首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The thermal decomposition of CoH(CO)4 in solution to Co2(CO)8 and H2 is catalyzed by Co2(CO)8; the effect of the latter is proportional to the square root of the concentration. Probably the Co(CO)4· radical is involved in the process. One-electron reactions of the trityl radical with CoH(CO)4 and benzophenone ketyl with Co2(CO)8 are discribed.  相似文献   

2.
The thermally stable solids Re2(CO)8[μ-InRe(CO)5]2 and Re4(CO)123-InRe(CO)5]4 could be obtained by treatment of In with Re2(CO)10 in a bomb tube. A mechanism of the formation of the latter cluster from the first one is proposed. Compared with Re2(CO)8[μ-InRe(CO)5]2, Re4(CO)123_InRe(CO)5]4 shows in polar solvents an unusual high stability, which can be explained by the higher coordination number of In with rhenium carbonyl ligands. Re4(CO)12-[μ3-InRe(CO)5]4 dissolves monomerically in acetone, where as Re2(CO)8[μ-InRe(CO)5]2 dissociates yielding Re(CO)5? anions. Single-crystal X-ray analyses of Re4(CO)123-InRe(CO)5]4 establish the metal skeleton. The central molecular fragment Re4(CO)12 contains a tetrahedral arrangement of four bonded Re atoms [ReRe 302.8 (5) pm]. The triangles of this fragment are capped with a μ3-InRe(CO)5 group each [InRe(terminal) 273.5 (7) pm; InRe (polyhedral) 281.8 (7) pm]. The bridging type of In atoms with the Re4 tetrahedron and the metal skeleton was realized for the first time. By treating Re4(CO)123-InRe(CO)5]4 with Br2 the existence of Re(CO)5 ligands could be proved by isolating BrRe(CO)5.  相似文献   

3.
The nature of the protonation reaction of (
o(CO)3 (M = Mo, W; R = Me, Ph, p-MeC6H4) (2) (obtained from (CO)3CpMCH2CCR (1) and Co2(CO)8) to give (CO)3 Cp(CO)2 (3) was further investigated by a crossover experiment. Thus, reaction of an equimolar mixture of 2b (M = W, Cp = η5-C5H5, R = Ph) and 2e (M = W, Cp = η5-C5H4Me; R = p-MeC6H4) with CF3COOH affords only 3b (same M, Cp, and R as 2b) and 3e (same M, Cp, and R as 2e) to show an intramolecular nature of this transformation. Reaction of (CO)3CpWCH2CCPh (1b) with Co4(CO)12 was also examined and found to yield 2b exclusively. Treatment of 1 with Cp2Mo2(CO)4 at 0–5°C provides thermally sensitive compounds, possibly (CO)2Cp
oCp(CO)2 (5), which decompose at room temperature to give Cp2Mo2(CO)6 as the only isolated product.  相似文献   

4.
A new ruthenium-rhodium mixed-metal cluster HRuRh3(CO)12 and its derivatives HRuRh3(CO)10(PPh3)2 and HRuCo3(CO)10(PPh3)2 have been synthesized and characterized. The following crystal and molecular structures are reported: HRuRh3(CO)12: monoclinic, space group P21/c, a 9.230(4), b 11.790(5), c 17.124(9) Å, β 91.29(4)°, Z = 4; HRuRh3(CO)10(PPh3)2·C6H14: triclinic, space group P1, a 11.777(2), b 14.079(2), c 17.010(2) Å, α 86.99(1), β 76.91(1), γ 72.49(1)°, Z = 2; HRuCo3(CO)10(PPh3)2·CH2Cl2: triclinic, space group P1, a 11.577(7), b 13.729(7), c 16.777(10) Å, α 81.39(4), β 77.84(5), γ 65.56°, Z = 2. The reaction between Rh(CO)4? and (Ru(CO)3Cl2)2 tetrahydrofuran followed by acid treatment yields HRuRh3(CO)12 in high yield. Its structural analysis was complicated by a 80–20% packing disorder. More detailed structural data were obtained from the fully ordered structure of HRuRh3(CO)10(PPh3)2, which is closely related to HRuCo3(CO)10(PPh3)2 and HFeCo3(CO)10(PPh3)2. The phosphines are axially coordinated.  相似文献   

5.
The reaction of HMn(CO)5 with certain cyclopropenes when carried out in a detergent medium gives a different mixture of hydroformylated and hydrogenated products than is obtained when the same reaction is carried out in a homogeneous medium. These results are consistent with the intermediacy of caged geminate radical pairs whose escape from the cage is retarded by micelle sequestering.  相似文献   

6.
The reaction of Ir4(CO)12 with potassium hydroxide in methanol and/or with sodium in tetrahydrofuran leads to the carbonyliridate anions [HIr4(CO)11]?, [Ir6(CO)22]2?, [Ir8(CO)20]2?, [Ir6(CO)15]2? and [Ir(CO)4]? obtained as salts with bulky cations. From these, the tetranuclear carbonyl hydride H2Ir4(CO)11 and the hexanuclear carbonyl compound Ir6(CO)16 are also obtained.  相似文献   

7.
The reaction of M3(CO)12 (M = Ru, Fe) with excess bi-2,7-cyclooctadienyl (C16H22) 1 gave a mononuclear complex M(CO)3(1,2,1′-2′-η4-C16H22), 2a (M = Ru) or 3a (M = Fe), in good yield. Treatment of 2a with Fe3(CO)12 or reaction of 3a with Ru3(CO)12 gave the heterobimetallic complex RuFe(CO)6(C10H22) consisting of a ruthenacyclopentadiene unit coordinated to an Fe(CO)3 fragment, as confirmed by 1H NMR and X-ray studies. The corresponding homobimetallic complex Ru2(CO)6(C16H22) was obtained from the 1:1 reaction of 2a with Ru3(CO)12, while the direct reaction of 1 with Ru3(CO)12 gave Ru2(CO)6(C16H20) preferentially with a loss of two hydrogen atoms. The pathway for formation of these bimetallic complexes was interpreted as a dehydrogenative metallacyclization followed by hydrogen transfer.  相似文献   

8.
Ligand substitution of the mixed-metal clusters FeRu2(CO)12 and Fe2Ru(CO)12 with triphenylphosphine and trimethylphosphite has been studied. Mono- and di-substituted derivatives have been synthesized and characterized structurally. The following crystal and molecular structures are reported: Fe2Ru(CO)11PPh3: triclinic, space group P1, a 9.203(2), b 11.903(3), c 15.117(4) Å, α 81.54(2), β 87.28(2), γ 66.72(2)°, Z = 2; Fe2Ru(CO)11P(OMe)3: orthorhombic, space group Pna21, a 17.220(5), b 14.572(4), c 8.708(6) Å, Z = 4, FeRu2(CO)11PPh3: monoclinic, space group P21/n, a 11.435(3), b 16.034(5), c 16.642(4) Å, β 93.35(2)°, Z = 4; FeRu2(CO)10(PPh3)2: orthorhombic, space group Pccm, a 14.854(4), b 17.180(7), c 16.786(12) Å, Z = 4.Ligand substitution is found to occur preferentially at the ruthenium centers of the FeRu2 and Fe2Ru clusters. Monosubstitution causes expansion of both of the clusters while the overall geometry is practically unchanged. Disubstitution of FeRu2(CO)12 causes contraction of the cluster and leads to a formation of carbonyl bridges. The structural trends have been interpreted in terms of electronic and packing effects of ligand substitution. The X-ray structures of Fe2Ru(CO)12 and FeRu2(CO)12 are not known; the ligand substitution studies indicate that Fe2Ru(CO)12 has the same structure as Fe3(CO)12, and that FeRu3(CO)12 does not have a Ru3(CO)12 structure as postulated previously from the IR studies.  相似文献   

9.
Twelve new trinuclear complexes containing terminal PH2Ph, edge-bridging PHPh and/or capping PPh ligands have been isolated from the reaction of M3(CO)12 (M = Ru or Os) with PH2Ph in refluxing solvents. HRu3(CO)10(PHPh) (IIIa) crystallises in the monoclinic space group P21/c with a = 8.761(3), b = 11.402(4), c = 22.041(7) Å,β = 98.89(2)°, and Z = 4. The structure was solved by a combination of direct methods and Fourier difference techniques, and refined by blocked-cascade least squares to R = 0.027 for 3676 unique observed intensities. The X-ray analysis shows that one edge of the Ru3 triangle is bridged by a hydride and the PHPh ligand, and that the phosphorus-bound hydrogen atom lies over the metal triangle and the phenyl group away from it. This provides an explanation for the ready formation of the capped species H2Ru3(CO)9(PPh) (Va) on pyrolysis of the edge-bridged complex as opposed to the previously reported conversion of HOs3(CO)10(NHPh) to an orthometallated derivative under similar conditions. An X-ray analysis of H2Ru3(CO)9-(PPh) (Va) confirms the capped geometry. the complex crystallises in the monoclinic space group P21/n with a = 9.323(4), b = 15.110(6), c = 45.267(15) Å,β = 91.84(3)°, and Z = 12. the structure was solved and refined using the same techniques as described previously. The final residual R is 0.061 for 4839 reflections. Some reactions of Va show that the phosphorous cap is difficult to displace and stabilises the molecule with respect to decomposition to non-cluster species.  相似文献   

10.
11.
The interaction of Re2(CO)10 and Fe3(CO)12, and that of Re2Fe(CO)14 with alumina were studied during thermal treatment by FT-IR spectroscopy. The interaction of Re2Fe(CO)14 with alumina results in the formation of Re-tricarbonyls as in the Re2(CO)10 + Fe3(CO)12/Al2O3 system, even at room temperature. In the view of this fact, the possibility of the action of reactive Fe-monocarbonyls [Fe(CO)5, Fe(CO)4] on the Re2(CO)10 with appearance of a Re2Fe(CO)14 as a transient intermediate on the support, cannot be excluded.  相似文献   

12.
The new complex Ru3(CO)9(PPh2H)3 (I) was prepared by the direct thermal reaction of Ru3(CO)12 with PPh2 H and was spectroscopically characterized. Irradiation of I with λ ≥ 300 nm leads to the formation of Ru2(μ-PPh2)2(CO)6 (II) and three new phosphido-bridged complexes, Ru3(μ-H)2(μ-PPh2)2(CO)8 (III), Ru3(μ-H)2(μ-PPh2)2(CO)7(PPh2H) (IV) and Ru3(μ-H)(μ-PPh2)3(CO)7 (V). These complexes have been characterized spectroscopically and Ru3 (μ-H)(μ-PPh2)3(CO)7 by a complete single crystal X-ray structure determination. It crystallizes in the space group P21/n with a 20.256(3), b 22.418(6), c 20.433(5) Å, β 112.64(2)°, V 8564(4) Å3, and Z = 8. Diffraction data were collected on a Syntex P21 automated diffractometer using graphite-monochromatized Mo-Kα radiation, and the structure was refined to RF 4.76% and RwF 5.25% for the 8,847 independent reflections with F0 > 6σ(F0). The structure consists of a triangular array of Ru atoms with seven terminal carbonyl ligands, three bridging diphenylphosphido ligands which bridge each of the RuRu bonds, and the hydride ligand which bridges one RuRu bond. Complex IV was also shown to give V upon photolysis and is thus an intermediate in the photoinduced formation of V from I.  相似文献   

13.
Complete geometry optimizations were carried out by HF and DFT methods to study the molecular structure of binuclear transition-metal compounds (Cp(CO)3W(μ-PPh2)W(CO)5) (I) and (Cp(CO)2W(μ-PPh2)W(CO)5) (II). A comparison of the experimental data and calculated structural parameters demonstrates that the most accurate geometry parameters are predicted by the MPW1PW91/LANL2DZ among the three DFT methods. Topological properties of molecular charge distributions were analyzed with the theory of atoms in molecules. (3, −1) critical points, namely bond critical point, were found between the two tungsten atoms, and between W1 and C10 in complex II, which confirms the existence of the metal–metal bond and a semi-bridging CO between the two tungsten atoms. The result provided a theoretical guidance of detailed study on the binuclear phosphido-bridged complex containing transition metal–metal bond, which could be useful in the further study of the heterobimetallic phosphido-bridged complexes.  相似文献   

14.
The radical Mn(CO)5 is generated by the photolysis of HMn(CO)5 in a low temperature solid CO matrix. It is characterized by IR spectroscopy, including isotopic studies, and it is shown to have a visible absorption band at ~ 800 nm, close to that assigned to Mn(CO)5 in room-temperature studies.  相似文献   

15.
Syntheses and single-crystal X-ray diffraction studies have been completed on two cycloruthenapentadienyl (CO)6Ru2L2 derivatives, with L = CH2OHC = CCH2OH and C2H5C=CCH2CH2OH respectively. Crystal data are as follows: for [(CO)3RuC4(CH2OH)4]Ru(CO)3·H2O, P21/c, a 13.72(1), b 9.501(4), c 14.86(1) Å, β 101.10(6)°, Rw = 0.052 for 1911 reflections; for [(CO)3RuC4(CH2CH2OH)2(C2H5)2]Ru(CO)3, P21/c, a 9.191(3), b 16.732(4), c 14.903(3) Å, β 113.61(4)°, Rw = 0.042 for 2865 reflections. Both compounds are built up from binuclear units, each unit being regarded as a Ru(CO)3 fragment π-bonded to a cycloruthenapentadienyl ring. The molecular parameters are compared with those of known cyclometallapentadienyl complexes of transition metals. The presence of a semi-bridging CO group is discussed.  相似文献   

16.
The reactions of [Fe3(CO)12] or [Ru3(CO)12] with RNC (R=Ph, C6H4OMe-p or CH2SO2C6H4Me-p) have been investigated using electrospray mass spectrometry. Species arising from substitution of up to six ligands were detected for [Fe3(CO)12], but the higher-substituted compounds were too unstable to be isolated. The crystal structure of [Fe3(CO)10(CNPh)2] was determined at 150 and 298 K to show that both isonitrile ligands were trans to each other on the same Fe atom. For [Ru3(CO)12] substitution of up to three COs was found, together with the formation of higher-nuclearity clusters. [Ru4(CO)11(CNPh)3] was structurally characterised and has a spiked-triangular Ru4 core with two of the CNPh ligands coordinated in an unusual μ32 mode.  相似文献   

17.
X-ray crystallographic analyses of H2Os3(CO)10, H(SC2H5)Os3(CO)10 and (OCH3)2Os3(CO)10 are reported. Although hydrogen atom positions have not been located, the essential isostructural nature of the three commplexes establishes the hydride ligands as bridging two metal atoms, separated by 2.670 Å, with a formal bond order of two; the bridging hydrido- and thiolato-ligands span an osmium---osmium bond of length 2.863 Å and formal bond order one; the two μ-methoxy ligands bridge two metal atoms separated by 3.078 Å which, by simple 18 electron rule counting, has a metal---metal bond order of zero. Some general comments are made on the structures of polynuclear transition metal carbonyls.  相似文献   

18.
Reaction of the complexes Ru(CO)2Cl2L [L = 2,2′-bipyridyl (bpy) or 1,10-phenanthroline (phen)] with trifluoromethanesulphonic acid under carefully controlled conditions yields Ru[cis-(CO)2] [cis-(O3SCF3)2] (bidentate complexes. From reactions of the trifluoromethanesulphonates with the appropriate bidentate ligands, the new complexes [cis-Ru(CO)2-L(L′)]2+ (L as above; L′ = 4,4′-dimethyl-2,2′-bipyridyl or 4,4′-diisopropyl-2,2′-bipyridyl) as well as the known [cis-Ru(CO)2L2]2+ and [cis-Ru(CO)2bpy(phen)]2+ have been prepared.  相似文献   

19.
Although very bulky ligands e.g.(o-MeC6H4)3E or (μ-C10H7)3E (E = P or As) are inert, the normal photochemical or thermal reaction of tertiary phosphines or arsines, L, with [Mn2(CO)10] is CO substitution with the formation of [Mn2(CO)8(L)2] derivatives (I). At elevated temperatures some triarylarsines, R3As, undergo Lambert's reaction with ligand fragmentation to give [Mn2(CO)8(μ-AsR2)2] complexes (II) (R = Ph, p-MeOC6H4, p-FC6H4, or p-CIC6H4) even though, in the absence of [Mn2(CO)10] R3As are stable under the same conditions. Exceptional behaviour is exhibited by (p-Me2NC6H4)3- As which forms a product of type I; by some HN(C6H4)2AsR which give a product of type II as a result of loss of the non-aryl groups R = PhCH2, cyclo-C6H11, or MeO; and by Ph(α-C10H72P which is the only phosphine to form a product of type II, albeit in trace amounts only. The thermal decomposition of a n-butanol solution of [Mn2(CO)8(AsPh3)2] in a sealed tube gives C6H6 and [Mn2(CO)8(α-AsPh2)2], whilst in an open system in the presence of various tertiary phosphines, L, [Mn(H)(CO)3(L)2] are obtained. It is suggested that Lambert's reaction is a thermal fragmentation of [Mn(CO)4(AsR3]* radicals, the first to be recognised. They lose the radical R* which abstracts hydrogen from the solvent. The resulting [Mn(CO)4(AsR2)] moiety dimerises to [Mn2(CO)8-(α-AsR2)2]. the reaction is facilitated by the stability of the departing radical (e.g. PhCH2 or MeO) and, as the crowding about As is relieved, by its size (e.g. Ph, cyclo-C6H11, o-MeC6H4, or α-C10H7). In general, phosphine-substituted radicals [Mn(CO)4(PR)3]* do not undergo this decomposition, probably because the PC bonds are much stronger than AsC.  相似文献   

20.
Reaction of [Fe2(CO)9] with a half molar amount of R2PYPR2 (Y = CH2, R = Ph, Me, OMe or OPri; Y = N(Et), R = OPh, OMe or OCH2; Y = N(Me), R = OPri or OEt) leads to the ready formation of a product which on irradiation with ultraviolet light rapidly decarbonylates to the heptacarbonyl derivative [Fe2(μ-CO)(CO)6{μ-R2PYPR2}]. Treatment of the latter with a slight excess of the appropriate ligand results, under photochemical conditions, in the formation of the dinuclear pentacarbonyl complex [Fe2(μ-CO)(C))4{μ-R2PYPR2}2] but under thermal conditions in the formation of the mononuclear species [Fe(CO)3{R2PYPR2}]. Reaction of [Ru3(CO)12] with an equimolar amount of (RO)2PN(R′)P(OR)2 (R′ = Me, R = Pri or Et; R′ = Et, R = Ph or Me) under either thermal or photochemical conditions produces [Ru3(CO)10{μ-(RO)2PN(OR)2}] which reacts further with excess (RO)2PN(R′)P(OR)2 on irradiation with ultraviolet light to afford the dinuclear compound [Ru2(μ-CO)(CO4{μ-(RO)2PN(R′)P(OR)2}2]. The molecular structure of [Ru2(μ-CO)(CO)4{μ-(MeO)2PN(Et)P(OMe)2}2], which has been determined by X-ray crystallography, is described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号