首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction between 2,4-dinitrochlorobenzene (DNCB) and hydroxide ion was studied spectrophotometrically at 25 °C in micelles of a triazole-based cationic gemini surfactant 18-triazole-18 or micelles of the conventional cationic surfactant CTAB. Both CTAB and 18-triazole-18 accelerated this nucleophilic aromatic substitution reaction. The binding constant of the substrate to the micelle, K S, for 18-triazole-18 (K S=335 M−1) was found to be much larger than that for CTAB (85 M−1) by fitting the kinetic results with pseudophase ion-exchange (PIE) model, which suggests that DNCB binds with gemini micelles more easily than it does with CTAB micelles. It was also found that 18-triazole-18 catalytic system was in accordance with PIE model at surfactant concentrations below ca. 0.5 mM, above which the increase of viscosity and the change of micelle size with increased surfactant concentration may remarkably influence the reaction. This was quite different from the reaction catalyzed by micelles of the conventional surfactant CTAB.  相似文献   

2.
Based on the studies of their physical properties such as aqueous solution uptake, electric conductivity, and microstructure, CTAB/hexanol/water reverse micelles (CTAB, cetyltrimethyl ammonium bromide) were used to prepare ZrO2-Y2O3 nanoparticles. The relationship between the micelle microstructure and size, morphology, and aggregate properties of particles prepared was also investigated. It has been found that with high CTAB concentration ([CTAB] > 0.8 mol/l), the reverse micelles can solubilize a sufficient amount of aqueous solution with high metallic ion concentration ( approximately 1.0 mol/L), while the microstructure of the reverse micelles keeps unchanged. The most important factor affecting the size and shape of reverse micelles was found to be the water content w0 (w0, molar ratio of water to surfactant used). When both the CTAB concentration and the w0 values are low, the diameters of reverse micelles are below 20 nm, and the ZrO2-Y2O3 particles prepared are also very small. However, the powders obtained were found to form a lot of aggregates after drying and calcination. High CTAB concentration, high w0 value, and high metallic ion concentration in the aqueous phase for high powder productivity were found to be the suitable compositions of reverse micelles for preparing high-quality ZrO2-Y2O3 nanoparticles. Under these conditions, the reverse micelles are still spherical in shape even the reverse micellar system is nearly saturated with aqueous solutions. These reverse micelles were found to have a diameter of between 60 and 150 nm and the ZrO2-Y2O3 particles prepared therefrom range from 30 to 70 nm with spherical shape and not easy to form aggregates. Copyright 1999 Academic Press.  相似文献   

3.
Herein, we report the effect of gold nanoparticles (GNPs) in enhancing lipase activity in reverse micelles of cetyltrimethylammonium bromide (CTAB)/water/isooctane/n‐hexanol. The size and concentration of the nanoparticles were varied and their specific roles were assessed in detail. An overall enhancement of activity was observed in the GNP‐doped CTAB reverse micelles. The improvement in activity becomes more prominent with increasing concentration and size of the GNPs (0–52 μM and ca. 3–30 nm, respectively). The observed highest lipase activity (k2=1070±12 cm3 g?1 s?1) in GNP‐doped CTAB reverse micelles ([GNP]: 52 μm, ca. 20 nm) is 2.5‐fold higher than in CTAB reverse micelles without GNPs. Improvement in the lipase activity is only specific to the GNP‐doped reverse micellar media, whereas GNP deactivates and structurally deforms the enzyme in aqueous media. The reason for this activation is probably due to the formation of larger‐sized reverse micelles in which the GNP acts as a polar core and the surfactants aggregate around the nanoparticle (‘GNP pool’) instead of only water. Lipase at the augmented interface of the GNP‐doped reverse micelle showed improved activity because of enhancement in both the substrate and enzyme concentrations and increased flexibility in the lipase conformation. The extent of the activation is greater in the case of the larger‐sized GNPs. A correlation has been established between the activity of lipase and its secondary structure by using circular dichroism and FTIR spectroscopic analysis. The generalized influence of GNP is verified in the reverse micelles of another surfactant, namely, cetyltripropylammonium bromide (CTPAB). TEM, dynamic light scattering (DLS), and UV/Vis spectroscopic analysis were utilized to characterize the GNPs and the organized aggregates. For the first time, CTAB‐based reverse micelles have been found to be an excellent host for lipase simply by doping with appropriately sized GNPs.  相似文献   

4.
Micelle–water partition coefficient (Kx ) of naphtholazobenzimidazole dye (NAB) in aqueous solutions of cetyltrimethylammonium bromide (CTAB) and sodium dodecyl sulphate (SDS) has been determined spectrophotometerically. Changes in absorption patterns of dye caused by surfactants and solvents were quantified in terms of dye–surfactant ratio (n D/n S) and solvent water partition coefficients (P), respectively. Multiple residence sites have been suggested for dye molecules within micelles, based on shifts in azo-hydrazone tautomeric equilibrium. Micelle–water partition coefficients were used to evaluate the influence of dye on critical micelle concentration of CTAB and SDS. At same micelle concentration, M, the relative solubility of NAB was greater in cationic surfactant CTAB than in anionic surfactant SDS.  相似文献   

5.
The dramatic impact of differing environments on proton transfer dynamics of the photoacid HPTS prompted us to investigate these systems with two highly complementary methods: ultrafast time-resolved transient absorption and two-dimensional NMR spectroscopies. Both ultrafast time-resolved transient absorption spectroscopy and time-resolved anisotropy decays demonstrate the proton transfer dynamics depend intimately on the specific reverse micellar system. For w(0) = 10 reverse micelles formed with anionic AOT surfactant, the HPTS proton transfer dynamics are similar to dynamics in bulk aqueous solution, and the corresponding (1)H 2D NOESY NMR spectra display no cross peaks between HPTS and AOT consistent with the HPTS residing well hydrated by water in the interior of the reverse micelle water pool. In contrast, ultrafast transient absorption experiments show no evidence for HPTS photoinduced proton transfer reaction in reverse micelles formed with the cationic CTAB surfactant. In CTAB reverse micelles, clear cross peaks between HPTS and CTAB in the 2D NMR spectra show that HPTS embeds in the interface. These results indicate that the environment strongly impacts the proton transfer reaction and that complementary experimental techniques develop understanding of how location critically affects molecular responses.  相似文献   

6.
In the present study, we investigate the self-association and mixed micellization of an anionic surfactant, sodium dodecyl sulfate (SDS), and a cationic surfactant, cetyltrimethylammonium bromide (CTAB). The critical micelle concentration (CMC) of SDS, CTAB, and mixed (SDS + CTAB) surfactants was measured by electrical conductivity, dye solubilization, and surface tension measurements. The surface properties (viz., C20 (the surfactant concentration required to reduce the surface tension by 20 mN/m), ΠCMC (the surface pressure at the CMC), Γmax (maximum surface excess concentration at the air/water interface), and Amin (the minimum area per surfactant molecule at the air/water interface)) of SDS, CTAB, and (SDS + CTAB) micellar/mixed micellar systems were evaluated. The thermodynamic parameters of the micellar (SDS and CTAB), and mixed micellar (SDS + CTAB) systems were evaluated.

A schematic representation of micelles and mixed micelles.  相似文献   

7.
The effect of confinement on the dynamical properties of liquid water is investigated for water enclosed in cationic reverse micelles. The authors performed mid-infrared ultrafast pump-probe spectroscopy on the OH-stretch vibration of isotopically diluted HDO in D(2)O in cetyltrimethylammonium bromide (CTAB) reverse micelles of various sizes. The authors observe that the surfactant counterions are inhomogeneously distributed throughout the reverse micelle, and that regions of extreme salinity occur near the interfacial Stern layer. The authors find that the water molecules in the core of the micelles show similar orientational dynamics as bulk water, and that water molecules in the counterion-rich interfacial region are much less mobile. An explicit comparison is made with the dynamics of water confined in anionic sodium bis(2-ethythexyl) sulfosuccinate (AOT) reverse micelles. The authors find that interfacial water in cationic CTAB reverse micelles has a higher orientational mobility than water in anionic AOT reverse micelles.  相似文献   

8.
The formation of mixed micelles of amphiphilic calix[4]resorcinarenes with aminomethyl (AMC, PAMC), tris(hydroxymethyl)amide (THAC) fragments and the cationic surfactant cetyl trimethylammonium bromide (CTAB) in water and aqueous DMF solutions (10-50% DMF) leads to the decrease of the critical micelle concentration of the systems and the increase of the size of the mixed micelles in comparison with CTAB micelles. The catalytic activity of the mixed systems in the hydrolysis of phosphorus acid esters is higher than those of CTAB micelle and AMC, PAMC or THAC aggregates.  相似文献   

9.
In this study, the interaction of valsartan (VAL), an angiotensin II receptor antagonist, with cationic surfactant cetyltrimethylammonium bromide (CTAB) was investigated. The effect of cationic micelles on spectroscopic and acid-base properties of VAL was carried out using UV spectrophotometry at physiological conditions (pH 7.4). The binding of VAL to CTAB micelles implied a shift in drug acidity constant (pK(a)(water)-pK(a)(micelle)=1.69) proving the great affinity of VAL dianion for the positively charged CTAB micelle surface. To quantify the degree of VAL/CTAB interaction, two constants were calculated by using mathematical models: micelle/water partition coefficient (K(x)) and drug/micelle binding constant (K(b)). The decrease of K(x) with VAL concentration, obtained by using pseudo-phase model, is consistent with an adsorption-like phenomenon. From the dependence of differential absorbance at lambda=295 nm on CTAB concentration, by using mathematical model that treats the solubilization of VAL dianion as its binding to specific sites in the micelles (Langmuir adsorption isotherm), the binding constant (K(b)=(2.50+/-0.49)x10(4)M(-1)) was obtained. Binding constant VAL/CTAB was also calculated using micellar liquid chromatography (MLC).  相似文献   

10.
Electron spin resonance spectroscopy (ESR) of the nitroxide labelled fatty acid probes (5-, 16-doxyl stearic acid) was used to monitor the micelle microviscosity of three surfactants at various concentrations in aqueous solution: sodium dodecyl sulphate (SDS), dodecyltrimethylammonium bromide (DTAB) and cetyltrimethylammonium bromide (CTAB). At low surfactant concentration, there is no micelle, the ESR probe is dissolved in water/surfactant homogeneous phase and gives his microviscosity. At higher surfactant concentration, an abrupt increase in microviscosity indicates the apparition of micelles and, the solubilization of the probes in micelles. The microviscosity of the three surfactants, in a large surfactant range, was obtained as well as the critical micelle concentration (CMC). The microviscosity increased slightly with the increase in surfactant concentration. Phosphate buffer lowered the CMC value and generally increased the microviscosity.  相似文献   

11.
Micellar-catalyzed alkaline hydrolysis of 2,4-dinitrochlorobenzene (DNCB) in the presence of a conventional cationic surfactant CTAB or a cationic gemini surfactant 1,2-ethane bis(dimethyldodecylammonium bromide) (12-2-12) were studied spectrophotometrically at 25 °C. It was found that both CTAB and 12-2-12 micelles accelerated the alkaline hydrolysis of DNCB, and the binding constant of the substrate to the micelle, KS, for 12-2-12 (KS = 310 M−1) was larger than that for CTAB (85 M−1), which suggested that DNCB molecules bound with gemini micelles more easily than with CTAB. However, the second-order rate constant in micellar pseudophase (kM = 1.22 × 10−3 s−1) for 12-2-12 was lower than kM for CTAB (4.01 × 10−3 s−1) because the substrate may enter the interior of the 12-2-12 micelles. It was found also that 12-2-12 had a similar catalysis mechanism to CTAB when the concentration of 12-2-12 was relatively low (ca. <5 mM). However, above this concentration, higher microviscosity and significant increases in aggregation number and micelle size with increased surfactant concentration may remarkably influence the hydrolysis reaction.  相似文献   

12.
We have compared micelles, reverse micelles, and reverse micelles encapsulating myoglobin using electrospray mass spectrometry. To enable a direct comparison, the same surfactant (cetyltrimethylammonium bromide (CTAB)) was used in each case and micelle formation was controlled by manipulating the aqueous and organic phases. Tandem mass spectra of the resulting micelle preparations reveal differences in the ions that dissociate: those that dissociate from regular micelles have undergone >90% exchange of bromide ions from the headgroup with acetate ions from bulk solvent. By contrast, for reverse micelles, ions are detected without exchange of bromide ions from the headgroup, consistent with their protection in the core of the micellar structure. Tandem mass spectra of micelles and reverse micelles reveal polydispersed assemblies containing several hundred CTAB molecules, indicating the coalescence of the micellar systems to form large assemblies. For reverse micelles incorporating myoglobin, spectra are consistent with one holo myogolobin molecule in association with approximately 270 CTAB molecules. Overall, therefore, our results show that the solution-phase orientation of surfactants is preserved during electrospray and are consistent with interactions being maintained between surfactants and an encapsulated protein.  相似文献   

13.
Micelles of different surfactants are well known to affect chemical equilibria and reactivities by selectively sequestering the reagent substrates through electrostatic and hydrophobic interactions. In this article, the effects of micelles of various surfactants on different parameters of the Ce(IV)‐catalyzed Belousov–Zhabotinsky (BZ) oscillatory reaction at 35°C in nonstirred closed conditions are studied by employing spectrophotometry and tensiometry. Surfactants used in this study are the cationics hexadecyltrimethylammonium bromide (CTAB) and pentamethylene‐1,5‐bis(N‐hexadecyl‐N,N‐dimethylammonium)bromide gemini (Gemini), anionic sodium dodecylbenzene sulfonate (SDBS), and nonionic Brij58, whereas the binary surfactant systems used are cationic–nonionic CTAB+Brij58 and anionic–nonionic SDBS+Brij58. The results revealed that the induction period shows a definite variation with increasing concentration of different surfactants above their critical micelle concentration (cmc). The amplitudes of oscillation and absorbance maxima and minima are enhanced in the presence of micelles of CTAB and Gemini surfactants, whereas micelles of SDBS and Brij58 have almost no effect on the nature of the oscillations. However, mixed micelles of CTAB+Brij58 and SDBS+Brij58 binary mixtures show a quite different effect on the overall behavior of the oscillations. The enhanced effect of CTAB and Gemini surfactants on the overall nature of oscillations has been attributed to the positive charge on the surface of their micelles and to some extent on the presence of nitrogen in their head group. The effect of mixed binary micelles may be attributed to their synergistic nature. © 2010 Wiley Periodicals, Inc. Int J Chem Kinet 42: 659–668, 2010  相似文献   

14.
In a titration calorimetric study an aqueous solution held in a syringe and containing hexadecyltrimethylammonium bromide (CTAB; 15.4×10–3 mol dm–3) is injected in aliquots (5×l0–3 dm3) into a sample cell containing initially water. Analysis of the data shows that thecmc equals 0.97×l0–3 dm–3 and the enthalpy of micelle formation equals –10.3 kJ mol–1. When the solution in the syringe is replaced by a mixed surfactant solution, CTAB+dodecyltrimethylammonium bromide, at the same total concentration of surfactant, thecmc of CTAB decreases gradually with increasing mole fraction of DOTAB but the enthalpy of CTAB micelle formation is hardly affected. We conclude, therefore, that incorporation of DOTAB monomers into the CTAB micelles stabilizes entropically the CTAB micelles.We thank EPSRC for their support; the Commonwealth Scholarship Commission for an award to MCSS and the Royal Society for a grant awarded to PMC for the purchase of the Titration Microcalorimeter.  相似文献   

15.
The critical micelle concentration (CMC) of cetyl trimethylammonium bromide (CTAB) in both water and ethanol-water-mixed solvent was determined using steady-state fluorescence techniques in order to investigate the effect of the self-assembling properties of the surfactant on the template synthesis of porous inorganic materials. Results indicated that the CMC increased with the increase of ethanol concentration in the mixed solvent. The CMC of CTAB is 0.0009 mol/L in water, while it is 0.24 mol/L in ethanol. Furthermore, the dissipative particle dynamics (DPD) was adopted to simulate the aggregation of CTAB in water and ethanol/water mixtures, and the energy difference was calculated for the surfactant tail groups after mixing with the solvent. The simulation results reflected a regularity similar to the experimental data, i.e., tail groups of CTAB interacted more strongly with ethanol than with groups of CTAB interacted more strongly with ethanol than with water, which elucidates the reason that the micelle is difficult to form in ethanol. __________ Translated from Journal of Tianjin University, 2006, 39(1) (in Chinese)  相似文献   

16.
Kinetics of the oxidation of citric acid (CA) by N-bromophthalimide (NBP) has been studied in the presence of cationic surfactant cetyltrimethylammonium bromide (CTAB) at 35°C. The CMC value is lower than those given in the literature for aqueous solutions of CTAB without added electrolyte. The reaction is strongly catalyzed by cationic micelle, CTAB with a progressive increase in CTAB concentration the reaction rate increased, at higher concentration constancy in the rate constant was observed. The reaction follows first and fractional order kinetics in NBP and citric acid, respectively. The reaction follows inverse fractional order with respect to perchloric acid. The Arrhenius equation is found to be valid for the reaction. A detailed mechanism with the associated reaction kinetics is discussed. The catalytic role of CTAB micelles is discussed in terms of the Menger and Portnoy model.  相似文献   

17.
The interaction of Procaine hydrochloride (PC) with cationic, anionic and non-ionic surfactants; cetyltrimethylammonium bromide (CTAB), sodium dodecyl sulfate (SDS) and triton X-100, were investigated. The effect of ionic and non-ionic micelles on solubilization of Procaine in aqueous micellar solution of SDS, CTAB and triton X-100 were studied at pH 6.8 and 29°C using absorption spectrophotometry. By using pseudo-phase model, the partition coefficient between the bulk water and micelles, Kx, was calculated. The results showed that the micelles of CTAB enhanced the solubility of Procaine higher than SDS micelles (Kx = 96 and 166 for SDS and CTAB micelles, respectively) but triton X-100 did not enhanced the solubility of drug because of weak interaction with Procaine. From the resulting binding constant for Procaine-ionic surfactants interactions (Kb = 175 and 128 for SDS and CTAB surfactants, respectively), it was concluded that both electrostatic and hydrophobic interactions affect the interaction of surfactants with cationic procaine. Electrostatic interactions have a great role in the binding and consequently distribution of Procaine in micelle/water phases. These interactions for anionic surfactant (SDS) are higher than for cationic surfactant (CTAB). Gibbs free energy of binding and distribution of procaine between the bulk water and studied surfactant micelles were calculated.   相似文献   

18.
This work demonstrates a remarkable enhancement in the peroxidase activity of mitochondrial membrane protein cytochrome c (cyt c) by perturbing its tertiary structure in the presence of surface‐functionalised gold nanoparticles (GNPs) within cetyltrimethylammonium bromide (CTAB) reverse micelles. The loss in the tertiary structure of cyt c exposes its heme moiety (which is buried inside in the native globular form), which provides greater substrate (pyrogallol and H2O2) accessibility to the reactive heme residue. The surfactant shell of the CTAB reverse micelle in the presence of co‐surfactant (n‐hexanol) exerted higher crowding effects on the interfacially bound cyt c than similar anionic systems. The congested interface led to protein unfolding, which resulted in a 56‐fold higher peroxidase activity of cyt c than that in water. Further perturbation in the protein’s structure was achieved by doping amphiphile‐capped GNPs with varying hydrophobicities in the water pool of the reverse micelles. The hydrophobic moiety on the surface of the GNPs was directed towards the interfacial region, which induced major steric strain at the interface. Consequently, interaction of the protein with the hydrophobic domain of the amphiphile further disrupted its tertiary structure, which led to better opening up of the heme residue and, thereby, superior activity of the cyt c. The cyt c activity in the reverse micelles proportionately enhanced with an increase in the hydrophobicity of the GNP‐capping amphiphiles. A rigid cholesterol moiety as the hydrophobic end group of the GNP strikingly improved the cyt c activity by up to 200‐fold relative to that found in aqueous buffer. Fluorescence studies with both a tryptophan residue (Trp59) of the native protein and the sodium salt of fluorescein delineated the crucial role of the hydrophobicity of the GNP‐capping amphiphiles in improving the peroxidase activity of cyt c by unfolding its tertiary structure within the reverse micelles.  相似文献   

19.
The mechanism of micelle formation of surfactants sodium dodecyl sulfate (SDS), n-hexyldecyltrimethylammonium bromide (CTAB) and Triton X-100 (TX-100) in heavy water solutions was studied by 1H NMR (chemical shift and line shape) and NMR self-diffusion experiments. 1H NMR and self-diffusion experiments of these three surfactants show that their chemical shifts (delta) begin to change and resonance peaks begins to broaden with the increase in concentration significantly below their critical micelle concentrations (cmc's). At the same time, self-diffusion coefficients ( D) of the surfactant molecules decrease simultaneously as their concentrations increase. These indicate that when the concentrations are near and lower than their cmc's, there are oligomers (premicelles) formed in these three surfactant systems. Carefully examining the dependence of chemical shift and self-diffusion coefficient on concentration in the region just slightly above their cmc's, one finds that the pseudophase transition model is not applicable to the variation of physical properties (chemical shift and self-diffusion coefficient) with concentration of these systems. This indicates that premicelles still exist in this concentration region along with the formation of micelles. The curved dependence of chemical shift and self-diffusion coefficient on the increase in concentration suggests that the premicelles grow as the concentration increases until a definite value when the size of the premicelle reaches that of the micelle, i.e., the system is likely dominated by the monomers and micelles. Additionally, the approximate values of premicelle coming forth concentration (pmc) and cmc were obtained by again fitting chemical shifts to reciprocals of concentrations at a different perspective, and are in good accordant with experimental results and literature values and prove the former conclusion.  相似文献   

20.
The alkaline hydrolysis of dimethylformamide has been studied at 40'C in micellar solutions of single surfactant (CTAB. SDS. Brij 35) with the analog thermoanalytical curve method of thermokinetics. A kinetic equation of micellar catalysis under the condition of highter reactant concentration than micellar concentration ([S]>[M]) has been derived from the pseudophase model of micellar catalysis and some relative assumptions, The kinetic parameters. km, k2mand the association constant of reactant with micelle K1, have been calculated in this way. the results indicate that these surfactant micelles exhibit catalytic effect on the reaction. This is attributed to the micropolarity and local concentration effect of micelles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号