首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Biodiesel was obtained by transesterification of Jatropha curcus oil with anhydrous methanol, ethanol, and various mixtures of methanol/ethanol system. The present research work ultrasonic assisted transesterification of J. curcus oil was carried out in the presence of various mixtures of methanol/ethanol system and potassium hydroxide (KOH) as a catalyst, keeping the molar ratio of oil to alcohol 1:6. The methodology allows for the reaction to be run under atmospheric conditions. The ethanomethanolysis and ultrasonic mixing promote the rate of transesterification reaction due to the better solubility of oil with ethanol in reaction mixture and obtained methyl esters as well as ethyl esters.  相似文献   

2.
N 1s, S 2p and Ni 2p3/2 binding energies for the Ni(II) dithiocarbazates and N 1s and S 2p binding energies for the methyl esters of dithiocarbazic acids were measured. It was found that the band width of N 1s narrows on going from the esters to the complexes, thus suggesting a closer similarity between the two nitrogen atoms as a consequence of coordination. S 2p binding energies were found to be similar in the above complexes independent of the chromophore present in them. A possible explanation is suggested for this unusual result.  相似文献   

3.
The diffusive extinction limits of a series of methyl ester flames, from methyl formate to methyl decanoate, have been measured in the counterflow configuration. Kinetic and transport effects are decoupled by use of the transport-weighted enthalpy term and reveal that the smaller methyl esters (C2 to C4) exhibit unique behavior while methyl esters inclusive and larger than methyl butanoate exhibit similar global reactivity to that of the n-alkanes. In order to interpret the experimental observations, a previous kinetic model for methyl butanoate and methyl decanoate has been extended to encompass the oxidation of the smaller methyl esters. Model rate of production analyses highlight the chemical kinetic specificities of methyl formate, methyl ethanoate, and methyl propanoate, through distinctive fuel reaction channels in methanol elimination, methyl radical production, and H atom production respectively. The similarity of global reactivity among the larger methyl esters and n-alkanes is elucidated based on the formation of formaldehyde and ethylene, which drive indifferently the growth of the radical pool at high temperature, thus the flame oxidation rate is similar at the global level.  相似文献   

4.
The detailed chemical structures of low-pressure premixed laminar flames fueled by three simple unsaturated C5H8O2 esters, the methyl crotonate (MC), methyl methacrylate (MMA), and ethyl propenoate (EPE), are investigated using tunable synchrotron vacuum ultraviolet (VUV) photoionization mass spectrometry. Significant differences in the compositions of key reaction intermediates between these flames under similar flame conditions are observed. The results enable further refinement and validation of a detailed chemical kinetic reaction mechanism, which is largely based on a previous model for saturated esters. Detailed kinetic modeling describes how these differences are related to molecular structures, leading to unique fuel destruction pathways for each of these isomers. Meanwhile, the effect of carbon carbon double bonds on the combustion chemistry of small fatty acid esters is addressed.  相似文献   

5.
Biodiesel is a family of renewable engine fuels with carbon-neutral nature. In this work, three C5H10O2 esters (methyl butanoate, methyl isobutanoate and ethyl propanoate), which can serve as model compounds of biodiesel and represent linear and branched methyl esters and linear ethyl esters, were investigated to characterize their laminar flame propagation characteristics up to 10 atm and unravel the effects of isomeric fuel structures. A high-pressure constant-volume cylindrical combustion vessel was used to achieve laminar burning velocity measurements at 1–10 atm, 423 K and equivalence ratios of 0.7–1.5, while comparative experimental work was performed on a heat flux burner at 1 atm, 393 K and equivalence ratios of 0.7–1.6 for methyl butanoate and ethyl propanoate. The laminar burning velocity generally decreases with increasing pressure and increases in the order of methyl isobutanoate, methyl butanoate and ethyl propanoate, which shows distinct fuel isomeric effects. A kinetic model of C5H10O2 esters was developed and validated against the new data in this work and previous data in literature. Modeling analyses were performed to provide insight into the fuel-specific flame chemistry of the three esters isomers. Remarkable differences in radical pools of three ester isomers are concluded to be responsible for the observed fuel isomeric effects on laminar flame propagation. The feature of two ethyl groups connected to the ester group in ethyl propanoate facilitates the ethyl production and inhibits the methyl and allyl production, making it propagate fastest among the three isomers. The branched structure feature of methyl isobutanoate with methyl and i-propyl groups connected to the ester group prevents the ethyl formation and results in considerable CH3 and allyl production, which decelerates its laminar flame propagation.  相似文献   

6.
3-Hydroxy-5,5-dimethyl-2-[phenyl(phenylthio)methyl]cyclohex-2-enone is synthesized via one-pot three-component reactions of aromatic aldehyde, substituted thiophenol and 5,5-dimethyl-1,3-cyclohexanedione catalyzed by p-dodecylbenzene sulfonic acid (DBSA) under ultrasound. Under ultrasound irradiation the yields are much higher (sometimes substantially, by almost double) and the reaction time decreases substantially, the reaction conditions are milder. This method provides several advantages such as environment friendliness, high yields and simple work-up procedure and the protocol provides a novel alternative for the synthesis of thioether.  相似文献   

7.
The reaction between oxygen and carbon monoxide on a polycrystalline rhodium ribbon under stationary conditions is followed by mass spectrometry. At temperatures from 300–1100 K the ratio of the partial pressures of reactants varies between 0.1 < pO2/pCO < 100. The value of the total pressure in the reactor varies between 10?5 and 10?4 Torr. The reaction on rhodium shows similar features as in the case of platinum. The results are consistent with a simple elementary reaction sequence but quantitative agreement by model calculations was not obtained.  相似文献   

8.
The high-temperature decomposition of three simple methyl esters: methyl acetate, methyl propionate and methyl butanoate, were studied behind reflected shock waves using tunable diode laser absorption of CO2 near 2.7 μm. CO2 yield measurements were made over the range of temperatures 1260-1653 K, pressures of 1.4-1.7 atm and reactant concentrations of 2-3%, with the balance Ar. The CO2 absorption strengths near 2.7 μm are approximately 50 to 1000 times stronger than the bands near 2.0 and 1.55 μm, respectively, and offer opportunities for significantly more sensitive and accurate combustion measurements than previous absorption work using CO2 bands at shorter wavelength. The experiments provide the first laser-based time-history measurements of the CO2 yields during pyrolysis of these bio-diesel surrogate fuels in a shock tube. Model predictions for CO2 yields during methyl butanoate pyrolysis at high temperatures, using the detailed reaction mechanisms of [E. M. Fisher, W. J. Pitz, H. J. Curran, C. K. Westbrook, Proc. Combust. Inst. 28 (2000) 1579-1586.] and others, are significantly lower than those measured in this study. However, an improved methyl butanoate model which extends the recent theoretical work of [L.K. Huynh, A. Violi, J. Org. Chem. 73 (2008) 94-101.] provides substantially improved predictions of CO2 yields during methyl butanoate pyrolysis. As earlier mechanisms predicted low yields of CO2 from methyl butanoate decomposition, these new findings imply that existing bio-diesel fuel models, which rely on the rapid formation of two oxygenate radicals from methyl esters (rather than a single non-reactive CO2 molecule) to account for the tendency for soot reduction, may have to be revisited.  相似文献   

9.
The present work demonstrates the application of a hydrodynamic cavitation reactor for the synthesis of biodiesel with used frying oil as a feedstock. The synthesis involved the transesterification of used frying oil (UFO) with methanol in the presence of potassium hydroxide as a catalyst. The effect of geometry and upstream pressure of a cavitating orifice plate on the rate of transesterification reaction has been studied. It is observed that the micro level turbulence created by hydrodynamic cavitation somewhat overcomes the mass transfer limitations for triphasic transesterification reaction. The significant effects of upstream pressure on the rate of formation of methyl esters have been seen. It has been observed that flow geometry of orifice plate plays a crucial role in process intensification. With an optimized plate geometry of 2 mm hole diameter and 25 holes, more than 95% of triglycerides have been converted to methyl esters in 10 min of reaction time with cavitational yield of 1.28 × 10?3 (Grams of methyl esters produced per Joule of energy supplied). The potential of UFO to produce good quality methyl esters has been demonstrated.  相似文献   

10.
Understanding the combustion of methyl esters is crucial to elucidate kinetic pathways and predict combustion parameters, soot yields, and fuel performance of biodiesel, however most kinetic studies of methyl esters have focused on smaller, surrogate model esters. Methyl hexanoate is a larger methyl ester approaching the chain length of methyl esters found in biodiesel and has not received as much research attention as other smaller esters. The purpose of this work is to present the first atmospheric pressure combustion data of methyl hexanoate, CH3CH2CH2CH2CH2COOCH3. Mixtures of 2% methyl hexanoate in O2 and N2 are studied using a plug flow reactor at atmospheric pressure, wall temperatures from 573 to 973 K, residence times from roughly 1-2 s., and fuel equivalence ratios of 1, 1.5, and 2. Exhaust gases are analyzed by a gas chromatograph-mass spectrometer system and species mole fractions are presented. The literature model shows satisfactory agreement with the experimental species profiles and improvements for future mechanistic studies are suggested. In particular, this work proposes new unimolecular decomposition pathways of methyl hexanoate to form methanol or methyl acetate. Furthermore, the experiment detected three unsaturated esters that are direct products of the low temperature oxidation chemistry and it provides more insight into branching ratios for the formation of methyl hexanoate radicals and for the decomposition of hydroperoxyalkyl radicals.  相似文献   

11.
Biodiesel, a mixture of fatty acid methyl esters (FAME), is bio-renewable, non-toxic, biodegradable, and is an attractive alternative to petroleum diesel. This work studied the sonochemical transesterification of Lesquerella fendleri oil (LFO) using inexpensive solid Lewis acid (LA) catalysts with an aim to reduce environmental pollution and dependance on non-renewable fuel sources. Due to the presence of hydroxy fatty acid methyl esters (HFAME) in LFO (∼60%), in addition to producing biofuel it can also be used to generate chemically important estolides and cyclic lactones. AlCl3, SnCl2, and Sn(CH3COO)2 showed catalytic activity using direct immersion ultrasound (DI-US) among a list of LA catalysts investigated, with AlCl3 being the best catalyst. Ultrasound increased the reaction rate by facilitating carbocation formation of glyceridic carbons. Experiments were carried out at room temperature in a solvent range from 3:1 to 18:1 methanol-to-oil molar ratio and catalyst loading from 1 wt% to 6 wt% over 10 to 60 min sonication time at 48% ultrasound amplitude (roughly 17 W/cm2). Complete conversion (>99%) was achieved in 40 min with 5 wt% AlCl3 catalyst. A statistical regression analysis with STATA 14.0 software was performed to optimize process parameters. Chemical characterizations of the compounds were performed with nuclear magnetic resonance (NMR) spectroscopy (1H NMR & 13C NMR), and % conversion of FAMEs was calculated from the 1H NMR spectra. The fatty acid profile was determined by GC-FID and GC–MS analysis. FT-IR spectroscopic analysis and thermogravimetric analysis (TGA) were performed to investigate the infrared absorption pattern of the compound and the volatility difference between Lesquerella fendleri biodiesel and oil under nitrogen atmosphere. Results indicate that this is a fast, green, energy-efficient, sustainable, and industrially applicable method for biodiesel production from LFO.  相似文献   

12.
Zinc tetraaminophthalocyanine (Zn-TAPc) modified by cyanuric chloride was immobilized on silk fibers by covalent bond to obtain a supported photocatalyst (Zn-TDTAPc-SF). The photocatalytic degradation of acid orange II based on Zn-TDTAPc-SF/O2 system was investigated under visible light irradiation (λ ≥ 400 nm). The results indicated that Zn-TDTAPc-SF exhibited excellent photocatalytic performance in the presence of O2 under visible light irradiation. In 6 h, more than 93% of acid orange II (AO2) in Zn-TDTAPc-SF/O2 system was eliminated at initial pH 5 under visible light irradiation, and Zn-TDTAPc-SF still remained effective in repetitive fives cycles. Furthermore, NaCl played a positive role in the catalytic reaction, different from the negative one observed in homogeneous catalysis, and the reaction can proceed in a more wide pH range from acidic to alkaline. Based on the analysis of FT-IR and Gas Chromatography/Mass Spectrometry (GC–MS), AO2 was mainly converted into some small molecular biodegradable aliphatic carboxylic compounds such as maleic acid, fumaric acid, succinic acid, etc. The photodegradation mechanism for the evolution of AO2 was proposed by Electron Paramagnetic Resonance (EPR) spectra.  相似文献   

13.
The reaction between carbon monoxide and nitrogen monoxide on a polycrystalline rhodium ribbon under stationary conditions is followed by mass spectrometry. In the temperature range 300 to 1100 K the ratio of the partial pressures of the reactants varies between 0.1 < pNO/pCO < 100 at values of the total pressure in the reactor from 10?4 to 10?5 Torr. The results can be interpreted qualitatively by a simple elementary reaction sequence. Simulation using literature values of the kinetic constants leads to semi-quantitative agreement with experimental results. No isothermal oscillations of the reaction rate could be observed under the stated conditions.  相似文献   

14.
The experimental densities (ρ), dynamic viscosities (η), speeds of sound (υ) and relative permittivities (εr) of thirty six binary mixtures of esters (methyl acetate, ethyl acetate, butyl acetate and isoamyl acetate) + organic solvents (n-hexane, benzene, toluene, o-, m-, p- xylenes), + halogenated benzene (chloro-, bromobenzene), + nitrobenzene have been measured over the complete composition range at atmospheric pressure and temperatures (298.15 to 313.15 K). The excess molar volumes, VmE, excess isentropic compressibilities, κsE, deviations in relative permittivities, δεr have been calculated and fitted to Redlisch–Kister type equation. The dynamic and kinematic viscosities have been correlated through Grunberg–Nissan and MacAllister equations. The qualitative analysis of various functions revealed that i.) esters lose their dipolar association in presence of inert and unlike n-hexane, ii.) specific but weaker nπ type interactions predominate in binary mixtures of esters + aromatic organic solvents and iii.) weak electron donor–acceptor complexes predominate in the mixtures of esters with halogenated and nitrated benzene.  相似文献   

15.
Biodiesel mechanism development poses interrelated challenges. Kinetic parameters of interest for the numerous steps with implications for low-temperature biodiesel combustion can be determined largely via computational means, but the computational approaches that best balance expense and accuracy in generating these parameters have not been systematically determined. A CO2 production pathway recently proposed in the literature to occur in the methyl esters commonly used as surrogates for complex biofuel chemistry provides an opportunity to explore both these areas. We quantified this previously-proposed CO2 production pathway using composite (G3B3) calculations and identified areas for potential side reactions, in both methyl butanoate and methyl pentanoate. Alternative isomerizations were also examined and suggest that side reactions may play an increasingly larger role in the chemistry of long-chain methyl esters, compared to methyl butanoate. In methodological terms, G3MP2B3 calculations matched quantitatively and qualitatively well with benchmark G3B3 data, while density functional theory (DFT) approaches generally failed to achieve the accuracy or precision desirable in determining reaction barriers. Potential energy surfaces generated via G3MP2B3 calculations were used to explore kinetic parameters for reactions implicated in early CO2 production and competing pathways for methyl esters; these parameters were compared to extant mechanistic data.  相似文献   

16.
The autoignition of a series of C4 to C8 fatty acid methyl esters has been studied in a rapid compression machine in the low and intermediate temperature region (650-850 K) and at increasing pressures (4-20 bar). Methyl hexanoate was selected for a full investigation of the autoignition phenomenology, including the identification and determination of the intermediate products of low temperature oxidation. The oxidation scheme and overall reactivity of methyl hexanoate has been examined and compared to the reactivity of C4 to C7n-alkanes in the same experimental conditions to evaluate the impact of the ester function on the reactivity of the n-alkyl chain. The low temperature reactivity leading to the first stage of autoignition is similar to n-heptane. However, the negative temperature coefficient region is located at lower temperature than in the case of the n-alkanes of corresponding reactivity. An evaluation of the distribution of esteralkyl radicals R and esteralkylperoxy radicals ROO gives an insight into the main reaction pathways.  相似文献   

17.
A green approach for the one-pot four-component sonochemical synthesis of 5-methyl-7-aryl-4,7-dihydrotetrazolo[1,5-a]pyrimidine-6-carboxylic esters from the reaction of 2-cyano-guanidine, sodium azide, various aromatic aldehydes and methyl or ethyl acetoacetate in the presence of a catalytic amount of Fe2O3@SiO2-(CH2)3NHC(O)(CH2)2PPh2 as a new hybrid organic–inorganic core–shell nanomagnetic catalyst is described. This is the first design, preparation, characterization and application of the present nanomaterial and also the first ultrasound irradiated synthesis of the biologically and pharmaceutically important heterocyclic compounds in water as a green solvent. This novel sonocatalysis/nanocatalysis protocol offers several advantages such as high yields, short reaction times, environmentally-friendly reaction media, easily isolation of the products, simple preparation, full characterization and recoverability of the nanocatalyst by an external magnet and reusing several times without significant loss of activity.  相似文献   

18.
The reaction π+ p→π+π+ n was studied in the vicinity of the reaction threshold at ten incident pion beam momenta from 297 MeV/c to 480 MeV/c. From data angular distributions, invariant mass spectra and integrated cross-sections were deduced. The chiral symmetry breaking parameter as determined by this reaction equals to ξ=1.56±0.26±0.39, where the first error is experimental, while the latter reflects the uncertainty in the ansatz used in the extrapolation to the reaction threshold. A comparison with the other reaction channels of the reaction πp→ππN indicates that a single parameter (ξ) is not sufficient to describe low energy ππ interactions.  相似文献   

19.
20.
The tetramethylammonium-hydrogen fumarate-fumaric acid (hereafter, [TMAHF-FA]) complex was synthesized and characterized by spectroscopic (IR), structural (XRD) and electron paramagnetic resonance (EPR) techniques. In the crystal structure, tetramethylammonium cation lies on a mirror plane of the space group P21/m. Crystal structure analysis reveals that there is a large degree of proton sharing between the fumaric acid and hydrogen fumarate, with the H atom lying almost symmetrically between the donor and acceptor sites, as evidenced by the long O-H and short H?O distances [1.19(3) Å, 1.26(3) Å], respectively. γ-Irradiation damage centers in [TMAHF-FA] single crystal have been investigated by EPR at room temperature. The spectra indicated the existence of radical. The EPR spectra recorded in the three mutually perpendicular planes have shown two magnetically distinct paramagnetic sites in monoclinic lattice. The principal values of g and hyperfine constants for both sites were calculated. IR spectrum was resolved and transitions were assigned based on the molecular structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号