首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Treatment of the ebnpa (N-2-(ethylthio)ethyl-N,N-bis((6-neopentylamino-2-pyridyl)methyl)amine) ligand with a molar equivalent amount of Cd(ClO(4))(2).5H(2)O in CH(3)CN followed by the addition of [Me(4)N]OH.5H(2)O yielded the cadmium hydroxide complex [(ebnpaCd)(2)(mu-OH)(2)](ClO(4))(2) (1). Complex 1 has a binuclear cation in the solid-state with secondary hydrogen-bonding and CH/pi interactions involving the ebnpa ligand. In acetonitrile, 1 forms a binuclear/mononuclear equilibrium mixture. The formation of a mononuclear species has been confirmed by conductance measurements of 1 at low concentrations. Variable temperature studies of the binuclear/mononuclear equilibrium provided the standard enthalpy and entropy associated with the formation of the monomer as DeltaH degrees = +31(2) kJ mol(-1) and DeltaS degrees = +108(8) J mol(-1) K(-1), respectively. Enhanced secondary hydrogen-bonding interactions involving the terminal Cd-OH moiety may help to stabilize the mononuclear complex. Treatment of 1 with CO(2) in acetonitrile results in the formation of a binuclear cadmium carbonate complex, [(ebnpaCd)(2)(mu-CO(3))](ClO(4))(2) (2).  相似文献   

2.
A recently reported binuclear zinc hydroxide complex [(L(1)Zn(2))(mu-OH)](ClO(4))(2) (, L(1) = 2,6-bis[(bis(2-pyridylmethyl)amino)methyl]-4-methylphenolate monoanion) containing a single bridging hydroxide was examined for thioester hydrolysis reactivity. Treatment of it with hydroxyphenylthioacetic acid S-methyl ester in dry CD(3)CN results in no reaction after approximately 65 h at 45(1) degrees C. Binuclear zinc hydroxide complexes of the N-methyl-N-((6-neopentylamino-2-pyridyl)methyl)-N-((2-pyridyl)methyl)amine (L(2)) and N-methyl-N-((6-neopentylamino-2-pyridyl)methyl)-N-((2-pyridyl)ethyl)amine (L(3)) chelate ligands were prepared by treatment of each ligand with molar equivalent amounts of Zn(ClO(4))(2).6H(2)O and KOH in methanol. These complexes, [(L(2)Zn)(2)(mu-OH)(2)](ClO(4))(2) and [(L(3)Zn)(2)(mu-OH)(2)](ClO(4))(2) (), which have been structurally characterized by X-ray crystallography, behave as 1 : 1 electrolytes in acetonitrile, indicating that the binuclear cations dissociate into monomeric zinc hydroxide species in solution. Treatment of them with one equivalent of hydroxyphenylthioacetic acid S-methyl ester per zinc center in acetonitrile results in the formation of a zinc alpha-hydroxycarboxylate complex, [(L(2))Zn(O(2)CCH(OH)Ph)]ClO(4).1.5H(2)O or [(L(3))Zn(O(2)CCH(OH)Ph)]ClO(4).1.5H(2)O, and CH(3)SH. These reactions, to our knowledge, are the first reported examples of thioester hydrolysis mediated by zinc hydroxide complexes. The results of this study suggest that a terminal Zn-OH moiety may be required for hydrolysis reactivity with a thioester substrate.  相似文献   

3.
Decarboxylation of 1-bicyclo[1.1.1]pentanecarboxylate anion does not afford 1-bicyclo[1.1.1]pentyl anion as previously assumed. Instead, a ring-opening isomerization which ultimately leads to 1,4-pentadien-2-yl anion takes place. A 1-bicyclo[1.1.1]pentyl anion was prepared nevertheless via the fluoride-induced desilylation of 1-tert-butyl-3-(trimethylsilyl)bicyclo[1.1.1]pentane. The electron affinity of 3-tert-butyl-1-bicyclo[1.1.1]pentyl radical (14.8 plus minus 3.2 kcal/mol) was measured by bracketing, and the acidity of 1-tert-butylbicyclo[1.1.1]pentane (408.5 +/- 0.9) was determined by the DePuy kinetic method. These values are well-reproduced by G2 and G3 calculations and can be combined in a thermodynamic cycle to provide a bridgehead C-H bond dissociation energy (BDE) of 109.7 +/- 3.3 kcal/mol for 1-tert-butylbicyclo[1.1.1]pentane. This bond energy is the strongest tertiary C-H bond to be measured, is much larger than the corresponding bond in isobutane (96.5 +/- 0.4 kcal/mol), and is more typical of an alkene or aromatic compound. The large BDE can be explained in terms of hybridization.  相似文献   

4.
The equilibrium acidities (pK(AH)s) and the oxidation potentials of the congugate anions [E(ox)(A(-))s] were determined in dimethyl sulfoxide (DMSO) for eight ketones of the structure GCOCH(3) and 20 of the structure RCOCH(2)G, (where R = alkyl, phenyl and G = alkyl, aryl). The homolytic bond dissociation energies (BDEs) for the acidic C-H bonds of the ketones were estimated using the equation BDE(AH) = 1.37pK(AH) + 23.1E(ox)(A(-)) + 73.3. While the equilibrium acidities of GCOCH(3) were found to be dependent on the remote substituent G, the BDE values for the C-H bonds remained essentially invariant (93.5 +/- 0.5 kcal/mol). A linear correlation between pK(AH) values and [E(ox)(A(-))s] was found for the ketones. For RCOCH(2)G ketones, both pK(AH) and BDE values for the adjacent C-H bonds are sensitive to the nature of the substituent G. However, the steric bulk of the aryl group tends to exert a leveling effect on BDEs. The BDE of alpha-9-anthracenylacetophenone is higher than that of alpha-2-anthracenylacetophenone by 3 kcal/mol, reflecting significant steric inhibition of resonance in the 9-substituted system. A range of 80.7-84.4 kcal/mol is observed for RCOCH(2)G ketones. The results are discussed in terms of solvation, steric, and resonance effects. Ab initio density functional theory (DFT) calculations are employed to illustrate the effect of steric interactions on radical and anion geometries. The DFT results parallel the trends in the experimental BDEs of alpha-arylacetophenones.  相似文献   

5.
Treatment of the mononuclear amide-appended zinc complex [(ppbpa)Zn](ClO4)2 (1(ClO4)2) with Me4NOH.5H2O in CD3CN/D2O (3:1) results in the formation of the deprotonated amide species [(ppbpa-)Zn]ClO4 (2). Upon heating in CD3CN/D2O, this complex undergoes amide hydrolysis to produce a zinc carboxylate product, [(ambpa)Zn(O2CC(CH3)3)]ClO4 (3). X-ray crystallography, 1H and 13C NMR, IR, and elemental analysis were used to characterize 3. The hydrolysis reaction of 1(ClO4)2 exhibits saturation kinetic behavior with respect to the concentration of D2O. Variable-temperature kinetic studies of the amide hydrolysis reaction yielded DeltaH++ = 18.0(5) kcal/mol and DeltaS++ = -22(2) eu. These activation parameters are compared to those of the corresponding amide methanolysis reaction of 1(ClO4)2.  相似文献   

6.
Using a mixed nitrogen/sulfur ligand possessing a single internal hydrogen bond donor (N,N-bis-2-(methylthio)ethyl-N-(6-amino-2-pyridylmethyl)amine (bmapa)), we prepared and structurally and spectroscopically characterized a series of zinc complexes possessing a single alcohol ([(bmapa)Zn(MeOH)](ClO(4))(2) (1)), formamide ([(bmapa)Zn(DMF)](ClO(4))(2) (3), [(bmapa)Zn(NMF)](ClO(4))(2) (4)), or sulfoxide ([(bmapa)Zn(DMSO)](ClO(4))(2) (7), [(bmapa)Zn(TMSO)](ClO(4))(2) (8)) ligand. X-ray crystallographic characterization was obtained for 1.MeOH, 3, 4, 7.DMSO, and 8. To enable studies of the influence of the single hydrogen bond donor amino group of the bmapa ligand on the chemistry of zinc/neutral oxygen donor binding interactions, analogous alcohol ([(bmpa)Zn(MeOH)](ClO(4))(2) (2)), formamide ([(bmpa)Zn(DMF)](ClO(4))(2) (5), [(bmpa)Zn(NMF)](ClO(4))(2) (6)), and sulfoxide ([(bmpa)Zn(DMSO)](ClO(4))(2) (9), [(bmpa)Zn(TMSO)](ClO(4))(2) (10)) complexes of the bmpa (N,N-bis-2-(methylthio)ethyl-N-(2-pyridylmethyl)amine) ligand system were generated and characterized. Of these, 2, 5, 6, and 9.2DMSO were characterized by X-ray crystallography. Solution spectroscopic methods ((1)H and (13)C NMR, FTIR) were utilized to examine the formamide binding properties of 3-6 in CH(3)CN and CH(3)NO(2) solutions. Conclusions derived from this work include the following: (1) the increased donicity of formamide and sulfoxide donors (versus alcohols) makes these competitive ligands for a cationic N/S-ligated zinc center, even in alcohol solution, (2) the inclusion of a single internal hydrogen bond donor, characterized by a heteroatom distance of approximately 2.80-2.95 A, produces subtle structural perturbations in N/S-ligated zinc alcohol, formamide, or sulfoxide complexes, (3) the heteroatom distance of a secondary hydrogen-bonding interaction involving the oxygen atom of a zinc-coordinated alcohol, formamide, and sulfoxide ligand is reduced with increasing donicity of the exogenous ligand, and (4) formamide displacement on a N/S-ligated zinc center is rapid, regardless of the presence of an internal hydrogen bond donor. These results provide initial insight into the chemical factors governing the binding of a neutral oxygen donor to a N/S-ligated zinc center.  相似文献   

7.
Zinc complexes of three new amide-appended ligands have been prepared and isolated. These complexes, [(dpppa)Zn](ClO4)2 (4(ClO4)2; dpppa = N-((N,N-diethylamino)ethyl)-N-((6-pivaloylamido-2-pyridyl)methyl)-N-((2-pyridyl)methyl)amine), [(bdppa)Zn](ClO4)2 (6(ClO4)2; bdppa = N,N-bis((N,N-diethylamino)ethyl)-N-((6-pivaloylamido-2-pyridyl)methyl)amine), and [(epppa)Zn](ClO4)2 (8(ClO4)2; epppa = N-((2-ethylthio)ethyl)-N-((6-pivaloylamido-2-pyridyl)methyl)-N-((2-pyridyl)methyl)amine), have been characterized by X-ray crystallography (4(ClO4)2 and 8(ClO4)2), 1H and 13C NMR, IR, and elemental analysis. Treatment of 4(ClO4)2 or 8(ClO4)2 with 1 equiv of Me4NOH.5H2O in methanol-acetonitrile (5:3) results in amide methanolysis, as determined by the recovery of primary amine-appended forms of the chelate ligand following removal of the zinc ion. These reactions proceed via the initial formation of a deprotonated amide intermediate ([(dpppa-)Zn]ClO4 (5) and [(epppa-)Zn]ClO4 (9)) which in each case has been isolated and characterized (1H and 13C NMR, IR, elemental analysis). Treatment of 6(ClO4)2 with Me4NOH.5H2O in methanol-acetonitrile results in the formation of a deprotonated amide complex, [(bdppa-)Zn]ClO4 (7), which was isolated and characterized. This complex does not undergo amide methanolysis after prolonged heating in a methanol-acetonitrile mixture. Kinetic studies and construction of Eyring plots for the amide methanolysis reactions of 4(ClO4)2 and 8(ClO4)2 yielded thermodynamic parameters that provide a rationale for the relative rates of the amide methanolysis reactions. Overall, we propose that the mechanistic pathway for these amide methanolysis reactions involves reaction of the deprotonated amide complex with methanol to produce a zinc methoxide species, the reactivity of which depends, at least in part, on the steric hindrance imparted by the supporting chelate ligand. Amide methanolysis involving a zinc complex supported by a N2S2 donor chelate ligand (3(ClO4)2) is more complicated, as in addition to the formation of a deprotonated amide intermediate free chelate ligand is present in the reaction mixture.  相似文献   

8.
The new ligand bis(2-picolyl)(2-hydroxy-3,5-di-tert-butylbenzyl)amine (HL) was prepared from bis(2-picolyl)amine and 2,4-di-tert-butyl-6-(chloromethyl)phenol. It acts as a tetradentate N,N,O tripod ligand ensuring 5-fold coordination in all its zinc complexes L.Zn-X. The central complex of the series was [L.Zn(OH(2))]ClO(4) (1) obtained from zinc perchlorate. Together with the more labile complex L.Zn-C(2)H(5) (2), obtained from diethyl zinc, it was used as a starting material for ligand substitutions. In the presence of bases, 1 was converted to L.Zn-OH (3), [L.Zn(py)]ClO(4) (4), and [(L.Zn)(3)(mu(3)-CO(3))]ClO(4) (5). Metathetical reactions produced the neutral complexes L.Zn-X with X = Br (6), OAc (7), OC(6)H(5) (8), SC(6)H(5) (9), OP(O)(OPh)(2) (10), p-nitrophenolate (11), 1-methyluracilate (12), o-formylphenolate (13), and o-hydroxymethylphenolate (14). Structure determinations of 1, 5, 7, 10, 11, 13, and 14 confirmed the strictly monodentate attachment of all units X in L.Zn-X. The hydrolytic cleavage of tris(p-nitrophenyl) phosphate by 1 was investigated preparatively and kinetically. L.Zn-OH was found to be the hydrolytically active nucleophile. The second-order rate constant for the cleavage reaction was found to be slightly lower than the values for related systems, reflecting the steric hindrance in the tert-butyl-substituted ligand L.  相似文献   

9.
Aqueous solutions of rhodium(III) tetra p-sulfonatophenyl porphyrin ((TSPP)Rh(III)) complexes react with dihydrogen to produce equilibrium distributions between six rhodium species including rhodium hydride, rhodium(I), and rhodium(II) dimer complexes. Equilibrium thermodynamic studies (298 K) for this system establish the quantitative relationships that define the distribution of species in aqueous solution as a function of the dihydrogen and hydrogen ion concentrations through direct measurement of five equilibrium constants along with dissociation energies of D(2)O and dihydrogen in water. The hydride complex ([(TSPP)Rh-D(D(2)O)](-4)) is a weak acid (K(a)(298 K) = (8.0 +/- 0.5) x 10(-8)). Equilibrium constants and free energy changes for a series of reactions that could not be directly determined including homolysis reactions of the Rh(II)-Rh(II) dimer with water (D(2)O) and dihydrogen (D(2)) are derived from the directly measured equilibria. The rhodium hydride (Rh-D)(aq) and rhodium hydroxide (Rh-OD)(aq) bond dissociation free energies for [(TSPP)Rh-D(D(2)O)](-4) and [(TSPP)Rh-OD(D(2)O)](-4) in water are nearly equal (Rh-D = 60 +/- 3 kcal mol(-1), Rh-OD = 62 +/- 3 kcal mol(-1)). Free energy changes in aqueous media are reported for reactions that substitute hydroxide (OD(-)) (-11.9 +/- 0.1 kcal mol(-1)), hydride (D(-)) (-54.9 kcal mol(-1)), and (TSPP)Rh(I): (-7.3 +/- 0.1 kcal mol(-1)) for a water in [(TSPP)Rh(III)(D(2)O)(2)](-3) and for the rhodium hydride [(TSPP)Rh-D(D(2)O)](-4) to dissociate to produce a proton (9.7 +/- 0.1 kcal mol(-1)), a hydrogen atom (approximately 60 +/- 3 kcal mol(-1)), and a hydride (D(-)) (54.9 kcal mol(-1)) in water.  相似文献   

10.
New experimental results on the determination of the bond dissociation enthalpy (BDE) value of 3,5-di-tert-butylcatechol, a model compound for flavonoid antioxidants, by the EPR radical equilibration technique are reported. By measurement of the equilibrium constant for the reaction between 3,5-di-tert-butylcatechol and the 2,6-di-tert-butyl-4-methylphenoxyl radical, in UV irradiated isooctane solutions at different temperatures, it has been shown that the thermodynamic parameters for this reaction are DeltaH degrees = -2.8+/-0.1 kcal mol(-1) and DeltaS degrees = +1.3+/-0.2 cal mol(-1) K(-1). This demonstrates that the entropic variations in the hydrogen exchange reaction between phenols and the corresponding phenoxyl radicals are also negligible when one of the reacting species is a polyphenol and that the EPR radical equilibration technique also allows the determination of the Obond;H BDEs in intramolecularly hydrogen-bonded polyphenols. The BDE of 3,5-di-tert-butylcatechol (78.2 kcal mol(-1)) was determined to be identical to that of alpha-tocopherol. Through use of the group additivity rule, this piece of data was also used to calculate the strength of the intramolecular hydrogen bond between the hydroxyl proton and the oxygen radical centre in the corresponding semiquinone radical (5.6 kcal mol(-1)), which is responsible both for the excellent antioxidant properties of catechols and for the BDE of catechol (81.8 kcal mol(-1)). These values are in poor agreement with those predicted by DFT calculations reported in the literature (9.5 kcal mol(-1) and 77.6 kcal mol(-1), respectively). Extensive theoretical calculations indicate that the BDE of catechol is reproduced well (81.6 kcal mol(-1)) by use of diffuse functions on oxygen and the CCSD method.  相似文献   

11.
The solution structural and formyl substrate reactivity properties of a nitrogen/sulfur-ligated zinc hydroxide complex, [(bmnpaZn)2(mu-OH)2](ClO4)2 (1, bmnpa = N,N-bis-2-(methylthio)ethyl-N-((6-neopentylamino-2-pyridyl)methyl)amine), in acetonitrile and methanol are reported. In CH3CN, 1 has a binuclear cation [(bmnpaZn)2(mu-OH)2]2+ that is stabilized by secondary hydrogen bonding and CH/pi interactions involving the bmnpa chelate ligand. In CH3OH, 1 undergoes reaction with solvent to yield a zinc methoxide species, as determined by 1H NMR and electrospray mass spectral analysis. Treatment of 1 with methyl formate in CH3CN results in stoichiometric hydrolysis of the formyl ester to produce [(bmnpa)Zn(O2CH)]ClO4 (2) and methanol. The formate complex was identified via independent synthesis and characterization (X-ray crystallography, 1H and 13C NMR, FTIR, LRFAB-MS, conductance, and elemental analysis). In the solid state, 2n has a formate-bridged coordination polymer-type structure. However, in CH3CN, 2 behaves as 1:1 electrolyte, indicating cleavage of the polymer structure into mononuclear [(bmnpa)Zn(O2CH)]ClO4 species. Treatment of 1 with a stoichiometric amount of formanilide in CH3CN for 48 h at 45 degrees C results in decomposition of the zinc hydroxide complex to yield the free bmnpa ligand and an inorganic solid, presumably a zinc hydroxide or oxide species. Treatment of 1 with a stoichiometric amount of ethyl formate in CD3OD results in rapid, quantitative transesterification of the formyl carboxylate ester. A control reaction indicates that this transesterification reaction does not occur on the same time scale in the absence of the catalyst. Treatment of 1 with an excess of ethyl formate in CD3OD results in catalytic formyl carboxylate ester transesterification, with approximately 1000 turnovers in 60 min at 22(1) degrees C. Treatment of a CD3OD solution of 1 (0.5 equiv) with formanilide (1 equiv) results in the formation of aniline, d3-methyl formate, and the zinc formate complex 2. While aniline is produced stoichiometrically, the yield of d3-methyl formate varied from 30 to 50%, and the yield of 2 varied from 50 to 70% in repetitive experiments. Formation of both d3-methyl formate and 2 indicates that both methanolysis and hydrolysis reactions take place.  相似文献   

12.
The title zinc(Ⅱ) complex salt [Zn(H2O)6](ClO4)2·(PNOS)4, where PNOS is derived from picolinaldehyde N-oxide with semicarbazone, has been prepared and structurally characterized by X-ray single-crystal analysis. It crystallizes in triclinic, space group P1 with a = 7.529(3),b = 10.206(4), c = 14.678(6) A, α = 86.293(6), β = 87.686(7), γ= 81.382(6)°, C28H44Cl2N16O22Zn,Mr = 1093.06, V= 1112.3(8) A3, Z = 1, Dc = 1.632 g/cm3, S = 1.089,μ(MoKα) = 0.773 mm-1 ,F(000) = 564, the final R = 0.0438 and wR = 0.1076 for 3888 independent reflections with Rint =0.0224. The crystal structure possesses a [Zn(H2O)6]2+ cation, two ClO4- anions and four PNOSs.In the crystal structure, Zn2+ cation is located at the symcenter and coordinated by six water molecules. In [Zn(H2O)6]2+, an elongate octahedral complex cation, the average Zn-O bond length is 2.087(2) A. There exist a lot of H bonds in the structure, linking the cation [Zn(H2O)6]2+, anion ClO4-and PNOS to form a 3D network.  相似文献   

13.
The complete array of those hydrotris(pyrazolyl/thioimidazolyl)borate ligands that were developed and used in the author's laboratories, with N3, N2S, NS2, and S3 donor sets, was scanned for their ability to form Zn-OH2 and Zn-OH complexes. The coordination motifs found were Zn-OH2, Zn-OH, Zn-OH-Zn, and Zn-O2H3-Zn. Of these, the well-established Zn-OH motif was complemented with novel species bearing N3, NS2, and S3 tripods. The Zn-OH2 motif was observed only with pyrazolylborate ligands and only in unusual situations with coordination numbers higher than 4 for zinc. The new Zn-OH-Zn motif was realized for three different pyrazolylborates, for one NS2 tripod, and for two S3 tripods. Finally, it was verified that the Zn-O2H3-Zn motif again occurs only with pyrazolylborate ligands. The new complexes were identified by a total of 11 structure determinations.  相似文献   

14.
Treatment of a dinuclear zinc hydroxide complex ([(bmnpaZn)(2)(mu-OH)(2)](ClO(4))(2) (1) or [(benpaZn)(2)(mu-OH)(2)](ClO(4))(2) (2)) with excess equivalents of an aryl alcohol derivative (p-HOC(6)H(4)X; X = NO(2), CHO, CN, COCH(3), Br, H, OCH(3)) yielded the nitrogen/sulfur-ligated zinc aryloxide complexes [(bmnpa)Zn(p-OC(6)H(4)NO(2))](ClO(4)) (3), [(benpa)Zn(p-OC(6)H(4)NO(2))](ClO(4)) (4), [(benpa)Zn(p-OC(6)H(4)CHO)](ClO(4)) (5), [(benpa)Zn(p-OC(6)H(4)CN)](ClO(4)) (6), [(benpa)Zn(p-OC(6)H(4)COCH(3))](ClO(4)) x 0.5H(2)O (7), [(benpa)Zn(p-OC(6)H(4)Br)](ClO(4)) (8), [(benpa)Zn(p-OC(6)H(5))](ClO(4)) (9), and [(benpa)Zn(p-OC(6)H(5)OCH(3))](ClO(4)) (10). The solid state structures of 2, 3, 5, and 6 have been determined by X-ray crystallography. While 3 and 6 exhibit a mononuclear zinc ion possessing a distorted five-coordinate trigonal bipyramidal geometry, in 5 each zinc center exhibits a distorted six-coordinate octahedral geometry resulting from coordination of the aldehyde carbonyl oxygen of another zinc-bound aryloxide ligand, yielding a chain-type structure. Zinc coordination of the aldehyde carbonyl of 5 is indicated by a large shift (>40 cm(-)(1)) to lower energy of the carbonyl stretching vibration (nu(C[double bond]O) in solid state FTIR spectra of the complex. In the solid state structures of 3, 5, and 6, a hydrogen-bonding interaction is found between N(3)-H of the supporting bmnpa/benpa ligand and the zinc-bound oxygen atom of the aryloxide ligand (N(3)...O(1) approximately 2.78 A). Solution (1)H and (13)C NMR spectra of 3-10 in CD(3)CN and FTIR spectra in CH(3)CN are consistent with all of the aryloxide complexes having a similar solution structure, with retention of the hydrogen-bonding interaction involving N(3)-H and the oxygen atom of the zinc-coordinated aryloxide ligand. For this family of zinc aryloxide complexes, a correlation was discovered between the chemical shift position of the N(3)-H proton resonance and the pK(a) of the parent aryl alcohol. This correlation indicates that the strength of the hydrogen-bonding interaction involving the zinc-bound aryloxide oxygen is increasing as the aryloxide moiety increases in basicity.  相似文献   

15.
The acidities of the two different sites in naphthalene (1alpha and 1beta) and the electron affinities of the alpha- and beta-naphthyl radicals were measured using a Fourier transform mass spectrometer. Both carbon-hydrogen bond dissociation energies for naphthalene also were obtained, in this case via the application of a thermodynamic cycle. The final results are DeltaH(o)acid (1alpha) = 394.2+/-1.2 kcal mol(-1), DeltaH(o)acid (1beta) = 395.5+/-1.3 kcal mol(-1), EA(alpha) = 31.6+/-0.5 kcal mol(-1), EA(beta) = 31.6+/-0.5 kcal mol(-1), BDE(1alpha) = 112.2+/-1.3 kcal mol(-1) and BDE(1alpha) = 111.9+/-1.4 kcal mol(-1), and they are compared to benzene and phenyl radical as well as ab initio and density functional theory (B3LYP) calculations.  相似文献   

16.
A quantitative structure-reactivity relationship has been derived from the results of B3LYP/6-311+G calculations on the hydration of carbon dioxide by a series of zinc complexes designed to mimic carbonic anhydrase. The reaction mechanism found is general for all complexes investigated. The reaction exhibits a low (4-6 kcal/mol) activation energy and is exothermic by about 8 kcal/mol. The calculations suggest an equilibrium between Lipscomb and Lindskog intermediates. The effectiveness of the catalysis is a function of the nucleophilicity of the zinc-bound hydroxide and the nucleofugicity of the zinc-bound bicarbonate. Hydrogen bridging of the bicarbonate to NH moieties in the ligands also plays an important role.  相似文献   

17.
Clarifying the difference in redox reactivity between the metal oxo and metal hydroxo moieties for the same redox active metal ion in identical structures and oxidation states, that is, M(n+)O and M(n+)-OH, contributes to the understanding of nature's choice between them (M(n+)O or M(n+)-OH) as key active intermediates in redox enzymes and electron transfer enzymes, and provides a basis for the design of synthetic oxidation catalysts. The newly synthesized manganese(IV) complex having two hydroxide ligands, [Mn(Me(2)EBC)(2)(OH)(2)](PF(6))(2), serves as the prototypic example to address this issue, by investigating the difference in the hydrogen abstracting abilities of the Mn(IV)O and Mn(IV)-OH functional groups. Independent thermodynamic evaluations of the O-H bond dissociation energies (BDE(OH)) for the corresponding reduction products, Mn(III)-OH and Mn(III)-OH(2), reveal very similar oxidizing power for Mn(IV)O and Mn(IV)-OH (83 vs 84.3 kcal/mol). Experimental tests showed that hydrogen abstraction proceeds at reasonable rates for substrates having BDE(CH) values less than 82 kcal/mol. That is, no detectable reaction occurred with diphenyl methane (BDE(CH) = 82 kcal/mol) for both manganese(IV) species. However, kinetic measurements for hydrogen abstraction showed that at pH 13.4, the dominant species Mn(Me(2)EBC)(2)(O)(2), having only Mn(IV)O groups, reacts more than 40 times faster than the Mn(IV)-OH unit in Mn(Me(2)EBC)(2)(OH)(2)(2+), the dominant reactant at pH 4.0. The activation parameters for hydrogen abstraction from 9,10-dihydroanthracene were determined for both manganese(IV) moieties: over the temperature range 288-318 K for Mn(IV)(OH)(2)(2+), DeltaH(double dagger) = 13.1 +/- 0.7 kcal/mol, and DeltaS(double dagger) = -35.0 +/- 2.2 cal K(-1) mol(-1); and the temperature range 288-308 K for for Mn(IV)(O)(2), DeltaH(double dagger) = 12.1 +/- 1.8 kcal/mol, and DeltaS(double dagger) = -30.3 +/- 5.9 cal K(-1) mol(-1).  相似文献   

18.
Thermodynamic investigations relevant to hydrogen atom transfer by the high-valent iron imido complex [LMesFe[triple bond]NAd]OTf have been undertaken. The complex is found to be weakly oxidizing by cyclic voltammetry (E1/2 = -0.98 V vs Cp2Fe+/Cp2Fe in MeCN). A combination of experimental and computational studies has been used to determine the acidity of LMesFe-N(H)Ad+ (pKa = 37 in MeCN), allowing the N-H BDFE (88(5) kcal/mol) to be calculated from a thermodynamic cycle. Consistent with this value, [LMesFe[triple bond]NAd]OTf reacts with 9,10-dihydroanthracene (C-H BDE = 78(1) kcal/mol) to form anthracene.  相似文献   

19.
Thermochemical parameters of three C(2)H(5)O* radicals derived from ethanol were reevaluated using coupled-cluster theory CCSD(T) calculations, with the aug-cc-pVnZ (n = D, T, Q) basis sets, that allow the CC energies to be extrapolated at the CBS limit. Theoretical results obtained for methanol and two CH(3)O* radicals were found to agree within +/-0.5 kcal/mol with the experiment values. A set of consistent values was determined for ethanol and its radicals: (a) heats of formation (298 K) DeltaHf(C(2)H(5)OH) = -56.4 +/- 0.8 kcal/mol (exptl: -56.21 +/- 0.12 kcal/mol), DeltaHf(CH(3)C*HOH) = -13.1 +/- 0.8 kcal/mol, DeltaHf(C*H(2)CH(2)OH) = -6.2 +/- 0.8 kcal/mol, and DeltaHf(CH(3)CH(2)O*) = -2.7 +/- 0.8 kcal/mol; (b) bond dissociation energies (BDEs) of ethanol (0 K) BDE(CH(3)CHOH-H) = 93.9 +/- 0.8 kcal/mol, BDE(CH(2)CH(2)OH-H) = 100.6 +/- 0.8 kcal/mol, and BDE(CH(3)CH(2)O-H) = 104.5 +/- 0.8 kcal/mol. The present results support the experimental ionization energies and electron affinities of the radicals, and appearance energy of (CH(3)CHOH+) cation. Beta-C-C bond scission in the ethoxy radical, CH(3)CH2O*, leading to the formation of C*H3 and CH(2)=O, is characterized by a C-C bond energy of 9.6 kcal/mol at 0 K, a zero-point-corrected energy barrier of E0++ = 17.2 kcal/mol, an activation energy of Ea = 18.0 kcal/mol and a high-pressure thermal rate coefficient of k(infinity)(298 K) = 3.9 s(-1), including a tunneling correction. The latter value is in excellent agreement with the value of 5.2 s(-1) from the most recent experimental kinetic data. Using RRKM theory, we obtain a general rate expression of k(T,p) = 1.26 x 10(9)p(0.793) exp(-15.5/RT) s(-1) in the temperature range (T) from 198 to 1998 K and pressure range (p) from 0.1 to 8360.1 Torr with N2 as the collision partners, where k(298 K, 760 Torr) = 2.7 s(-1), without tunneling and k = 3.2 s(-1) with the tunneling correction. Evidence is provided that heavy atom tunneling can play a role in the rate constant for beta-C-C bond scission in alkoxy radicals.  相似文献   

20.
A coupled cluster composite approach has been used to accurately determine the spectroscopic constants, bond dissociation energies, and heats of formation for the X1(2)II(3/2) states of the halogen oxides ClO, BrO, and IO, as well as their negative ions ClO-, BrO-, and IO-. After determining the frozen core, complete basis set (CBS) limit CCSD(T) values, corrections were added for core-valence correlation, relativistic effects (scalar and spin-orbit), the pseudopotential approximation (BrO and IO), iterative connected triple excitations (CCSDT), and iterative quadruples (CCSDTQ). The final ab initio equilibrium bond lengths and harmonic frequencies for ClO and BrO differ from their accurate experimental values by an average of just 0.0005 A and 0.8 cm-1, respectively. The bond length of IO is overestimated by 0.0047 A, presumably due to an underestimation of molecular spin-orbit coupling effects. Spectroscopic constants for the spin-orbit excited X2(2)III(1/2) states are also reported for each species. The predicted bond lengths and harmonic frequencies for the closed-shell anions are expected to be accurate to within about 0.001 A and 2 cm-1, respectively. The dissociation energies of the radicals have been determined by both direct calculation and through use of negative ion thermochemical cycles, which made use of a small amount of accurate experimental data. The resulting values of D0, 63.5, 55.8, and 54.2 kcal/mol for ClO, BrO, and IO, respectively, are the most accurate ab initio values to date, and those for ClO and BrO differ from their experimental values by just 0.1 kcal/mol. These dissociation energies lead to heats of formation, DeltaH(f) (298 K), of 24.2 +/- 0.3, 29.6 +/- 0.4, and 29.9 +/- 0.6 kcal/mol for ClO, BrO, and IO, respectively. Also, the final calculated electron affinities are all within 0.2 kcal/mol of their experimental values. Improved pseudopotential parameters for the iodine atom are also reported, together with revised correlation consistent basis sets for this atom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号