首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
The oscillation of a laser-generated single cavitation bubble near a solid boundary is investigated by a fiber-optic diagnostic technique based on optical beam deflection (OBD). The maximum bubble radii and collapse time for each oscillation cycle are determined from a sequence of bubble oscillations. Furthermore, by combining the revised Rayleigh theory, the prolongation factor κ at different dimensionless parameter γ (γ=L/Rmax, where Rmax is the maximum bubble radius and L is the distance of a cavity inception point from a boundary) is obtained. In addition, the prolongation factor of the collapse time versus laser energy is also derived, which are valuable in the fields of hydraulic cavitation, laser lithotripsy and laser ophthalmology.  相似文献   

2.
Knowledge of the kinetics of gas bubble formation and evolution under cavitation conditions in molten alloys is important for the control casting defects such as porosity and dissolved hydrogen. Using in situ synchrotron X-ray radiography, we studied the dynamic behaviour of ultrasonic cavitation gas bubbles in a molten Al–10 wt% Cu alloy. The size distribution, average radius and growth rate of cavitation gas bubbles were quantified under an acoustic intensity of 800 W/cm2 and a maximum acoustic pressure of 4.5 MPa (45 atm). Bubbles exhibited a log-normal size distribution with an average radius of 15.3 ± 0.5 μm. Under applied sonication conditions the growth rate of bubble radius, R(t), followed a power law with a form of R(t) = αtβ, and α = 0.0021 & β = 0.89. The observed tendencies were discussed in relation to bubble growth mechanisms of Al alloy melts.  相似文献   

3.
Sonoporation—transient plasma membrane perforation elicited by the interaction of ultrasound waves with microbubbles—has shown great potential for drug delivery and gene therapy. However, the heterogeneity of sonoporation introduces complexities and challenges in the realization of controllable and predictable drug delivery. The aim of this investigation was to understand how non-acoustic parameters (bubble related and bubble-cell interaction parameters) affect sonoporation. Using a customized ultrasound-exposure and fluorescence-imaging platform, we observed sonoporation dynamics at the single-cell level and quantified exogenous molecular uptake levels to characterize the degree of sonoporation. Sonovue microbubbles were introduced to passively regulate microbubble-to-cell distance and number, and bubble size. 1 MHz ultrasound with 10-cycle pulse duration and 0.6 MPa peak negative pressure were applied to trigger the inertial collapse of microbubbles. Our data revealed the impact of non-acoustic parameters on the heterogeneity of sonoporation. (i) The localized collapse of relatively small bubbles (diameter, D < 5.5 μm) led to predictable sonoporation, the degree of which depended on the bubble-to-cell distance (d). No sonoporation was observed when d/D > 1, whereas reversible sonoporation occurred when d/D < 1. (ii) Large bubbles (D > 5.5 μm) exhibited translational movement over large distances, resulting in unpredictable sonoporation. Translation towards the cell surface led to variable reversible sonoporation or irreversible sonoporation, and translation away from the cell caused either no or reversible sonoporation. (iii) The number of bubbles correlated positively with the degree of sonoporation when D < 5.5 μm and d/D < 1. Localized collapse of two to three bubbles mainly resulted in reversible sonoporation, whereas irreversible sonoporation was more likely following the collapse of four or more bubbles. These findings offer useful insight into the relationship between non-acoustic parameters and the degree of sonoporation.  相似文献   

4.
Cavitation bubbles collapsing in the vicinity to a solid substrate induce intense micro-convection at the solid. Here we study the transient near-wall flows generated by single collapsing bubbles by chronoamperometric measurements synchronously coupled with high-speed imaging. The individual bubbles are created at confined positions by a focused laser pulse. They reach a maximum expansion radius of approximately 425 μm. Several stand-off distances to the flat solid boundary are investigated and all distances are chosen sufficiently large that no gas phase of the expanding and collapsing bubble touches the solid directly. With a microelectrode embedded into the substrate, the time-resolved perturbations in the liquid shear layer are probed by means of a chronoamperometric technique. The measurements of electric current are synchronized with high-speed imaging of the bubble dynamics. The perturbations of the near-wall layer are found to result mainly from ring vortices created by the jetting bubble. Other bubble induced flows, such as the jet and flows following the radial bubble oscillations are perceptible with this technique, but show a minor influence at the stand-off distances investigated.  相似文献   

5.
M.A. Karolewski  R.G. Cavell 《Surface science》2011,605(19-20):1842-1851
The primary ion directional effects observed in secondary electron yields induced by ion bombardment [5 keV Ar+  Cu(100)] are simulated using a semi-empirical molecular dynamics model. The directional effects are presumed to arise from inelastic energy transfers that take place in close binary atomic encounters. The latter are estimated using the Oen-Robinson model, in combination with a critical apsidal distance (Rc). The connection between the measured kinetic electron emission (KEE) yields (γKEE) and the predicted inelastic energy loss in a binary atomic collision (ΔEi) is established through a semi-empirical fitting procedure involving Rc and other parameters in the following model: γe = γ0 + γKEE = γ0 + ΔEi(z)exp(? z/λ)〉, where z is the collision depth. The directional effects are best reproduced by fitting the model to Ar–Cu inelastic collisions for two azimuthal incident directions: Rc is estimated to be 0.47 ± 0.03 Å; the parameter, λ (an effective electron attenuation length), is estimated to be 18 ± 2 Å. The same model also describes the γKEE energy dependence for 5–10 keV Ar+ normally incident on low-index Cu crystal targets [Phys. Rev. 129 (1963) 2409]. The spatial and temporal distributions of the hard collisions that initiate KEE are discussed on the basis of the model.  相似文献   

6.
The objective of this paper is to investigate the transient conical bubble structure (CBS) and acoustic flow structure in ultrasonic field. In the experiment, the high-speed video and particle image velocimetry (PIV) techniques are used to measure the acoustic cavitation patterns, as well as the flow velocity and vorticity fields. Results are presented for a high power ultrasound with a frequency of 18 kHz, and the range of the input power is from 50 W to 250 W. The results of the experiment show the input power significantly affects the structures of CBS, with the increase of input power, the cavity region of CBS and the velocity of bubbles increase evidently. For the transient motion of bubbles on radiating surface, two different types could be classified, namely the formation, aggregation and coalescence of cavitation bubbles, and the aggregation, shrink, expansion and collapse of bubble cluster. Furthermore, the thickness of turbulent boundary layer near the sonotrode region is found to be much thicker, and the turbulent intensities are much higher for relatively higher input power. The vorticity distribution is prominently affected by the spatial position and input power.  相似文献   

7.
《Solid State Ionics》2006,177(19-25):1849-1853
Single phase materials of the La(2−x)SrxMnOδ (0.6  x  2.0) solid solution series were prepared via solid state reaction. The structure of each material was examined at room temperature and determined to be tetragonal for all phases examined. An expansion in lattice volume was observed on increasing lanthanum content. The stability and thermal expansion of each member of the solid solution series was determined via the use of in situ high temperature X-ray diffraction. It was found that all materials remained stable up to a temperature of 800 °C. Thermal expansion coefficients were found to be in the region of 15 × 10 6 K 1 for La(2−x)SrxMnOδ compounds where x > 1.4. The electrical conductivity of each phase was also determined over a similar temperature range with a maximum value of ∼6 Scm 1 at 900 °C for the x = 1.8 phase.  相似文献   

8.
Formation of highly reactive species such as OH, H, HO2 and H2O2 due to transient collapse of cavitation bubbles is the primary mechanism of sonochemical reaction. The crucial parameters influencing the formation of radicals are the temperature and pressure achieved in the bubble during the strong collapse. Experimental determinations estimated a temperature of about 5000 K and pressure of several hundreds of MPa within the collapsing bubble. In this theoretical investigation, computer simulations of chemical reactions occurring in an O2-bubble oscillating in water irradiated by an ultrasonic wave have been performed for diverse combinations of various parameters such as ultrasound frequency (20–1000 kHz), acoustic amplitude (up to 0.3 MPa), static pressure (0.03–0.3 MPa) and liquid temperature (283–333 K). The aim of this series of computations is to correlate the production of OH radicals to the temperature and pressure achieved in the bubble during the strong collapse. The employed model combines the dynamic of bubble collapse in acoustical field with the chemical kinetics of single bubble. The results of the numerical simulations revealed that the main oxidant created in an O2 bubble is OH radical. The computer simulations clearly showed the existence of an optimum bubble temperature of about 5200 ± 200 K and pressure of about 250 ± 20 MPa. The predicted value of the bubble temperature for the production of OH radicals is in excellent agreement with that furnished by the experiments. The existence of an optimum bubble temperature and pressure in collapsing bubbles results from the competitions between the reactions of production and those of consumption of OH radicals at high temperatures.  相似文献   

9.
In this paper, we examined normally-OFF N-polar InN-channel Metal insulated semiconductor high-electron mobility transistors (MISHEMTs) device with a relaxed In0.9Al0.1N buffer layer. In addition, the enhancement-mode operation of the N-polar structure was investigated. The effect of scaling in N-polar MISHEMT, such as the dielectric and the channel thickness, alter the electrical behavior of the device. We have achieved a maximum drain current of 1.17 A/mm, threshold voltage (VT) =0.728 V, transconductance (gm) of 2.9 S mm−1, high ION/IOFF current ratio of 3.23×103, lowest ON-state resistance (RON) of 0.41 Ω mm and an intrinsic delay time (τ) of 1.456 Fs along with high-frequency performance with ft/ fmax of 90 GHz/109 GHz and 180 GHz/260 GHz for TCH =0.5 nm at Vds =0.5 V and 1.0 V. The numerically simulated results of highly confined GaN/InN/GaN/In0.9Al0.1N heterostructure MISHEMT exhibits outstanding potential as one of the possibility to replace presently used N-polar MISHEMTs for delivering high power density and frequency at RF/power amplifier applications.  相似文献   

10.
In this work, we reported the effect of Li2CO3 addition on the structural, optical, ferroelectric properties and electric-field-induced strain of Bi0.5(Na,K)0.5TiO3 (BNKT) solid solution with CaZrO3 ceramics. Both rhombohedral and tetragonal structures were distorted after adding Lithium (Li). The band gap values decreased from 2.91 to 2.69 eV for 5 mol% Li-addition. The maximum polarization and remanent polarization decreased from 49.66 μC/cm2 to 27.11 μC/cm2 and from 22.93 μC/cm2 to 5.35 μC/cm2 for un-doped and 5 mol% Li- addition BNKT ceramics, respectively. The maximum Smax/Emax value was 567 pm/V at 2 mol% Li2CO3 access. We expected this work will help to understand the role of A-site dopant in lead-free ferroelectric BNKT materials.  相似文献   

11.
A laser image system for investigating twin bubbles formation in shear-thinning fluid was established. The process of twin-bubble formation could be directly visualized and real-time recorded through computer by means of He–Ne laser as light source using the beam expanding and light amplification technology. The shape and size of bubbles generating in carboxymethylcellulose (CMC) aqueous solutions were studied experimentally at orifice diameter 1 mm, 1.6 mm and 2.4 mm, the orifices interval 1Do, 2Do and 3Do (Do: orifice diameter) and the gas flow rate from 0.1 to 1.0 ml/s, respectively. The effects of solution mass concentration, orifice diameter and orifice interval on bubble detachment volume were investigated. The results reveals that twin bubbles gradually touch each other and then deviate from the vertical axis crossing the middle point of the line joining the two orifice during the formation process. However compared with the perfect teardrop terminal shapes in glycerol solution, the bubbles formed in CMC solutions are stretched vertically due to the shear-thinning effect of fluids. The bubble detachment volume increases with the solution mass concentration, whereas decreases with orifice diameter. The detachment volume generated at twin orifices is less affected by orifices interval, but still smaller than that at single orifice.  相似文献   

12.
In the present work, the influence of gas addition is investigated on both sonoluminescence (SL) and radical formation at 47 and 248 kHz. The frequencies chosen in this study generate two distinct bubble types, allowing to generalize the conclusions for other ultrasonic reactors. In this case, 47 kHz provides transient bubbles, while stable ones dominate at 248 kHz. For both bubble types, the hydroxyl radical and SL yield under gas addition followed the sequence: Ar > Air > N2 >> CO2. A comprehensive interpretation is given for these results, based on a combination of thermal gas properties, chemical reactions occurring within the cavitation bubble, and the amount of bubbles. Furthermore, in the cases where argon, air and nitrogen were bubbled, a reasonable correlation existed between the OH-radical yield and the SL signal, being most pronounced under stable cavitation at 248 kHz. Presuming that SL and OH originate from different bubble populations, the results indicate that both populations respond similarly to a change in acoustic power and dissolved gas. Consequently, in the presence of non-volatile pollutants that do not quench SL, sonoluminescence can be used as an online tool to qualitatively monitor radical formation.  相似文献   

13.
In the silicon wet etching process, the “pseudo-mask” formed by the hydrogen bubbles generated during the etching process is the reason causing high surface roughness and poor surface quality. Based upon the ultrasonic mechanical effect and wettability enhanced by isopropyl alcohol (IPA), ultrasonic agitation and IPA were used to improve surface quality of Si (1 1 1) crystal plane during silicon wet etching process. The surface roughness Rq is smaller than 15 nm when using ultrasonic agitation and Rq is smaller than 7 nm when using IPA. When the range of IPA concentration (mass fraction, wt%) is 5–20%, the ultrasonic frequency is 100 kHz and the ultrasound intensity is 30–50 W/L, the surface roughness Rq is smaller than 2 nm when combining ultrasonic agitation and IPA. The surface roughness Rq is equal to 1 nm when the mass fraction of IPA, ultrasound intensity and the ultrasonic frequency is 20%, 50 W and 100 kHz respectively. The experimental results indicated that the combination of ultrasonic agitation and IPA could obtain a lower surface roughness of Si (1 1 1) crystal plane in silicon wet etching process.  相似文献   

14.
Central events of ultrasonic action are the bubbles of cavitation that can be considered as powered microreactors within which high-energy chemistry occurs. This work presents the results of a comprehensive numerical assessment of frequency and saturating gases effects on single bubble sonochemistry. Computer simulations of chemical reactions occurring inside a bubble oscillating in liquid water irradiated by an ultrasonic wave have been performed for a wide range of ultrasonic frequencies (213–1100 kHz) under different saturating gases (O2, air, N2 and H2). For O2 and H2 bubbles, reactions mechanism consisting in 25 reversible chemical reactions were proposed for studying the internal bubble-chemistry whereas 73 reversible reactions were taken into account for air and N2 bubbles. The numerical simulations have indicated that radicals such as OH, H, HO2 and O are created in the bubble during the strong collapse. In all cases, hydroxyl radical (OH) is the main oxidant created in the bubble. The production rate of the oxidants decreases as the driving ultrasonic frequency increases. The production rate of OH radical followed the order O2 > air > N2 > H2 and the order becomes more remarkable at higher ultrasonic frequencies. The effect of ultrasonic frequency on single bubble sonochemistry was attributed to its significant impact on the cavitation process whereas the effects of gases were attributed to the nature of the chemistry produced in the bubble at the strong collapse. It was concluded that, in addition to the gas solubility, the nature of the internal bubble chemistry is another parameter of a paramount importance that controls the overall sonochemical activity in aqueous solutions.  相似文献   

15.
Lead indium niobate, Pb(In1/2Nb1/2)O3 or (PIN), is an interesting ferroelectric material, because it can be changed from a disordered state to ordered state by long-time thermal annealing. However, the temperature related to the maximum dielectric constant (Tmax) of PIN in relaxor phase is low (at 1 kHz, Tmax = 66 °C). In this study, to increasing Tmax of PIN, lead titanate, PbTiO3(PT) was thus added to PIN with compositions (1  x)PIN–xPT (for x = 0.1–0.5). The influence of stress on the dielectric properties of (1  x)PIN–xPT ceramics was then investigated. The dielectric properties were measured under various uniaxial compressive stress up to 400 MPa. The results showed that the superimposed compression load reduced the dielectric constant in 0.9PIN–0.1PT. For the other compositions, the dielectric constants first increased with the compressive stress, and then decreased when the stress was further increased up to 400 MPa. The dielectric loss tangent of all composition was found to decrease with increasing compressive stress.  相似文献   

16.
The temperature dependence of the magnetic susceptibility of 6–8 ML Ni/W(1 1 0) is measured in situ in UHV by means of an AC-susceptibility mutual inductance bridge. At sufficient small driving magnetic fields ⩽11 A/m a susceptibility maximum and an interval of constant susceptibility on the high temperature side of the peak are observed. The Curie temperature is identified as the low temperature limit of this region of constant susceptibility. The appearance of the maximum at lower temperatures is interpreted as a ferro-magnetic response at T<TC. The critical exponent γ is extracted from a power law fit at T>TC. For the smallest field of 3 A/m, the determined γ of 1.26 (7) is consistent with γ of the three-dimensional Ising model. For larger fields, the exponent depends on the field and presents an effective value.  相似文献   

17.
The equilibrated grain boundary groove shapes for solid carbon tetrabromide (CTB) in equilibrium with its melt were directly observed by using a horizontal temperature gradient stage. From the observed grain boundary groove shapes, Gibbs–Thomson coefficient (Γ) and solid–liquid interfacial energy (σSL) and grain boundary energy (σgb) of CTB have been determined to be (7.88 ± 0.8) × 10−8 K m, (6.91 ± 1.04) × 10−3 J m−2 and (13.43 ± 2.28) × 10−3 J m−2, respectively. The ratio of thermal conductivity of equilibrated liquid phase to solid phase for CTB has also been measured to be 0.90 at its melting temperature. The value of σSL for CTB obtained in present work was compared with the values of σSL determined in the previous works for same material and it was seen that the present result is in good agreement with previous works.  相似文献   

18.
This work aims at investigating for the first time the key sonication (US) parameters: power density (DUS), intensity (IUS), and frequency (FS) – down to audible range, under varied hydrostatic pressure (Ph) and low temperature isothermal conditions (to avoid any thermal effect).The selected application was activated sludge disintegration, a major industrial US process. For a rational approach all comparisons were made at same specific energy input (ES, US energy per solid weight) which is also the relevant economic criterion.The decoupling of power density and intensity was obtained by either changing the sludge volume or most often by changing probe diameter, all other characteristics being unchanged. Comprehensive results were obtained by varying the hydrostatic pressure at given power density and intensity. In all cases marked maxima of sludge disintegration appeared at optimum pressures, which values increased at increasing power intensity and density. Such optimum was expected due to opposite effects of increasing hydrostatic pressure: higher cavitation threshold then smaller and fewer bubbles, but higher temperature and pressure at the end of collapse.In addition the first attempt to lower US frequency down to audible range was very successful: at any operation condition (DUS, IUS, Ph, sludge concentration and type) higher sludge disintegration was obtained at 12 kHz than at 20 kHz. The same values of optimum pressure were observed at 12 and 20 kHz.At same energy consumption the best conditions – obtained at 12 kHz, maximum power density 720 W/L and 3.25 bar – provided about 100% improvement with respect to usual conditions (1 bar, 20 kHz). Important energy savings and equipment size reduction may then be expected.  相似文献   

19.
《Solid State Ionics》2006,177(19-25):1795-1798
Oxygen deficiency, thermal and chemical expansion of La0.5Sr0.5Fe1−xCoxO3−δ (x = 0, 0.5, 1) have been measured by thermogravimetry, dilatometry and high temperature X-ray diffraction. The rhombohedral perovskite materials transformed to a cubic structure at 350 ± 50 °C. The thermal expansion of the materials up to the onset of thermal reduction was 14–18 × 10 6 K 1. Above 500 °C in air (400 °C in N2), chemical expansion contributed to the thermal expansion and the linear thermal expansion coefficients were significantly higher, 16–35 × 10 6 K 1. The chemical expansion, εc, showed a maximum of 0.0045 for x = 0.5 and 0.0041 for x = 1 at 800–900 °C. The normalized chemical expansion, εcδ, was 0.036 for x = 0.5 and 0.035 for x = 1 at 800 °C. The chemical expansion can be correlated with an increasing ionic radius of the transition metals with decreasing valence state.  相似文献   

20.
M.K. Maurya  R.A. Yadav 《Optik》2012,123(14):1260-1270
Frequency detuning dependence of four-beam coupling in a photorefractive crystal pumped with two counter-propagating waves for a semilinear coherent optical resonator on the oscillation conditions has been analyzed in the case of non-degenerate-wave mixing under the slowly varying amplitude approximation method. Self oscillation can be achieved when the gain arising from the four-beam coupling is large enough to overcome the cavity loss. The effects of frequency detuning (i.e., non-degeneracy), dielectric constant and photoconductivity of the photorefractive materials on the performance of the semilinear photorefractive coherent resonator with the reflection grating configuration have also been studied in detail. The phase-conjugate reflectivity of the pumped crystal and oscillation intensity has been calculated for different input pump beam intensity ratio, intensity reflectivity of the conventional mirrors, degenerate energy coupling strength of the interacting beams. It has been found that for the higher value of the photoconductivity σp(>2.0 pS/cm) of photorefractive crystal, the semilinear resonator can oscillate at almost any frequency detuning (Ω) of the oscillation beam with respect to the fixed frequency of the pump waves whereas for the lower value of photoconductivity σp(<0.1 pS/cm) oscillation occurs only when the frequency detuning is limited to small region around Ω = 0. But reverse of the case is found for dielectric constant (?), pump intensity ratio (p) and conventional mirror reflectivity (R).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号