characteristics of social systems that are emphasized in the methodological individualistic approach have their direct equivalences in object oriented models. The link between the micro level where actors act, and the macro level where phenomena occur as a consequence and cause of these actions, can be modelled in a straightforward way.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号