首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Solvents are known to affect the triplet state structure and reactivity. In this paper, we have employed time-resolved resonance Raman (TR3) spectroscopy to understand solvent-induced subtle structural changes in the lowest excited triplet state of thioxanthone. Density functional theory (DFT) combined with the self-consistent reaction field (SCRF) implicit solvation model has been used to calculate the vibrational frequencies in the solvents. Here, we report a unique observation of the coexistence of two triplets, which has been substantiated by the probe wavelength-dependent Raman experiments. The coexistence of two triplets has been further supported by photoreduction experiments carried out at various temperatures.  相似文献   

2.
Pico- and nanosecond time-resolved resonance Raman (TR3) spectroscopy have been utilized to study the dynamics and structure of p-hydroxyacetophenone (HA) and the p-hydroxyphenacyl-caged phototrigger compound p-hydroxyphenacyl diethyl phosphate (HPDP) in acetonitrile solution. Transient intermediates were detected and attributed to the triplet states of HA and HPDP. Nanosecond-TR3 measurements were done for two isotopically substituted HA molecules to help better assign the triplet state carbonyl C=O stretching and the ring related vibrational modes. The dynamics of formation and the spectral characteristics for the triplet states were found to be similar for the HA and HPDP. The temporal evolution at very early picosecond time scale indicates there is rapid intersystem crossing (ISC) conversion and subsequent relaxation of the excess energy of the initially produced energetic triplet state. B3LYP/6-311G** density functional theory (DFT) calculations were done to determine the structures and vibrational frequencies for both the triplet and ground states of HA and HPDP. The calculated spectra reproduce the experimental spectra and the observed isotopic shifts reasonably well and were used to make tentative assignments to all the experimentally observed features. The triplet states were found to have extensive conjugated pipi* nature with a single-bond-like carbonyl CO bond. We briefly compare the triplet structure and formation dynamics of HA and HPDP as well as the conformational changes upon going from the ground state to the triplet state. We discuss our present results in relation to the initial pathway for the p-hydroxyphenacyl photodeprotection process. We also compare and discuss the properties of the HA pipi* triplet state relative to the published results of other aromatic carbonyl compounds.  相似文献   

3.
The photophysical properties of a series of 3,4-ethylenedioxythiophene oligomers (OEDOT) with up to five repeat units are studied as function of conjugation length using absorption, fluorescence, phosphorescence, and triplet-triplet absorption spectroscopy at low temperature in a rigid matrix. At 80 K, a remarkably highly resolved vibrational fine structure can be observed in the all electronic spectra which reveals that the electronic structure of the oligomers strongly couples to two different vibrational modes (approximately 180 and approximately 50 meV). The energies of the 0-0 transitions in absorption, and fluorescence, phosphorescence, and triplet-triplet absorption all show a reciprocal dependence on the inverse number of repeat units. The triplet energies inferred from the phosphorescence spectra are accurately reproduced by quantum chemical DFT calculations using optimized geometries for the singlet ground state (S0) and first excited triplet state (T1). Using vibrational IR and Raman spectroscopy and quantum chemical DFT calculations for the normal modes in the ground state, we have been able to assign the vibrations that couple to the electronic structure to fully symmetric normal modes. The high-energy mode is associated with the well-known carbon-carbon bond stretch vibration, and the low-energy mode involves a deformation of the bond angles within the thiophene rings and a change of C-S bond lengths. Experimentally obtained Huang-Rhys parameters and theoretical normal mode deformations are used to analyze the geometry changes between T1 and S0 and to semiexperimentally predict the geometry in the S1 state for 2EDOT.  相似文献   

4.
A picosecond Kerr-gated time-resolved resonance Raman (ps-KTR(3)) study of the singlet 4-methoxyphenylnitrene intersystem crossing to produce the triplet 4-methoxyphenylnitrene species is reported. The experimental resonance Raman vibrational band frequencies observed for the singlet and triplet 4-methoxylphenylnitrene species in the time-resolved Raman experiments are compared to each other and to predictions from previously published density functional theory calculations. The structure, properties, and chemical reactivity of the singlet and triplet states of the 4-methoxyphenylnitrenes are briefly discussed.  相似文献   

5.
The complete IR spectra of the title complex Ni(mnt)(bpy) (mnt=maleonitriledithiolate, bpy=2,2'-bipyridine) and a new method to analyze vibrational spectra for such a complicated metal complex are reported in this paper. The molecular geometry, binding, electronic structure and spectroscopic property of it have been studied in detail by theoretical calculations. The geometry optimization from PM3 calculations give that this molecule is of a planar structure with the symmetry point group C(2v) and its ground state is the spin triplet state. The vibrational and electronic spectra were calculated by PM3 and ZINDO/S methods, respectively. The scientific method of analyzing vibrational spectra is established herein by giving main fixed points and pivotal vibrational units. Besides the regular symbols, the new defined symbols eta and M play an important role in describing the vibration modes accurately and vividly.  相似文献   

6.
In the present study, a systematic vibrational spectroscopic investigation for the experimental IR and Raman spectra of 2,3,4-trifluorobenzonitrile (TFB), aided by electronic structure calculations has been carried out. The electronic structure calculations – ab initio (RHF) and hybrid density functional methods (B3LYP) – have been performed with 6-31G* basis set. Molecular equilibrium geometries, electronic energies, IR intensities, harmonic vibrational frequencies, depolarization ratios and Raman activities have been computed. The results of the calculations have been used to simulate IR and Raman spectra for TFB that showed excellent agreement with the observed spectra. Potential energy distribution (PED) and normal mode analysis have also been performed. The assignments proposed based on the experimental IR and Raman spectra have been reviewed. A complete assignment of the observed spectra has been proposed.  相似文献   

7.
8.
A detailed time-resolved laser spectroscopy investigation has been carried out on the electron transfer reactions of substituted thioxanthone derivatives with diphenyliodonium (Ph-I+) salts having different metal halide counterions (MX?n). Quenching of thioxanthones' triplet state has been followed under various conditions, by changing the number and nature of substituents on the thioxanthone skeletone, using anion with different nucleophilicity and employing different solvents, namely methanol and acetonitrile. A Photosensitization mechanism is proposed involving an electron transfer from thioxanthone to diphenyliodonium salt. The absorption spectra of the thioxanthone's excited state and the formed new transient are recorded and the rate constants of the excited state processes are measured. The triplet state of thioxanthone derivatives has been quenched by cationically polymerizable monomers and the quantum yield of the major processes has been evaluated. Photolytic experiments have been performed to measure the extent of acid formation. Form photopolymerization experiments using different photoinitiating systems, the rate of polymerization and percentage of monomer conversion have been determined. Both the reactivity in the excited states and the nucleophilicity of the anions affect the efficiency of the photopolymerization reaction.  相似文献   

9.
10.
Density functional theory (DFT), HF and MP2 calculations have been carried out to investigate thioxanthone molecule using the standard 6-31+G(d,p) basis set. The results of MP2 calculations show a butterfly structure for thioxanthone. The calculated results show that the predicted geometry can well reproduce the structural parameters. The predicted vibrational frequencies were assigned and compared with experimental IR spectra. A good harmony between theory and experiment is found. The theoretical electronic absorption spectra have been calculated using CIS method. 13C and 1H NMR of the title compound have been calculated by means of B3LYP density functional method with 6-31+G(d,p) basis set. The comparison of the experimental and the theoretical results indicate that density functional B3LYP method is able to provide satisfactory results for predicting NMR properties.  相似文献   

11.
Intermolecular hydrogen abstraction reaction mechanisms in photoexcited ketones have traditionally been studied using time resolved absorption spectroscopy. Another approach is presented involving time resolved resonance Raman spectroscopy to study such reactions, using the fluoranil/isopropanol system as an example. It has been shown that vibrational spectra can be recorded starting from the triplet excited state to the product state (radical anion) via the intermediate state, which is the ketyl radical. Thus, it is demonstrated that following the reaction evolution in terms of structural (vibrational modes) details would prove to be useful not only for mechanistic investigation but also for structure-reactivity correlations in photoexcited systems.  相似文献   

12.
A family of quinoidal oligothiophenes, from the dimer to the hexamer, with fused bis(butoxymethyl)cyclopentane groups has been extensively investigated by means of electronic and vibrational spectroscopy, electrochemical measurements, and density functional calculations. The latter predict that the electronic ground state always corresponds to a singlet state and that, for the longest oligomers, this state has biradical character that increases with increasing oligomer length. The shortest oligomers display closed‐shell quinoidal structures. Calculations also predict the existence of very low energy excited triplet states that can be populated at room temperature. Aromatization of the conjugated carbon backbone is the driving force that determines the increasing biradical character of the ground state and the appearance of low‐lying triplet states. UV/Vis, Raman, IR, and electrochemical experiments support the aromatic biradical structures predicted for the ground state of the longest oligomers and reveal that population of the low‐lying triplet state accounts for the magnetic activity displayed by these compounds.  相似文献   

13.
Magnetic, vibrational, and optical techniques are combined with density functional calculations to elucidate the electronic structure of the diamagnetic mononuclear side-on CuII-superoxo complex. The electronic nature of its lowest singlet/triplet states and the ground-state diamagnetism are explored. The triplet state is found to involve the interaction between the Cu xy and the superoxide pi v * orbitals, which are orthogonal to each other. The singlet ground state involves the interaction between the Cu xy and the in-plane superoxide pi v * orbitals, which have a large overlap and thus strong bonding. The ground-state singlet/triplet states are therefore fundamentally different in orbital origin and not appropriately described by an exchange model. The ground-state singlet is highly delocalized with no spin polarization.  相似文献   

14.
The FTIR and FT Raman vibrational spectra of 1,5-methylnaphthalene (1,5-MN) have been recorded using Brunker IFS 66 V Spectrometer in the range 3600-10 cm(-1) in the solid phase. A detailed vibrational spectral analysis has been carried out and assignments of the observed fundamental bands have been proposed on the basis of peak positions and relative intensities. The Optimized molecular geometry, harmonic frequencies, electronic polarizability, atomic charges, dipole moment, rotational constants and several thermodynamic parameters in the ground state were calculated using ab initio Hartree Fock (HF) and density functional B3LYP methods (DFT) with 6-311++ G(d) basis set. With the help of different scaling factors, the observed vibrational wavenumbers in FTIR and FT Raman spectra were analyzed and assigned to different normal modes of the molecule. Most of the modes have wavenumbers in the expected range. The results of the calculations were applied to simulated infrared and Raman spectra of the title compound which showed excellent agreement with the observed spectra.  相似文献   

15.
The photoelectron spectrum of the oxyallyl (OXA) radical anion has been measured. The radical anion has been generated in the reaction of the atomic oxygen radical anion (O(?-)) with acetone. Three low-lying electronic states of OXA have been observed in the spectrum. Electronic structure calculations have been performed for the triplet states ((3)B(2) and (3)B(1)) of OXA and the ground doublet state ((2)A(2)) of the radical anion using density functional theory (DFT). Spectral simulations have been carried out for the triplet states based on the results of the DFT calculations. The simulation identifies a vibrational progression of the CCC bending mode of the (3)B(2) state of OXA in the lower electron binding energy (eBE) portion of the spectrum. On top of the (3)B(2) feature, however, the experimental spectrum exhibits additional photoelectron peaks whose angular distribution is distinct from that for the vibronic peaks of the (3)B(2) state. Complete active space self-consistent field (CASSCF) method and second-order perturbation theory based on the CASSCF wave function (CASPT2) have been employed to study the lowest singlet state ((1)A(1)) of OXA. The simulation based on the results of these electronic structure calculations establishes that the overlapping peaks represent the vibrational ground level of the (1)A(1) state and its vibrational progression of the CO stretching mode. The (1)A(1) state is the lowest electronic state of OXA, and the electron affinity (EA) of OXA is 1.940 ± 0.010 eV. The (3)B(2) state is the first excited state with an electronic term energy of 55 ± 2 meV. The widths of the vibronic peaks of the X? (1)A(1) state are much broader than those of the a? (3)B(2) state, implying that the (1)A(1) state is indeed a transition state. The CASSCF and CASPT2 calculations suggest that the (1)A(1) state is at a potential maximum along the nuclear coordinate representing disrotatory motion of the two methylene groups, which leads to three-membered-ring formation, i.e., cyclopropanone. The simulation of b? (3)B(1) OXA reproduces the higher eBE portion of the spectrum very well. The term energy of the (3)B(1) state is 0.883 ± 0.012 eV. Photoelectron spectroscopic measurements have also been conducted for the other ion products of the O(?-) reaction with acetone. The photoelectron imaging spectrum of the acetylcarbene (AC) radical anion exhibits a broad, structureless feature, which is assigned to the X? (3)A' state of AC. The ground ((2)A') and first excited ((2)A') states of the 1-methylvinoxy (1-MVO) radical have been observed in the photoelectron spectrum of the 1-MVO ion, and their vibronic structure has been analyzed.  相似文献   

16.
We present improved virtual orbital (IVO) complete active space (CAS) configuration interaction (IVO‐CASCI) and IVO‐CASCI‐based multireference Møller–Plesset perturbation theory (MRMPPT) calculations with an aim to elucidate the electronic structure of tetramethyleneethane (TME) in its lowest singlet and triplet state and to quantify their order and extent of splitting. The potential surfaces of singlet and triplet states for the twisting of TME are also studied. We found that the triplet state is higher in energy than the singlet one in the whole range of twisting angles with the energy gap minimum at a twisting angle of about 45°. Harmonic vibrational frequencies of TME have also been calculated for both the states. We also report the ground to first excited triplet state transition energies. Our results are analyzed with respect to the results available in the literature to illustrate the efficacy of our methods employed. We also demonstrate that the spin character of the ground state of disjoint, TME‐like diradicals can be manipulated by using appropriate selection of annulenic spacer to separate the allyl groups of TME.  相似文献   

17.
We report time-resolved resonance Raman spectra for 2-fluorenylnitrene and its dehydroazepine products acquired after photolysis of 2-fluorenylnitrene in acetonitrile. The experimental Raman band frequencies exhibit good agreement with the calculated vibrational frequencies from UBPW91/cc-PVDZ density functional calculations for the singlet and triplet states of the 2-fluorenylnitrene as well as BPW91/cc-PVDZ calculations for the two dehydroazepine ring-expansion product species. The decay of the 2-fluorenylnitrene Raman signal and the appearance of the dehydroazepine products suggest the presence of an intermediate species (probably an azirine) that does not absorb very much at the 416 nm probe wavelength used in the time-resolved resonance Raman experiments. Comparison of the singlet 2-fluorenylnitrene species with the singlet 2-fluorenylnitrenium ion species indicates that protonation of the nitrene to give the nitrenium ion leads to a significant enhancement of the cyclohexadienyl character of the phenyl rings without much change of the C-N bond length.  相似文献   

18.
The excitation of the lowest electronic states and vibrational excitation of cytosine (C) have been studied using electron energy loss spectroscopy (EELS, 0-100 eV) with angular analysis. The singlet states have been found to be in good agreement with UV-VIS absorption results on sublimed films, slightly blueshifted by about 0.1 eV. The EEL spectra recorded at residual energy below 2 eV show clear shoulders at energy losses of 3.50 and 4.25 eV (+/-0.1 eV). They are assigned to the lowest triplet electronic states of cytosine. Energies and molecular structures of the lowest-lying triplet state of C and its methylated and halogenated 5-X-C, 6-X-C, and 5-X, 6-X-C substituted derivatives (X=CH3, F, Cl, and Br) have been studied using quantum chemical calculations with both molecular orbital and density functional methods, in conjunction with the 6-311++G(d,p), 6-311++G(3df,2p), and aug-cc-pVTZ basis sets. The triplet-singlet energy gap obtained using coupled-cluster theory [CCSD(T)] and density functional theory (DFT) methods agrees well with those derived from EELS study. The first C's vertical triplet state is located at 3.6 eV, in good agreement with experiment. The weak band observed at 4.25 eV is tentatively assigned to the second C's vertical triplet excitation. For the substituted cytosines considered, the vertical triplet state is consistently centered at 3.0-3.2 eV above the corresponding singlet ground state but about 1.0 eV below the first excited singlet state. Geometrical relaxation involving out-of-plane distortions of hydrogen atoms leads to a stabilization of 0.6-1.0 eV in favor of the equilibrium triplet. The lowest-lying adiabatic triplet states are located at 2.3-3.0 eV. Halogen substitution at both C(5) and C(6) positions tends to reduce the triplet-singlet separations whereas methylation tends to enlarge it. The vibrational modes of triplet cytosine and the ionization energies of substituted derivatives were also evaluated.  相似文献   

19.
The electronic and rovibronic structures of the cyclopentadienyl cation (C(5)H(5) (+)) and its fully deuterated isotopomer (C(5)D(5) (+)) have been investigated by pulsed-field-ionization zero-kinetic-energy (PFI-ZEKE) photoelectron spectroscopy and ab initio calculations. The vibronic structure in the two lowest electronic states of the cation has been determined using single-photon ionization from the X (2)E(1) (") ground neutral state and 1+1(') resonant two-photon ionization via several vibrational levels of the A (2)A(2) (") excited state. The cyclopentadienyl cation possesses a triplet ground electronic state (X(+) (3)A(2) (')) of D(5h) equilibrium geometry and a first excited singlet state (a(+) (1)E(2) (')) distorted by a pseudo-Jahn-Teller effect. A complete analysis of the Emultiply sign in circlee Jahn-Teller effect and of the (A+E)multiply sign in circlee pseudo-Jahn-Teller effect in the a(+) (1)E(2) (') state has been performed. This state is subject to a very weak linear Jahn-Teller effect and to an unusually strong pseudo-Jahn-Teller effect. Vibronic calculations have enabled us to partially assign the vibronic structure and determine the adiabatic singlet-triplet interval (1534+/-6 cm(-1)). The experimental spectra, a group-theoretical analysis of the vibronic coupling mechanisms, and ab initio calculations were used to establish the topology of the singlet potential energy surfaces and to characterize the pseudorotational motion of the cation on the lowest singlet potential energy surface. The analysis of the rovibronic photoionization dynamics in rotationally resolved spectra and the study of the variation of the intensity distribution with the intermediate vibrational level show that a Herzberg-Teller mechanism is responsible for the observation of the forbidden a(+) (1)E(2) (')<--A (2)A(2) (") photoionizing transition.  相似文献   

20.
Combined experimental and theoretical studies have been performed on the structure and vibrational spectra (IR and Raman spectra including far region) of 2-quinolinecarboxaldehyde. Hartree-Fock (HF) and density functional B3LYP calculations have been employed with the 6-311++G(d,p) basis set for investigating the structural and spectroscopic properties of two possible aldehyde rotamers of 2-quinolinecarboxaldehyde. When the O atom of the aldehyde is farther away than the nitrogen atom of the quinoline, 2-quinolinecarboxaldehyde has the lowest possible energy, and thus is in its ground state. The computed vibrational frequencies of this lowest energy rotamer agree also slightly better than those of the higher energy rotamer with the experimental frequencies after the computed frequencies are scaled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号