首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper describes the development of highly sensitive particle-based fluorescence resonance energy transfer (FRET) probes that do not use molecular fluorophores as donors and acceptors. In these probes, CdSe/ZnS luminescent quantum dots (QDs) were capped with multiple histidine-containing peptides to increase their aqueous solubility while maintaining their high emission quantum yield and spectral properties. The peptide-modified QDs (QD-His) were covalently attached to carboxyl-modified polystyrene (PS) microspheres to form highly emitting PS microspheres (QD-PS). Gold nanoparticles (AuNPs) were then covalently attached to the QD-PS surface to form AuNP-QD-PS composite microspheres that were used as FRET probes. Attachment of AuNPs to QD-PS completely quenched the QD emission through FRET interactions. The emission of QD-PS was restored when the AuNPs were removed from the surface by thiol ligand displacement. The new AuNP-QD-PS FRET platform is simple to prepare and highly stable, and it opens many new possibilities for carrying out FRET assays on microparticle-based platforms and in microarrays. The versatility of these assays could be greatly increased by replacing the linkers between the QDs and AuNPs with ones that selectively respond to specific cleaving agents or enzymes.  相似文献   

2.
Capped chelating organic molecules are presented as a design principle for tuning heterogeneous nanoparticles for electrochemical catalysis. Gold nanoparticles (AuNPs) functionalized with a chelating tetradentate porphyrin ligand show a 110‐fold enhancement compared to the oleylamine‐coated AuNP in current density for electrochemical reduction of CO2 to CO in water at an overpotential of 340 mV with Faradaic efficiencies (FEs) of 93 %. These catalysts also show excellent stability without deactivation (<5 % productivity loss) within 72 hours of electrolysis. DFT calculation results further confirm the chelation effect in stabilizing molecule/NP interface and tailoring catalytic activity. This general approach is thus anticipated to be complementary to current NP catalyst design approaches.  相似文献   

3.
We have developed a new set of multifunctional multidentate OligoPEG ligands, each containing a central oligomer on which were laterally grafted several short poly(ethylene glycol) (PEG) moieties appended with either thioctic acid (TA) or terminally reactive groups. Reduction of the TAs (e.g., in the presence of NaBH(4)) provides dihydrolipoic acid (DHLA)-appended oligomers. Here the insertion of PEG segments in the ligand structure promotes water solubility and reduces nonspecific interactions, while TA and DHLA groups provide multidentate anchoring onto Au nanoparticles (AuNPs) and ZnS-overcoated semiconductor quantum dots (QDs), respectively. The synthetic route involves simple coupling chemistry using N,N-dicylohexylcarbodiimide (DCC). Water-soluble QDs and AuNPs capped with these ligands were prepared via cap exchange. As prepared, the nanocrystals dispersions were aggregation-free, homogeneous, and stable for extended periods of time over pH ranging from 2 to 14 and in the presence of excess electrolyte (2 M NaCl). The new OligoPEG ligands also allow easy integration of tunable functional and reactive groups within their structures (e.g., azide or amine), which imparts surface functionalities to the nanocrystals and opens up the possibility of bioconjugation with specific biological molecules. The improved colloidal stability combined with reactivity offer the possibility of using the nanocrystals as biological probes in an array of complex and biologically relevant media.  相似文献   

4.
We incorporate various gold nanoparticles (AuNPs) capped with different ligands in two‐dimensional films and three‐dimensional aggregates derived from N‐stearoyl‐L ‐alanine and N‐lauroyl‐L ‐alanine, respectively. The assemblies of N‐stearoyl‐L ‐alanine afforded stable films at the air–water interface. More compact assemblies were formed upon incorporation of AuNPs in the air–water interface of N‐stearoyl‐L ‐alanine. We then examined the effects of incorporation of various AuNPs functionalized with different capping ligands in three‐dimensional assemblies of N‐lauroyl‐L ‐alanine, a compound that formed a gel in hydrocarbons. The profound influence of nanoparticle incorporation into physical gels was evident from evaluation of various microscopic and bulk properties. The interaction of AuNPs with the gelator assembly was found to depend critically on the capping ligands protecting the Au surface of the gold nanoparticles. Transmission electron microscopy (TEM) showed a long‐range directional assembly of certain AuNPs along the gel fibers. Scanning electron microscopy (SEM) images of the freeze‐dried gels and nanocomposites indicate that the morphological transformation in the composite microstructures depends significantly on the capping agent of the nanoparticles. Differential scanning calorimetry (DSC) showed that gel formation from sol occurred at a lower temperature upon incorporation of AuNPs having capping ligands that were able to align and noncovalently interact with the gel fibers. Rheological studies indicate that the gel–nanoparticle composites exhibit significantly greater viscoelasticity compared to the native gel alone when the capping ligands are able to interact through interdigitation into the gelator assembly. Thus, it was possible to define a clear relationship between the materials and the molecular‐level properties by means of manipulation of the information inscribed on the NP surface.  相似文献   

5.
This study examines the electronic coupling between quantum dots (QDs) and molecules on their surfaces as a function of the modality of their interaction. As a probe, the energy transfer (ET) between CdSe QDs and phthalocyanines (Pcs) was monitored and evaluated with regard to the functionalization of the axial phthalocyanine ligand, bulkiness of the functional group bridging the QD donor and Pc acceptor, and the number of the functionalized axial ligands. New silicon PCs and their conjugates with CdSe QDs were synthesized. The ET efficiency and kinetics were studied by steady state and femtosecond time-resolved absorption spectroscopy. We observed a decrease in ET efficiency with the increase in functional group bulkiness, which could be explained by increasing steric hindrance between the ET pair. In addition, a higher ET efficiency was observed for amino and thiol functionalized Pcs compared to Pcs without functional group on the axial alkyl chain.  相似文献   

6.
We report a pH- and temperature-controlled reversible self-assembly of Au-nanoparticles (AuNPs) in water, based on their surface modification with cationic guanidiniocarbonyl pyrrole (GCP) and zwitterionic guanidiniocarbonyl pyrrole carboxylate (GCPZ) binding motifs. When both binding motifs are installed in a carefully balanced ratio, the resulting functionalized AuNPs self-assemble at pH 1, pH 7 and pH 13, whereas they disassemble at pH 3 and pH 11. Further disassembly can be achieved at elevated temperatures at pH 1 and pH 13. Thus, we were able to prepare functionalized nanoparticles that can be assembled/disassembled in seven alternating regimes, simply controlled by pH and temperature.  相似文献   

7.
The CdSe quantum dots (QDs) with bidentate ligands: a-diimine (NN) and dihydrolipoic acid (DHLA) were synthesized and characterized by UV-Vis, particle size and capillary electrophoretic techniques. Two systems were analyzed: CdSe with one ligand (CdSe/ligand) and CdSe with two different ligands (CdSe//ligand1/ligand2), where ligand = α-diimine or DHLA. Hydrodynamic features of functionalized QDs were characterized by zone capillary electrophoretic (CZE), and particle size techniques and these methods were consistent. It was established that CZE, micellar (MEKC) and microemulsion (MEEKC) modes were suitable for separating charged CdSe QDs and that no peaks were obtained for QDs passivated with electrically neutral ligands. For CdSe QDs with neutral (NN) ligands, a preconcentration method with the use of a micellar plug was introduced for visualizing these QDs. A sharp peak representing neutral QDs was obtained within the zone of micellar plug of a non-ionic surfactant, Here, a ligand character used for CdSe modification and the type of the electrophoretic method applied were the determining factors for the QDs peak visualization. Moreover, examples of visualization of charged and neutral QDs on the same run were presented, and for this purpose, dual mechanism (separation/preconcentration) was proposed.   相似文献   

8.
This study examines the electronic coupling between quantum dots (QDs) and molecules on their surfaces as a function of the modality of their interaction. As a probe, the energy transfer (ET) between CdSe QDs and phthalocyanines (Pcs) was monitored and evaluated with regard to the functionalization of the axial phthalocyanine ligand, bulkiness of the functional group bridging the QD donor and Pc acceptor, and the number of the functionalized axial ligands. New silicon PCs and their conjugates with CdSe QDs were synthesized. The ET efficiency and kinetics were studied by steady state and femtosecond time-resolved absorption spectroscopy. We observed a decrease in ET efficiency with the increase in functional group bulkiness, which could be explained by increasing steric hindrance between the ET pair. In addition, a higher ET efficiency was observed for amino and thiol functionalized Pcs compared to Pcs without functional group on the axial alkyl chain.  相似文献   

9.
Colloidal quantum dot (QD) photocatalysts have the electrochemical and optical properties to be highly effective for a range of redox reactions. QDs are proven photo-redox catalysts for a variety of reactions in organic solvents but are less prominent for aqueous reactions. Aqueous QD photocatalysts require hydrophilic ligand shells that provide long-term colloidal stability but are not so tight-binding as to prevent catalytic substrates from accessing the QD surface. Common thiolate ligands, which also poison many co-catalysts and undergo photo-oxidative desorption, are therefore often not an option. This paper describes a framework for the design of water-solubilizing ligands that are in dynamic exchange on and off the QD surface, but still provide long-term colloidal stability to CdS QDs. The binding affinity and inter-ligand electrostatic interactions of a bifunctional ligand, aminoethyl phosphonic acid (AEP), are tuned with the pH of the dispersion. The key to colloidal stability is electrostatic stabilization of the monolayer. This work demonstrates a means of mimicking the stabilizing power of a thiolate-bound ligand with a zwitterionic tail group, but without the thiolate binding group.  相似文献   

10.
The design and synthesis of a novel linear thioether‐based ligand subunit with a tetraphenylmethane core used in the stabilisation of gold nanoparticles (AuNPs) are presented. Mono‐, tri, penta‐ and heptamers of the ligand have been synthesised and used to stabilise AuNPs by enwrapping. With the exception of the monomer, all ligands provide reliable long‐term stability and redispersibility for the coated nanoparticles in common organic solvents. Despite variation of the oligomer length, all stable particles were of the same size within error tolerance (1.16±0.32 nm for the trimer, 1.15±0.30 nm for the pentamer, 1.17±0.34 nm for the heptamer), as investigated by transmission electron microscopy (TEM). These findings suggest that not only the number of sulfur atoms in the ligand, but also its bulkiness play a crucial role in stabilising the AuNPs. These findings are supported by thermogravimetric analysis (TGA), showing that AuNPs stabilised by the penta‐ or heptamer are passivated by a single ligand. Thermal stability measurements suggest a correlation between ligand coverage and thermal stability, further supporting these findings.  相似文献   

11.
Gold nanoparticles (AuNPs) were assembled with high density onto multi-walled carbon nanotubes, which were functionalized with zwitterionic poly(imidazoliumsulfonate). The AuNP/zwitterionic CNT hybrids exhibited decent electrocatalytic activity in oxygen reduction reaction as the AuNP-based catalysts.  相似文献   

12.
Covalent assembly between gold-thiolate nanoparticles (AuNPs) and the cluster [Fe(eta(5)-C(5)H(5))(mu(3)-CO)](4), 1, can be achieved either by direct Brust-Schriffin-type synthesis using a mixture of undecanethiol and a thiol functionalized with , or by substitution of undecanethiolate ligands in AuNPs by thiolate ligands functionalized with ; cyclic voltammetry of these AuNPs functionalized with allows us to recognize and titrate the oxo-anions H(2)PO(4)(-) and ATP(2-).  相似文献   

13.
We have designed and synthesized a series of modular ligands based on poly(ethylene glycol) (PEG) coupled with functional terminal groups to promote water-solubility and biocompatibility of quantum dots (QDs). Each ligand is comprised of three modules: a PEG single chain to promote hydrophilicity, a dihydrolipoic acid (DHLA) unit connected to one end of the PEG chain for strong anchoring onto the QD surface, and a potential biological functional group (biotin, carboxyl, and amine) at the other end of the PEG. Water-soluble QDs capped with these functional ligands were prepared via cap exchange with the native hydrophobic caps. Homogeneous QD solutions that are stable over extended periods of time and over a broad pH range were prepared. Surface binding assays and cellular internalization and imaging showed that QDs capped with DHLA-PEG-biotin strongly interacted with either NeutrAvidin immobilized on surfaces or streptavidin coupled to proteins which were subsequently taken up by live cells. EDC coupling in aqueous buffer solutions was also demonstrated using resonance energy transfer between DHLA-PEG-COOH-functionalized QDs and an amine-terminated dye. The new functional surface ligands described here provide not only stable and highly water-soluble QDs but also simple and easy access to various biological entities.  相似文献   

14.
Precise control over the valency of quantum dots (QDs) is critical and fundamental for quantitative imaging in living cells. However, prior approaches on valence control of QDs remain restricted to single types of valences. A DNA‐programmed general strategy is presented for valence engineering of QDs with high modularity and high yield. By employing a series of programmable DNA scaffolds, QDs were generated with tunable valences in a single step with near‐quantitative yield (>95 %). The use of these valence‐engineered QDs was further demonstrated to develop 12 types of topologically organized QDs‐QDs and QDs‐AuNPs and 4 types of fluorescent resonance energy transfer (FRET) nanostructures. Quantitative analysis of the FRET nanostructures and live‐cell imaging reveal the high potential of these nanoprobes in bioimaging and nanophotonic applications.  相似文献   

15.
Here we report a facile way of stabilizing large gold nanoparticles (AuNPs) by mixed charged zwitterionic self-assembled monolayers (SAMs). The citrate-capped AuNPs with diameters ranging from 16 nm to even ~100 nm are well stabilized via a simple place exchange reaction with a 1:1 molar ratio mixture of negatively charged sodium 10-mercaptodecanesulfonic acid (HS-C10-S) and positively charged (10-mercaptodecyl)-trimethyl-ammonium bromide (HS-C10-N4). The 16 nm AuNPs protected by mixed charged zwitterionic SAMs not only show much better stability than the single negatively or positively charged AuNPs, but also exhibit exciting stability as well as those modified by monohydroxy (1-mercaptoundec-11-yl) tetraethylene glycol (HS-C11-EG4). Importantly, 16 nm AuNPs protected by mixed SAMs exhibit good stability in cell culture medium with 10% FBS and strong protein resistance, especially with excellent resistance against plasma adsorption. Moreover, the mixed charged zwitterionic SAMs are also able to well-stabilize larger AuNPs with a diameter of 50 nm, and to help remarkably improve their stability in saline solution compared with HS-C11-EG4 protected ones. When it comes to AuNPs with a diameter of 100 nm, the mixed charged zwitterionic SAM protected nanoparticles retain a smaller hydrodynamic diameter and even better long-term stability than those modified by mercaptopolyethylene glycol (M(w) = 2000, HS-PEG2000). The above results demonstrated that the mixed charged zwitterionic SAMs are able to have a similar effect on stabilizing the large gold nanoparticles just like the single-component zwitterionic SAMs. Concerning its ease of preparation, versatility, and excellent properties, the strategy based on the mixed charged zwitterionic SAM protection might provide a promising method to surface tailoring of nanoparticles for biomedical application.  相似文献   

16.
Using two orthogonal external stimuli, programmable staged surface patterning and self‐assembly of inorganic nanoparticles (NPs) was achieved. For gold NPs capped with end‐grafted poly(styrene‐block‐(4‐vinylbenzoic acid)), P(St‐block‐4VBA), block copolymer ligands, surface‐pinned micelles (patches) formed from NP‐adjacent PSt blocks under reduced solvency conditions (Stimulus 1); solvated NP‐remote P(4VBA) blocks stabilized the NPs against aggregation. Subsequent self‐assembly of patchy NPs was triggered by crosslinking the P(4VBA) blocks with copper(II) ions (Stimulus 2). Block copolymer ligand design has a strong effect on NP self‐assembly. Small, well‐defined clusters assembled from NPs functionalized with ligands with a short P(4VBA) block, while NPs tethered with ligands with a long P(4VBA) block formed large irregularly shaped assemblies. This approach is promising for high‐yield fabrication of colloidal molecules and their assemblies with structural and functional complexity.  相似文献   

17.
Quantum dots (QDs) of lead chalcogenides (e.g. PbS, PbSe, and PbTe) are attractive near‐infrared (NIR) active materials that show great potential in a wide range of applications, such as, photovoltaics (PV), optoelectronics, sensors, and bio‐electronics. The surface ligand plays an essential role in the production of QDs, post‐synthesis modification, and their integration to practical applications. Therefore, it is critically important that the influence of surface ligands on the synthesis and properties of QDs is well understood for their applications in various devices. In this Review we elaborate the application of colloidal synthesis techniques for the preparation of lead chalcogenide based QDs. We specifically focus on the influence of surface ligands on the synthesis of QDs and their solution‐phase ligand exchange. Given the importance of lead chalcogenide QDs as potential light harvesters, we also pay particular attention to the current progress of these QDs in photovoltaic applications.  相似文献   

18.
A series of glycan‐coated quantum dots were prepared to probe the effect of glycan presentation in intracellular localization in HeLa and SV40 epithelial cells. We show that glycan density mostly impacts on cell toxicity, whereas glycan type affects the cell uptake and intracellular localization. Moreover, we show that lactose can act as a “Trojan horse” on bi‐functionalized QDs to help intracellular delivery of other non‐internalizable glycan moieties and largely avoid the endosomal/lysosomal degradative pathway.  相似文献   

19.
Quantum dots (QDs) have size-tunable optical properties, such as photostability, strong photoluminescence and a large Stokes-shift, which make it possible to adapt them to various biological applications. In many cases, surface modification of QDs by carboxylate ligands has been extensively studied. However, there have been few applications on QDs modified with a potential cationic ligand such as amine. In this study, we synthesized robust amine-functionalized QDs and modified their surface with poly(ethylene glycol) for long-term stability. These QDs showed an excellent stability over a broad pH-range and remarkable internalization efficiency into living cells.  相似文献   

20.
The design of high‐affinity lectin ligands is critical for enhancing the inherently weak binding affinities of monomeric carbohydrates to their binding proteins. Glyco‐gold nanoparticles (glyco‐AuNPs) are promising multivalent glycan displays that can confer significantly improved functional affinity of glyco‐AuNPs to proteins. Here, AuNPs are functionalized with several different carbohydrates to profile lectin affinities. We demonstrate that AuNPs functionalized with mixed thiolated ligands comprising glycan (70 mol %) and an amphiphilic linker (30 mol %) provide long‐term stability in solutions containing high concentrations of salts and proteins, with no evidence of nonspecific protein adsorption. These highly stable glyco‐AuNPs enable the detection of model plant lectins such as Concanavalin A, wheat germ agglutinin, and Ricinus communis Agglutinin 120, at subnanomolar and low picomolar levels through UV/Vis spectrophotometry and dynamic light scattering, respectively. Moreover, we develop in situ glyco‐AuNPs‐based agglutination on an oriented immobilized antibody microarray, which permits highly sensitive lectin sensing with the naked eye. In addition, this microarray is capable of detecting lectins presented individually, in other environmental settings, or in a mixture of samples. These results indicate that glyconanoparticles represent a versatile and highly sensitive method for detecting and probing the binding of glycan to proteins, with significant implications for the construction of a variety of platforms for the development of glyconanoparticle‐based biosensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号