首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Generality of the spontaneous and stimulated magnetization reversal in MnSb clusters embedded in GaMnSb thin films is established. In experiments, the similarity of the thermoactivation and field magnetization reversal processes can be observed as the coincidence of the maximum in the field dependences of magnetic viscosity S(H) with the sample coercivity H C . Analysis of this experimental fact yields the relation between H C and parameters of the model describing the S(H) dependences. The obtained formula is identical to the well-known Kneller law determining the H C (T) dependence of noninteracting superparamagnetic nanoparticles.  相似文献   

2.
Temperature m(T) and time m(t) dependences of the magnetic moment of GaMnSb thin films with MnSb clusters have been measured. The m(t) dependences are straightened in semilogarithmic coordinates m(lnt). The temperature dependences of magnetic viscosity S(T) corresponding to the slope of straight lines m(lnt) have been studied. It have been demonstrated that the behavior of dependences S(T) is governed by the lognormal distribution of the magnetic anisotropy energy of MnSb clusters. It have been found that the behavior of dependences m(T) measured after the films were cooled in zero magnetic field and in magnetic field H = 10 kOe is also governed by the lognormal distribution of the magnetic anisotropy energy of MnSb clusters.  相似文献   

3.
Regularities of hole transport and its correlation with percolation magnetism caused by localized carriers simultaneously involved in the formation of the magnetic and electrical properties of Ge: Mn thin films are investigated. It is established that at temperatures of T > 22 K the activationless band carrier transport occurs in the Ge: Mn samples (2 at % Mn). At low temperatures, the hopping mechanism with a variable hopping length works.  相似文献   

4.
5.
The first thin La1?xAgyMnO3 epitaxial films (yx) were grown on SrTiO3 (110) substrates with silver present in the ionized state (Ag+) only. The Curie temperatures TC of the compositions with x = y = 0.05, x = y = 0.1, and x = 0.3 and y = 0.27 crystallizing in the hexagonal structure \(R\bar 3c\) above or close to room temperature. The temperature dependences of electrical resistivity ρ and of magnetoresistance ¦Δρ/ρ/¦ = ¦(ρH ? ρ H = 0)/ρH=0¦ pass through maxima near TC, with the magnetoresistance being negative and reaching colossal values of ~7–20% in a magnetic field H = 8.2 kOe not only at TC but also at room temperature. The magnetic moment per formula unit as derived from the saturation magnetization at T = 5 K is substantially smaller than expected for complete ferromagnetic ordering. The magnetization in fields of up to 6 kOe depends on the actual sample cooling conditions, and the hysteresis loop of a field-cooled sample is displaced along the H axis by ΔH. The above properties can be accounted for by the fact that the films are in a two-phase magnetic (ferromagnetic-antiferromagnetic) state induced by strong s-d exchange. The maximum value of Δ H was used to calculate the energy of exchange coupling between the ferromagnetic and antiferromagnetic parts of a sample.  相似文献   

6.
We deposited amorphous Bi films with a thickness between 3 and 6.5 nm at 4.2 K on top of previously deposited Co clusters having a mean size of ~4.5 nm. The Co cluster layers thickness was between 2.3 and 5 nm. In-situ electrical transport measurements were performed between 2 and 100 K. Measurements on as-prepared samples having a Bi layer thickness of 3.0 nm show hopping (tunneling) conductivity as σ(T) = σ 0 exp[?(T 0/T)1/2] above the superconducting transition temperature T C and re-entrance behavior again with hopping (tunneling) conductivity below T C . Annealing of films having a Bi layer thickness of 5.5 nm results in a decrease of resistivity, with variable-range hopping conduction behavior as σ(T) = σ 0 exp[?(T 0/T)1/3 ]. Quite different are the findings for films having a Bi layer thickness of 6.5 nm: annealing of these films results in a power-law behavior as σ(T) = σ 0 T α with α = 2/3, indicating that these films are close to a quantum critical point separating superconducting and insulating phases. A phase diagram including all experimental observations is proposed.  相似文献   

7.
Magnetic properties of Ge1 ? x Mn x (x = 0.02, 0.04, 0.08) thin films obtained by ion-implanting Mn+ ions into single-crystal Ge plates are investigated. The contributions of the subsystem of dispersed Mn2+ ions, Ge3Mn5 ferromagnetic clusters, and Mn-enriched ferromagnetic domains of Ge to the magnetic moment of Ge1 ? x Mn x films are distinguished. In the subsystem of dispersed Mn2+ ions in Ge1 ? x Mn x films at temperatures below 10 K, a spin-wave resonance is observed in the magnetically ordered state due to percolation ferromagnetism. It is established that, in the films with percolation ferromagnetism, the exchange integrals determined from static measurements correspond to those determined by dynamic measurements.  相似文献   

8.
The temperature dependences of the intense magnetocaloric effect ΔT AD(T, H) and the heat capacity C p (T) of the (La0.4Eu0.6)0.7Pb0.3MnO3 manganite are directly measured using adiabatic calorimetry. The experimental dependences ΔT AD(T) are in satisfactory agreement with those calculated from the data on the behavior of the magnetization. The factors responsible for the absence of an anomaly in the experimental temperature dependence of the heat capacity C p (T) in the range of the magnetic phase transition are discussed.  相似文献   

9.
The Influence of temperature in the range from 275 to 320 K on ESR spectra and magnetization m of ensembles of spherical gadolinium nanoparticles with the diameter from 89 to 18 nm was studied. The particles with d = 18 nm had a cubic face centered structure and no magnetic transition. At T > TC all particles were paramagnetic, and their g factors were g = 1.98 ± 0.02 irrespective of their size and structure. At T = TC the particles having 28 to 89 nm in size experienced a magnetic and orientation transition; at T < TC their m(H) dependences were described by the Langevin function, and the FMR lines broadened and shifted towards H = 0. FMR lines of the Gd particle ensembles showed a hysteresis behavior during magnetization reversal, which did not correlate with the coercivity of the particles. Dependences of the Gd nanoparticles FMR linewidth ΔH(T) changed proportionally to |TTC|.  相似文献   

10.
The variations in the magnetic resonance spectra accompanying the transition from the paramagnetic to ferrimagnetic state in [{Cr(CN)6} {Mn(S)-pnH-(H2O) }] · H2O orthorhombic chiral molecular crystals were studied. The dependence of the EPR linewidth on temperature in the proximity of the transition point TC = 38 K argues for the two-dimensional character of spin ordering. The spin resonance line was found to undergo exchange narrowing at T > TC. The ferrimagnetic phase has an easy magnetization axis coinciding with the a crystallographic axis.  相似文献   

11.
The spin susceptibility of a polycrystalline sample of uranium mononitride UN is studied by measuring the 14N NMR line shift, spin–lattice relaxation rates of the nuclear spin, and static magnetic susceptibility in the temperature region of 1.5TN < T < 7TN A joint analysis of the results obtained has revealed the temperature dependence of the characteristic energy of spin fluctuations of the uranium 5f electrons: Γnmr(T) ∝ T0.54(4) close to the dependence Γ(T) ∝ T0.5 characteristic of concentrated Kondo systems above the coherent state formation temperature.  相似文献   

12.
The renormalizations of the fermionic spectrum are considered within the framework of the t-J* model taking into account three-center interactions (H(3)) and magnetic fluctuations. Self-consistent spin dynamics equations for strongly correlated fermions with three-center interactions were obtained to calculate quasi-spin correlators. A numerical self-consistent solution to a system of ten equations was obtained to show that, in the nearest-neighbor approximation, simultaneously including H(3) and magnetic fluctuations at n>n1 (n1 ≈ 0.72 for 2t/U = 0.25) caused qualitative changes in the structure of the energy spectrum. A new Van Hove singularity is then induced in the density of states, and an additional maximum appears in the Tc(n) concentration dependence of the temperature of the transition to the superconducting phase with order parameter symmetry of the d x 2?y2 type.  相似文献   

13.
Thin Re0.6Ba0.4MnO3 epitaxial films (Re = La, Pr, Nd, Gd) grown on (001)SrTiO3 and (001)ZrO2(Y2O3) single crystal substrates have been prepared and studied. All the films were found to have a cubic perovskite structure, with the exception of the film with Re = La, which revealed rhombohedral distortion of the perovskite cell. The temperature dependences of the electrical resistivity and magnetoresistance pass through a maximum near the Curie point TC, where the magnetoresistance reaches a colossal value. The magnetization isotherms M(H) are superpositions of a magnetization that is linear in field (like that of an antiferromagnet) and a weak spontaneous magnetization. The magnetic moment per formula unit is substantially smaller than that expected under complete ferro-or ferrimagnetic ordering. The magnetizations of samples cooled in a magnetic field (FC samples) and with no field applied (ZFC samples) differ by an amount that persists up to the highest measurement fields (50 kOe). The M(T) dependence obtained in strong magnetic fields is close to linear. Hysteresis loops of the FC samples are shifted along the field axis. The above magnetic and electric properties of thin films are explained in terms of two coexisting magnetic phases, which are due to strong s-d exchange coupling.  相似文献   

14.
The critical magnetic fields H c and H c2 are measured for thin films of the isotropic superconductor NbC. It is revealed that the critical fields exhibit strong anisotropy due to the vortex-free state of the film in a magnetic field aligned parallel to its surface. The H c/H c2 ratio at 2 K exceeds 6 and increases with increasing temperature. The dependence H c(T) agrees quantitatively with the concepts of microscopic theory on the vortex-free state of a thin film of a clean superconductor in the temperature range below T c . As the electron mean free path decreases under irradiation of the film with a low dose of He+ ions, the critical field H c remains unchanged near T c but increases significantly at lower temperatures. The well-known theoretical models are used to estimate the electronic parameters and thicknesses of MgB2 films for which the specific features associated with the vortex-free state of the two-gap superconductor can manifest themselves in the temperature dependence of the critical magnetic field H c(T).  相似文献   

15.
The temperature dependences of the specific heat C(T) and thermal conductivity K(T) of MgB2 were measured at low temperatures and in the neighborhood of T c . In addition to the well-known superconducting transition at T c ≈40 K, this compound was found to exhibit anomalous behavior of both the specific heat and thermal conductivity at lower temperatures, T≈10–12 K. Note that the anomalous behavior of C(T) and K(T) is observed in the same temperature region where MgB2 was found to undergo negative thermal expansion. All the observed low-temperature anomalies are assigned to the existence in MgB2 of a second group of carriers and its transition to the superconducting state at Tc2≈10?12 K.  相似文献   

16.
Multiferroic BiFe1?xZn x O3 ceramics were prepared by solution combustion method. Their structure, magnetoelectric, dielectric, magnetic, thermal characteristics were studied. The magnetic M(T) and heat capacity C p (T) measurements demonstrate an antiferromagnetic to paramagnetic phase transition (T N ) around 635 K. The anomaly on the temperature dependence of the dielectric constant near T N was observed, which could be induced by the magnetoelectric coupling between electric and magnetic ordering. The magnetoelectric behavior was also confirmed by the linear relation between Δε and M2, which is in the agreement of the Ginzburg-Landau theory for the second-order phase transition.  相似文献   

17.
We have studied the behavior of the thermal expansion coefficient α(T) (in a zero magnetic field and at H≈4 T), the heat capacity C(T), and the thermal conductivity κ(T) of magnesium boride (MgB2) in the vicinity of Tc and at lower temperatures. It was established that MgB2, like oxide-based high-temperature superconductors, exhibits a negative thermal expansion coefficient at low temperatures. The anomaly of α(T) in MgB2 is significantly affected by the magnetic field. It was established that, in addition to the well-known superconducting transition at Tc≈40 K, MgB2 exhibits an anomalous behavior of both heat capacity and thermal conductivity in the region of T≈10–12 K. The anomalies of C(T) and κ(T) take place in the same temperature interval where the thermal expansion coefficient of MgB2 becomes negative. The low-temperature anomalies are related to the presence of a second group of charge carriers in MgB2 and to an increase in the density of the Bose condensate corresponding to these carriers at Tc2≈10–12 K.  相似文献   

18.
The magnetization M(H) in the superconducting state, dc magnetic susceptibility χ(T) in the normal state, and specific heat C(T) near the superconducting transition temperature T c have been measured for a series of fine-crystalline YBa2Cu3O y samples having nearly optimum values of y = 6.93 ± 0.3 and T c = (91.5 ± 0.5) K. The samples differ only in the degree of nanoscale structural inhomogeneity. The characteristic parameters of superconductors (the London penetration depth and the Ginzburg–Landau parameter) and the thermodynamic critical field H c are determined by the analysis of the magnetization curves M(H). It is found that the increase in the degree of nanoscale structural inhomogeneity leads to an increase in the characteristic parameters of superconductors and a decrease in H c(T) and the jump of the specific heat ΔC/T c. It is shown that the changes in the physical characteristics are caused by the suppression of the density of states near the Fermi level. The pseudogap is estimated by analyzing χ(T). It is found that the nanoscale structural inhomogeneity significantly enhances and probably even creates the pseudogap regime in the optimally doped high-T c superconductors.  相似文献   

19.
For a 2D electron system in silicon, the temperature dependence of the Hall resistance ρxy(T) is measured in a weak magnetic field in the range of temperatures (1–35 K) and carrier concentrations n where the diagonal resistance component exhibits a metallic-type behavior. The temperature dependences ρxy(T) obtained for different n values are nonmonotonic and have a maximum at Tmax ~ 0.16TF. At lower temperatures T < Tmax, the change δρxy(T) in the Hall resistance noticeably exceeds the interaction quantum correction and qualitatively agrees with the semiclassical model, where only the broadening of the Fermi distribution is taken into account. At higher temperatures T > Tmax, the dependence ρxy(T) can be qualitatively explained by both the temperature dependence of the scattering time and the thermal activation of carriers from the band of localized states.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号