首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of ultrasonic frequency mode, power density, pretreatment time and other parameters under low power density on the degree of hydrolysis (DH) of defatted wheat germ protein (DWGP) and angiotensin-I-converting enzyme (ACE) inhibitory activity of DWGP hydrolysate were studied in this research. Ultraviolet–visible (UV–Vis) spectra, free sulfhydryl (SH), disulfide bond (SS), surface hydrophobicity and hydrophobic protein content of ultrasound-pretreated protein and hydrophobic amino acid (HAA) content of alcalase-hydrolysate of DWGP were measured under optimized ultrasonic condition. The ultrasonic frequency mode with dual-fixed frequency combination of 28/40 kHz showed higher ACE inhibitory activity of DWGP hydrolysate compared with that of other ultrasound frequency modes and all the ultrasonic frequency combinations involving in 28 kHz showed higher ACE inhibitory activity. Under the dual-fixed frequency ultrasound mode of 28/40 kHz, ultrasonic power density of 60 W/L, pretreatment time of 70 min, temperature of 60°C and substrate concentration of 60 g/L, the ACE inhibitory activity of DWGP hydrolysate was the highest with its value of 74.75% (increased by 62.30% compared to control). However, all the ultrasonic pretreatment did not increase the DH of DWGP significantly (p > 0.05). The changes in UV–Vis spectra, SH and SS groups, surface hydrophobicity and hydrophobic protein content indicated that the structure of DWGP unfolded after ultrasound pretreatment. The HAA content of hydrolysate from the pretreated DWGP increased significantly (p < 0.05). The results proved that ultrasound pretreatment loosed the protein structure and exposed more HAA residues of protein to be attacked easily by alcalase. This resulted in the increase in the HAA content which related to the ACE inhibitory activity.  相似文献   

2.
The current work deals with understanding the fundamental aspects of intensified recovery of lactose from paneer (cottage cheese) whey using the anti-solvent induced sonocrystallization. Ultrasonic horn (22 kHz) with varying power levels over the range of 40–120 W has been used for initial experiments at 100% duty cycle and two different levels of ultrasonic exposure time as 10 min and 20 min. Similar experiments were also performed using ultrasonic bath for the same time of exposure but with at two ultrasonic frequencies (22 kHz and 33 kHz). It was observed that the lactose recovery as well as purity increased with an increase in ultrasonic power at 100% duty cycle for the case of treatment time as 10 min whereas the lactose recovery and purity increased only till an optimum power for the 20 min treatment. In the case of ultrasonic bath, lactose purity increased with an increase in the ultrasonic frequency from 22 kHz to 33 kHz though the lactose recovery marginally decreased. Overall, it was observed that the maximum lactose recovery was ∼98% obtained using ultrasonic horn while the maximum lactose purity was ∼97%. It was also observed that maximum lactose recovery was ∼94% for the case of ultrasonic bath while the maximum lactose purity was ∼92%. The work has enabled to understand the optimized application of ultrasound so as to maximize both the lactose yield and purity during the recovery from whey.  相似文献   

3.
The present work investigates the degradation of 4-chloro 2-aminophenol (4C2AP), a highly toxic organic compound, using ultrasonic reactors and combination of ultrasound with photolysis and ozonation for the first time. Two types of ultrasonic reactors viz. ultrasonic horn and ultrasonic bath operating at frequency of 20 kHz and 36 kHz respectively have been used in the work. The effect of initial pH, temperature and power dissipation of the ultrasonic horn on the degradation rate has been investigated. The established optimum parameters of initial pH as 6 (natural pH of the aqueous solution) and temperature as 30 ± 2 °C were then used in the degradation studies using the combined approaches. Kinetic study revealed that degradation of 4C2AP followed first order kinetics for all the treatment approaches investigated in the present work. It has been established that US + UV + O3 combined process was the most promising method giving maximum degradation of 4C2AP in both ultrasonic horn (complete removal) and bath (89.9%) with synergistic index as 1.98 and 1.29 respectively. The cavitational yield of ultrasonic bath was found to be eighteen times higher as compared to ultrasonic horn implying that configurations with higher overall areas of transducers would be better selection for large scale treatment. Overall, the work has clearly demonstrated that combined approaches could synergistically remove the toxic pollutant (4C2AP).  相似文献   

4.
《Ultrasonics sonochemistry》2014,21(4):1519-1526
Palm oil mill effluent (POME) is a highly contaminating wastewater due to its high chemical oxygen demand (COD) and biochemical oxygen demand (BOD). Conventional treatment methods require longer residence time (10–15 days) and higher operating cost. Owing to this, finding a suitable and efficient method for the treatment of POME is crucial. In this investigation, ultrasound cavitation technology has been used as an alternative technique to treat POME. Cavitation is the phenomenon of formation, growth and collapse of bubbles in a liquid. The end process of collapse leads to intense conditions of temperature and pressure and shock waves which assist various physical and chemical transformations. Two different ultrasound systems i.e. ultrasonic bath (37 kHz) and a hexagonal triple frequency ultrasonic reactor (28, 40 and 70 kHz) of 15 L have been used. The results showed a fluctuating COD pattern (in between 45,000 and 60,000 mg/L) while using ultrasound bath alone, whereas a non-fluctuating COD pattern with a final COD of 27,000 mg/L was achieved when hydrogen peroxide was introduced. Similarly for the triple frequency ultrasound reactor, coupling all the three frequencies resulted into a final COD of 41,300 mg/L compared to any other individual or combination of two frequencies. With the possibility of larger and continuous ultrasonic cavitational reactors, it is believed that this could be a promising and a fruitful green process engineering technique for the treatment of POME.  相似文献   

5.
The present work deals with the mapping of an ultrasonic bath for the maximum extraction of mangiferin from Mangifera indica leaves. I3 liberation experiments (chemical transformations) and extraction (physical transformations) were carried out at different locations in an ultrasonic bath and compared. The experimental findings indicated a similar trend in variation in an ultrasonic bath by both these methods. Various parameters such as position and depth of vessel in an ultrasonic bath, diameter and shape of a vessel, frequency and input power which affect the extraction yield have been studied in detail. Maximum yield of mangiferin obtained was approximately 31 mg/g at optimized parameters: distance of 2.54 cm above the bottom of the bath, 7 cm diameter of vessel, flat bottom vessel, 6.35 cm liquid height, 122 W input power and 25 kHz frequency. The present work indicates that the position and depth of vessel in an ultrasonic bath, diameter and shape of a vessel, frequency and input power have significant effect on the extraction yield. This work can be used as a base for all ultrasonic baths to obtain maximum efficiency for ultrasound assisted extraction.  相似文献   

6.
Micro electroforming is widely used for fabricating micro metal devices in Micro Electro Mechanism System (MEMS). However, there is the problem of poor adhesion strength between micro electroforming layer and substrate. This dramatically influences the dimensional accuracy of the device. To solve this problem, ultrasonic agitation method is applied during the micro electroforming process. To explore the effect of the ultrasonic agitation on the adhesion strength, micro electroforming experiments were carried out under different ultrasonic power (0 W, 100 W, 150 W, 200 W, 250 W) and different ultrasonic frequencies (0 kHz, 40 kHz, 80 kHz, 120 kHz, 200 kHz). The effects of the ultrasonic power and the ultrasonic frequency on the micro electroforming process were investigated by polarization method and alternating current (a.c.) impedance method. The adhesion strength between the electroforming layer and the substrate was measured by scratch test. The compressive stress of the electroforming layer was measured by X-ray Diffraction (XRD) method. The crystallite size of the electroforming layer was measured by Transmission Electron Microscopy (TEM) method. The internal contact surface area of the electroforming layer was measured by cyclic voltammetry (CV) method. The experimental results indicate that the ultrasonic agitation can decrease the polarization overpotential and increase the charge transfer process. Generally, the internal contact surface area is increased and the compressive stress is reduced. And then the adhesion strength is enhanced. Due to the different depolarization effects of the ultrasonic power and the ultrasonic frequency, the effects on strengthening the adhesion strength are different. When the ultrasonic agitation is 200 W and 40 kHz, the effect on strengthening the adhesion strength is the best. In order to prove the effect which the ultrasonic agitation can improve the adhesion strength of the micro devices, micro pillar arrays were fabricated under ultrasonic agitation (200 W, 40 kHz). The experimental results show that the residual rate of the micro pillar arrays is increased about 17% by ultrasonic agitation method. This work contributes to fabricating the electroforming layer with large adhesion strength.  相似文献   

7.
This research explores the mechanism of ultrasonic pretreatment on enzymolysis of defatted wheat germ protein (DWGP). The enzymolysis reaction kinetics and thermodynamics were studied after ultrasonic pretreatments using a probe-type sonicator and an ultrasonic cleaning bath, and the results were compared with traditional enzymolysis. The results showed that both the traditional and ultrasonic pretreated enzymolysis fit well to first-order kinetics. Both the temperature and ultrasound had a positive effect on the enzymolysis of DWGP, with temperature playing a dominant role. Under the optimized conditions of DWGP concentration of 1% (w/v), Alcalase concentration of 2000 U/g, time of 10 min and temperature of 50 °C, both the probe and cleaning bath ultrasonic pretreated enzymolysis showed high polypeptide concentrations (231.019 and 231.320 μg/mL) and low energy requirements. In comparison with traditional enzymolysis, these methods significantly increased the reaction rate constant (k) by 166.7% and 144.4%, 92.9% and 85.7%, 28.0% and 28.0%, 16.1% and 12.9% at 20, 30, 40 and 50 °C, and decreased the activation energy (Ea), enthalpy of activation (ΔH), Gibbs free energy of activation (ΔG) and entropy of activation (ΔS) by 68.6% and 62.4%, 74.1% and 67.5%, 34.3% and 31.2%, 1.4% and 1.3%. It can be concluded that ultrasonic pretreatment of DWGP can remarkably improve the enzymolysis efficiency and consequently leads to the production of higher polypeptide yield.  相似文献   

8.
In the silicon wet etching process, the “pseudo-mask” formed by the hydrogen bubbles generated during the etching process is the reason causing high surface roughness and poor surface quality. Based upon the ultrasonic mechanical effect and wettability enhanced by isopropyl alcohol (IPA), ultrasonic agitation and IPA were used to improve surface quality of Si (1 1 1) crystal plane during silicon wet etching process. The surface roughness Rq is smaller than 15 nm when using ultrasonic agitation and Rq is smaller than 7 nm when using IPA. When the range of IPA concentration (mass fraction, wt%) is 5–20%, the ultrasonic frequency is 100 kHz and the ultrasound intensity is 30–50 W/L, the surface roughness Rq is smaller than 2 nm when combining ultrasonic agitation and IPA. The surface roughness Rq is equal to 1 nm when the mass fraction of IPA, ultrasound intensity and the ultrasonic frequency is 20%, 50 W and 100 kHz respectively. The experimental results indicated that the combination of ultrasonic agitation and IPA could obtain a lower surface roughness of Si (1 1 1) crystal plane in silicon wet etching process.  相似文献   

9.
The current work deals with the value addition of lactose by transforming into hydrolyzed lactose syrup containing glucose and galactose in major proportion using the novel approach of ultrasound assisted acid catalyzed lactose hydrolysis. The hydrolysis of lactose was performed in ultrasonic bath (33 kHz) at 50% duty cycle at different temperatures as 65 °C and 70 °C and two different hydrochloric acid (HCl) concentrations as 2.5 N and 3 N. It was observed that acid concentration, temperature and ultrasonic treatment were the major factors in deciding the time required to achieve ∼90% hydrolysis. The ultrasonic assisted approach resulted in reduction in the reaction time and the extent of intensification was established to be dependent on the temperature, acid concentration and time of ultrasonic exposure. It was observed that the maximum process intensification obtained by introduction of ultrasound in the lactose hydrolysis process performed at 70 °C and 3 N HCl was reduction in the required time for ∼90% hydrolysis from 4 h (without the presence of ultrasound) to 3 h. The scale-up study was also performed using an ultrasonic bath with longitudinal horn (36 kHz as operating frequency) at 50% duty cycle, optimized temperature of 70 °C and acid concentration of 3 N. It was observed that the reaction was faster in the presence of ultrasound and stirring by axial impeller at rpm of 225 ± 25. The time required to complete ∼90% of hydrolysis remained almost the same as observed for small scale study on ultrasonic bath (33 kHz) at 50% duty cycle. The use of recovered lactose from whey samples instead of pure lactose did not result in any significant changes in the progress of hydrolysis, confirming the efficacy of the selected approach. Overall, the work has presented a novel ultrasound assisted approach for intensified lactose hydrolysis.  相似文献   

10.
Mass transfer coefficient is an important parameter in the process of mass transfer. It can reflect the degree of enhancement of mass transfer process in liquid–solid reaction and in non-reactive systems like dissolution and leaching, and further verify the issues by experiments in the reaction process. In the present paper, a new computational model quantitatively solving ultrasonic enhancement on mass transfer coefficient in liquid–solid reaction is established, and the mass transfer coefficient on silicon surface with a transducer at frequencies of 40 kHz, 60 kHz, 80 kHz and 100 kHz has been numerically simulated. The simulation results indicate that mass transfer coefficient increases with the increasing of ultrasound power, and the maximum value of mass transfer coefficient is 1.467 × 10−4 m/s at 60 kHz and the minimum is 1.310 × 10−4 m/s at 80 kHz in the condition when ultrasound power is 50 W (the mass transfer coefficient is 2.384 × 10−5 m/s without ultrasound). The extrinsic factors such as temperature and transducer diameter and distance between reactor and ultrasound source also influence the mass transfer coefficient on silicon surface. Mass transfer coefficient increases with the increasing temperature, with the decreasing distance between silicon and central position, with the decreasing of transducer diameter, and with the decreasing of distance between reactor and ultrasound source at the same ultrasonic power and frequency. The simulation results indicate that the computational model can quantitatively solve the ultrasonic enhancement on mass transfer coefficient.  相似文献   

11.
This paper describes the ultrasound assisted dispersal of a low wt./vol.% copper nanopowder mixture and determines the optimum conditions for de-agglomeration. A commercially available powder was added to propan-2-ol and dispersed using a magnetic stirrer, a high frequency 850 kHz ultrasonic cell, a standard 40 kHz bath and a 20 kHz ultrasonic probe. The particle size of the powder was characterized using dynamic light scattering (DLS). Z-Average diameters (mean cluster size based on the intensity of scattered light) and intensity, volume and number size distributions were monitored as a function of time and energy input. Low frequency ultrasound was found to be more effective than high frequency ultrasound at de-agglomerating the powder and dispersion with a 20 kHz ultrasonic probe was found to be very effective at breaking apart large agglomerates containing weakly bound clusters of nanoparticles. In general, the breakage of nanoclusters was found to be a factor of ultrasonic intensity, the higher the intensity the greater the de-agglomeration and typically micron sized clusters were reduced to sub 100 nm particles in less than 30 min using optimum conditions. However, there came a point at which the forces generated by ultrasonic cavitation were either insufficient to overcome the cohesive bonds between smaller aggregates or at very high intensities decoupling between the tip and solution occurred. Absorption spectroscopy indicated a copper core structure with a thin oxide shell and the catalytic performance of this dispersion was demonstrated by drop coating onto substrates and subsequent electroless copper metallization. This relatively inexpensive catalytic suspension has the potential to replace precious metal based colloids used in electronics manufacturing.  相似文献   

12.
The motion of a single water droplet in oil under ultrasonic irradiation is investigated with high-speed photography in this paper. First, we described the trajectory of water droplet in oil under ultrasonic irradiation. Results indicate that in acoustic field the motion of water droplet subjected to intermittent positive and negative ultrasonic pressure shows obvious quasi-sinusoidal oscillation. Afterwards, the influence of major parameters on the motion characteristics of water droplet was studied, such as acoustic intensity, ultrasonic frequency, continuous phase viscosity, interfacial tension, and droplet diameter, etc. It is found that when the acoustic intensity and frequency are 4.89 W cm−2 and 20 kHz respectively, which are the critical conditions, the droplet varying from 250 to 300 μm in lower viscous oil has the largest oscillation amplitude and highest oscillation frequency.  相似文献   

13.
The performance of an ultrasound reactor chamber relies on the sound pressure level achieved throughout the system. The active volume of a high frequency ultrasound chamber can be determined by the sound pressure penetration and distribution provided by the transducers. This work evaluated the sound pressure levels and uniformity achieved in water by selected commercial scale high frequency plate transducers without and with reflector plates. Sound pressure produced by ultrasonic plate transducers vertically operating at frequencies of 400 kHz (120 W) and 2 MHz (128 W) was characterized with hydrophones in a 2 m long chamber and their effective operating distance across the chamber’s vertical cross section was determined. The 2 MHz transducer produced the highest pressure amplitude near the transducer surface, with a sharp decline of approximately 40% of the sound pressure occurring in the range between 55 and 155 mm from the transducer. The placement of a reflector plate 500 mm from the surface of the transducer was shown to improve the sound pressure uniformity of 2 MHz ultrasound. Ultrasound at 400 kHz was found to penetrate the fluid up to 2 m without significant losses. Furthermore, 400 kHz ultrasound generated a more uniform sound pressure distribution regardless of the presence or absence of a reflector plate. The choice of the transducer distance to the opposite reactor wall therefore depends on the transducer plate frequency selected. Based on pressure measurements in water, large scale 400 kHz reactor designs can consider larger transducer distance to opposite wall and larger active cross-section, and therefore can reach higher volumes than when using 2 MHz transducer plates.  相似文献   

14.
Bacterial cellulose (BC) film formation could be a critical issue in nanotechnology applications such as biomedical or smart materials products. In this research, purified pretreated BC was subjected to high intensity ultrasound (HIUS) and was investigated for the development of BC films. The morphological, structural and thermal properties of the obtained films were studied by using FE-SEM, AFM, FT-IR, XRD, TGA and DSC characterizations. Results showed that the most favorable purification treatment was the 0.01 M NaOH at 70 °C for 2 h under continuous stirring. The most suitable ultrasound operating conditions were found to be, 1 cm distance of ultrasonic probe from the bottom of the beaker, submerged in cold water bath cooling around 12 ± 2 °C. The power (25 W/cm2), time (30 min), BC concentration (0.1% w/w), amplitude (20 μm) and frequency (20 kHz) were maintained constant.  相似文献   

15.
Algae cells were the main sources of dissolved organic nitrogen (DON) in raw water with plenty of algae, and ultrasonic pretreatment was one of the algae-controlling methods through the damage of algae cells. However, the variation of DON concentration during the ultrasonic treatment process was not confirmed. Variation of DON concentration during the processes of low frequency ultrasound treatment of Microcystis aeruginosa was investigated. In addition, the effect of sonication on the metabolite concentration, algae cellar activity and the subsequent coagulation performance were discussed. The results showed that after a long duration of ultrasonic (60 s), nearly 90% of the algal cells were damaged and the maximum concentration of DON attained more than 3 mg/L. In order to control the leakage extent of DON, the sonication time should be less than 30 s with power intensity of more than 1.0 W/cm3. In the mean time, ultrasonic treatment could inhibit the reactivation and the proliferation of algal, keep the algae cell wall integrity and enhance coagulation effectively under the same condition. However, ultrasound frequency had little effect on DON at the frequency range used in this study (20–150 kHz).  相似文献   

16.
《Ultrasonics sonochemistry》2014,21(4):1535-1543
The potential of ultrasound-assisted technology has been demonstrated by several laboratory scale studies. However, their successful industrial scaling-up is still a challenge due to the limited pilot and commercial sonochemical reactors. In this work, a pilot reactor for laccase-hydrogen peroxide cotton bleaching assisted by ultrasound was scaled-up. For this purpose, an existing dyeing machine was transformed and adapted by including piezoelectric ultrasonic devices. Laboratory experiments demonstrated that both low frequency, high power (22 kHz, 2100 W) and high frequency, low power ultrasounds (850 kHz, 400 W) were required to achieve satisfactory results. Standard half (4 g/L H2O2 at 90 °C for 60 min) and optical (8 g/L H2O2 at 103 °C for 40 min) cotton bleaching processes were used as references. Two sequential stages were established for cotton bleaching: (1) laccase pretreatment assisted by high frequency ultrasound (850 kHz, 400 W) and (2) bleaching using high power ultrasound (22 kHz, 2100 W). When compared with conventional methods, combined laccase-hydrogen peroxide cotton bleaching with ultrasound energy improved the whitening effectiveness. Subsequently, less energy (temperature) and chemicals (hydrogen peroxide) were needed for cotton bleaching thus resulting in costs reduction. This technology allowed the combination of enzyme and hydrogen peroxide treatment in a continuous process. The developed pilot-scale reactor offers an enhancement of the cotton bleaching process with lower environmental impact as well as a better performance of further finishing operations.  相似文献   

17.
The effects of ultrasound on corn slurry saccharification yield and particle size distribution was studied in both batch and continuous-flow ultrasonic systems operating at a frequency of 20 kHz. Ground corn slurry (28% w/v) was prepared and sonicated in batches at various amplitudes (192–320 μmpeak-to-peak (p–p)) for 20 or 40 s using a catenoidal horn. Continuous flow experiments were conducted by pumping corn slurry at various flow rates (10–28 l/min) through an ultrasonic reactor at constant amplitude of 12 μmp–p. The reactor was equipped with a donut shaped horn. After ultrasonic treatment, commercial alpha- and gluco-amylases (STARGENTM 001) were added to the samples, and liquefaction and saccharification proceeded for 3 h. The sonicated samples were found to yield 2–3 times more reducing sugars than unsonicated controls. Although the continuous flow treatments released less reducing sugar compared to the batch systems, the continuous flow process was more energy efficient. The reduction of particle size due to sonication was approximately proportional to the dissipated ultrasonic energy regardless of the type of system used. Scanning electron microscopy (SEM) images were also used to observe the disruption of corn particles after sonication. Overall, the study suggests that both batch and continuous ultrasonication enhanced saccharification yields and reduced the particle size of corn slurry. However, due to the large volume involve in full scale processes, an ultrasonic continuous system is recommended.  相似文献   

18.
We have previously reported on the morphological control of calcium carbonate by changing synthetic conditions such as temperature, pH and degree of supersaturation in liquid reaction. The present study reports the effect of amplitude and frequency of ultrasonic irradiation on the particle size of calcium carbonate using a horn type ultrasonic apparatus at two different frequencies. The calcium carbonate precipitated by mechanical stirring had a particle size of about 20 μm. By contrast, the particle size of vaterite formed under ultrasonic irradiation was about 2 μm, with a specific surface area of 25–30 m2/g. The major polymorph of calcium carbonate formed by ultrasonic irradiation was vaterite with some calcite present. For 40 kHz ultrasonic irradiation, the specific surface area of the calcium carbonate increased with increasing amplitude. The particle size of vaterite formed at this frequency was about 2 μm, and its distribution was sharper than that obtained at 20 kHz. The mode diameter of the synthesized vaterite was found to decrease with increasing amplitude at 40 kHz.  相似文献   

19.
Water removal is an essential step during crude oil production due to several problems such as increased transportation costs and high corrosion rate due to dissolved salts. Indirect low frequency ultrasonic energy (US), using baths, has been recently proposed as an effective alternative for crude oil demulsification. However, the reactor position during sonication and its influence on the demulsification efficiency for crude oil has not been evaluated. In this sense, the aim of this study was to develop an automated system based on an open source hardware for mapping the acoustic field distribution in an US bath operating at 35 kHz using a hydrophone. Data acquired with this system provided information to evaluate the demulsification efficiency in the different positions of the US bath and correlate it with the acoustic intensity distribution. The automated 3D-mapping system revealed a higher acoustic intensity in the regions immediately above the transducers (ca. 0.6 W cm−2), while the other regions presented a relatively lower intensity (ca. 0.1 W cm−2). Experimental data demonstrated that reactors positioned in the most intense acoustic regions provided a much higher efficiency of demulsification in comparison with the ones positioned in the less intense acoustic field regions. Demulsification efficiency up to 93% was obtained with 15 min of sonication (100% amplitude) using few amount of chemical demulsifier. Hence, this work demonstrated that the information acquired with the developed mapping system could be used for inducing a higher efficiency of demulsification only by finding the more suitable position of reactor in the US bath, which certainly will help development of appropriate reactors design when looking for such approach.  相似文献   

20.
Different modes of cavitation zones in an immersion-type sonochemical reactor have been realized based on the concept of acoustic resonance fields. The reactor contains three main components, namely a Langevin-type piezoelectric transducer (20 kHz), a metal horn, and a circular cylindrical sonicated cell filled with tap water. In order to diminish the generation of cavitation bubbles near the horn-tip, an enlarged cone-shaped horn is designed to reduce the ultrasonic intensity at the irradiating surface and to get better distribution of energy in the sonicated cell. It is demonstrated both numerically and experimentally that the cell geometry and the horn position have prominent effects on the pressure distribution of the ultrasound in the cell. With appropriate choices of these parameters, the whole reactor works at a resonant state. Several acoustic resonance modes observed in the simulation are realized experimentally to generate a large volume of cavitation zones using a very low ultrasonic power.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号