首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The dithiophosphinic acid HS(2)P(o-CF(3)C(6)H(4))(2) is known to exhibit exceptionally high extraction selectivities for trivalent minor actinides (Am and Cm) in the presence of trivalent lanthanides. To generate insight that may account for this observation, a series of [PPh(4)][S(2)PR(2)] complexes, where R = Me (1), Ph (2), p-CF(3)C(6)H(4) (3), m-CF(3)C(6)H(4) (4), o-CF(3)C(6)H(4) (5), o-MeC(6)H(4) (6), and o-MeOC(6)H(4) (7), have been investigated using sulfur K-edge X-ray absorption spectroscopy (XAS) and time-dependent density functional theory (TDDFT). The experimental analyses show distinct features in the spectrum of S(2)P(o-CF(3)C(6)H(4))(2)(-) (5) that are not present in the spectrum of 4, whose conjugate acid exhibits reduced selectivity, or in the spectra of 2 and 3, which are anticipated to have even lower separation factors based on previous studies. In contrast, the spectrum of 5 is similar to those of 6 and 7, despite the significantly different electron-donating properties associated with the o-CF(3), o-Me, and o-OMe substituents. The TDDFT calculations suggest that the distinct spectral features of 5-7 result from steric interactions due to the presence of the ortho substituents, which force the aryl groups to rotate around the P-C bonds and reduce the molecular symmetry from approximately C(2v) in 2-4 to C(2) in 5-7. As a consequence, the change in aryl group orientation appears to make the ortho-substituted S(2)PR(2)(-) anions "softer" extractants compared with analogous Ph-, p-CF(3)C(6)H(4)-, and m-CF(3)C(6)H(4)-containing ligands (2-4) by raising the energies of the sulfur valence orbitals and enhancing orbital mixing between the S(2)P molecular orbitals and the aryl groups bound to phosphorus. Overall, we report that sulfur K-edge XAS experiments and TDDFT calculations reveal unique electronic properties of the S(2)P(o-CF(3)C(6)H(4))(2)(-) anion in 5. These results correlate with the special extraction properties associated with HS(2)P(o-CF(3)C(6)H(4))(2), and suggest that ligand K-edge XAS and TDDFT can be used to guide separation efforts relevant to advanced fuel cycle development.  相似文献   

2.
Synthetic routes to alkyl and aryl substituted dithiophosphinate salts that contain non-coordinating PPh(4)(+) counter cations are reported. In general, these compounds can be prepared via a multi-step procedure that starts with reacting secondary phosphines, i.e. HPR(2), with two equivalents of elemental S. The synthetic transformation proceeds by oxidation of the phosphine followed by insertion of S into the H-P bond. This approach was used to synthesize a series of dithiophosphinic acids that were fully characterized, namely HS(2)P(p-CF(3)C(6)H(4))(2), HS(2)P(m-CF(3)C(6)H(4))(2), HS(2)P(o-MeC(6)H(4))(2) and HS(2)P(o-MeOC(6)H(4))(2). Although the insertion step was found to be much slower than the oxidation reaction, the formation of (NH(4))S(2)PR(2) from HPSR(2) occurred rapidly upon addition of NH(4)OH. Subsequent cation exchange reactions proceeded readily with PPh(4)Cl in water, under air and at ambient conditions to provide analytically pure samples of [PPh(4)][S(2)PR(2)] (R = p-CF(3)C(6)H(4), m-CF(3)C(6)H(4), o-CF(3)C(6)H(4), o-MeC(6)H(4), o-MeOC(6)H(4), Ph, and Me, 1b-7b, respectively), which were characterized by elemental analysis, multinuclear NMR, and IR spectroscopy. In addition, S(2)PPh(2)(-) and dithiophosphinates with ortho-substituted aryl groups (3b-6b) were characterized by X-ray crystallography. As opposed to the acids, which have short P=S double bonds and long P-SH single bonds, the metric parameters for the S atoms in S(2)PR(2)(-) are equivalent. In addition, the presence of large non-coordinating PPh(4)(+) cations guard against intermolecular P-S···X interactions and ensure that the P-S bond is isolated. These S(2)PR(2)(-) anions, which can be prepared in large quantities and isolated in crystalline form, are attractive for spectroscopic and theoretical studies because the P-S interaction can be probed independently in the absence of intermolecular interactions.  相似文献   

3.
A dynamic 1H NMR study has been carried out on the fluxional motion of the symmetric chelating ligand 2,9-dimethyl-1,10-phenanthroline (Me2-phen) between nonequivalent exchanging sites in a variety of square-planar complexes of the type [Pt(Me)(Me2-phen)(PR3)]BArf, 1-14, (BArf = B[3,5-(CF3)2C6H3]4). In these compounds, the P-donor ligands PR3 encompass a wide range of steric and electronic characteristics [PR3 = P(4-XC6H4)3, X = H 1, F, 2, Cl 3, CF3 4, MeO 5, Me 6; PR3 = PMe(C6H5)2 7, PMe2(C6H5) 8, PMe3 9, PEt3 10, P(i-Pr)3 11, PCy(C6H5)2 12, PCy2(C6H5) 13, PCy3 14]. All complexes have been synthesized and fully characterized through elemental analysis, 1H and 31P{1H} NMR. X-ray crystal structures are reported for the compounds 8, 11, 14, and for [Pt(Me)(phen)(P(C6H5)3)]PF6 (15), all but the last showing loss of planarity and a significant rotation of the Me2-phen moiety around the N1-N2 vector. Steric congestion brought about by the P-donor ligands is responsible for tetrahedral distortion of the coordination plane and significant lengthening of the Pt-N2 (cis to phosphane) bond distances. Application of standard quantitative analysis of ligand effects (QALE) methodology enabled a quantitative separation of steric and electronic contributions of P-donor ligands to the values of the platinum-phosphorus 1J(PtP) coupling constants and of the free activation energies DeltaG++ of the fluxional motion of Me2-phen in 1-14. The steric profiles for both 1J(PtP) and DeltaG++ show the onset of steric thresholds (at cone angle values of 150 degrees and 148 degrees , respectively), that are associated with an overload of steric congestion already evidenced by the crystal structures of 11 and 14. The sharp increase of the fluxional rate of Me2-phen can be assumed as a perceptive kinetic tool for revealing ground-state destabilization produced by the P-donor ligands. The mechanism involves initial breaking of a metal-nitrogen bond, fast interconversion between two 14-electron three-coordinate T-shaped intermediates containing eta1-coordinated Me2-phen, and final ring closure. By use of the results from QALE regression analysis, a free-energy surface has been constructed that represents the way in which any single P-donor ligand can affect the energy of the transition state in the absence of aryl or pi-acidity effects.  相似文献   

4.
[PPh4]2[M(C2N2S2)2](M = Pt, Pd) and [Pt(C2N2S2)(PR3)2](PR3= PMe2Ph, PPh3) and [Pt(C2N2S2)(PP)](PP = dppe, dppm, dppf) were all obtained by the reaction of the appropriate metal halide containing complex with potassium cyanodithioimidocarbonate. The dimeric cyanodithioimidocarbonate complexes [[Pt(C2N2S2)(PR3)]2](PR3 = PMe2Ph), [M[(C2N2S2)(eta5-C5Me5)]2](M = Rh, Ir)and [[Ru(C2N2S2)(eta6-p-MeC6H4iPr)]2] have been synthesised from the appropriate transition metal dimer starting material. The cyanodithioimidocarbonate ligand is S,S and bidentate in the monomeric complexes with the terminal CN group being approximately coplanar with the CS2 group and trigonal at nitrogen thus reducing the planar symmetry of the ligand. In the dimeric compound one of the sulfur atoms bridges two metal atoms with the core exhibiting a cubane-like geometry.  相似文献   

5.
Blair S  Izod K  Clegg W 《Inorganic chemistry》2002,41(15):3886-3893
The secondary phosphine R(Me(2)NCH(2)-2-C(6)H(4))PH reacts with Bu(2)Mg to give the homoleptic complex Mg[PR(C(6)H(4)-2-CH(2)NMe(2))](2) (1) [R = CH(SiMe(3))(2)]. The analogous heavier alkaline earth metal complexes (THF)(n)Ae[PR(C(6)H(4)-2-CH(2)NMe(2))](2) [Ae = Ca (2), n = 0; Ae = Sr (3), Ba (4), n = 1] have been synthesized by metathesis reactions between K[PR(C(6)H(4)-2-CH(2)NMe(2))] and 0.5 equiv of the respective alkaline earth metal diiodide. Compounds 1-4 have been characterized by X-ray crystallography and multielement NMR spectroscopy. In the solid state, compounds 1-4 are monomeric, complexes 1 and 2 adopting a distorted tetrahedral geometry and complexes 3 and 4 adopting a distorted square pyramidal geometry (1: orthorhombic, P2(1)2(1)2(1), a = 11.413(3) A, b = 12.072(3) A, c = 32.620(11) A, Z = 4. 2: monoclinic, P2(1)/c, a = 9.5550(4) A, b = 17.4560(7) A, c = 24.5782(10) A, beta = 91.673(2) degrees, Z = 4. 3: monoclinic, C2/c, a = 15.0498(9) A, b = 13.0180(8) A, c = 24.3664(14) A, beta = 104.593(2) degrees, Z = 4. 4: monoclinic, C2/c, a = 15.2930(10) A, b = 13.0326(9) A, c = 24.6491(17) A, beta = 105.542(2) degrees, Z = 4). In toluene solution, compounds 2-4 are subject to dynamic processes which are attributed to a monomer-dimer equilibrium for which bridge-terminal exchange of the phosphanide ligands in the dimer may be frozen out at low temperatures.  相似文献   

6.
Benzene is reacted with titanium, zirconium, and hafnium metal atoms, which are produced by laser-ablation. The M(C(6)H(6)), M(C(6)H(6))(2), and M(2)(C(6)H(6))(3) complexes are formed, isolated in solid argon, and identified by infrared spectroscopy using isotopic substitution of the benzene precursor. Density functional theory (DFT) calculations are used to confirm molecular assignments. Based on computed energies and the observed vibrational spectra and isotopic shifts, electronic ground states and geometries are predicted. Observed splitting of formerly degenerate modes provides the first experimental evidence for deformation of the planar carbon skeleton of benzene upon complexation with early transition metal atoms.  相似文献   

7.
利用密度泛函方法在B3LYP/6-31G(d)水平上对1,2-C2B10H12的两种异腈类衍生物的结构特性进行了研究. 结果表明, 1,2-C2B10H11NC的活性较强; 1,2-C2B10H11NC和1,2-C2B10H11CH2NC可以通过结构中的C4原子与过渡金属原子成键而形成碳硼烷异腈金属配合物. 1,2-C2B10H11NC和1,2-C2B10H11CH2NC的分子极性均比1,2-C2B10H12的弱, 这不利于它们在硼中子捕获疗法中的应用.  相似文献   

8.
The compounds [(M@18c6)2][TlI4].2H2O, M=Tl, (NH4,NH3), (H3O,H2O) (cubic, Fd; a=1481.00 pm, for M=0.5 Tl, a=1304.65 pm for M=(NH4,NH3), a=1313.67 pm for M=(H3O,H2O)) can be obtained from solution in the presence of traces of transition metal halides (like copper and mercury halides). Apparently the transition metal cations work as a template in the form of tetrahedral [MX4] units during the synthesis of the supramolecular host architecture. That the compounds are versatile host lattices for tetrahedrally coordinated transition metal units becomes obvious by the large group of known host-guest complex compounds, [(MIIX4)(MI@18c6)4][TlX4]2.nH2O (MII=Cu, Co, Zn, Mn; MI=NH4+, Rb, Tl; X=Cl, Br).  相似文献   

9.
The thioether-functionalized metalloligand ferrocenyl-bis(phosphonite), Fe(C5H4PR)2 (4, R=-OC10H6(micro-S)C10H6O-) is synthesized in three steps starting from ferrocene, and its coordination behavior toward various transition-metal derivatives is described. The reactions of 4 with [Rh(CO)2Cl]2 or M(COD)Cl2 afforded the chelate complexes, cis-[Rh(CO)Cl{Fe(C5H4PR)2-kappaP,kappaP}] (5) or cis-[MCl2{Fe(C5H4PR)2-kappaP,kappaP}] (6, M=PdII; 7, M=PtII), respectively. However, treatment of 4 with CuX (X=Cl, Br, and I) produces binuclear complexes, [Cu2(micro-X)2(MeCN){Fe(C5H4PR)2-kappaP,kappaP}] (8, X=Cl; 9, X=Br; 10, X=I) where the sulfur atom on one side of the ligand is involved in a weak interaction with the copper center. Reaction of 4 with 1 equiv of Ag(PPh3)OTf gives the mononuclear chelate complex [Ag(OTf)PPh3{Fe(C5H4PR)2-kappaP,kappaP}] (11), whereas treatment with 2 equiv of AuCl(SMe2) produces the dinuclear gold complex [Au(Cl){Fe(C5H4PR)2-kappaP,kappaP}Au(Cl)] (12). The crystal structures of 10 and 12 are reported, where a strong metallophilic interaction is observed between the closed-shell metal centers. The palladium complex 6 catalyzes the Suzuki cross-coupling reactions of aryl bromides with phenylboronic acid with excellent turnover numbers (TON up to 1.36x10(5)).  相似文献   

10.
Reactions of laser-ablated Th and U atoms with C(2)H(2) during condensation with excess argon at 7 K give several new product species. The metallacyclopropene, inserted hydride, and actinide ethynyl are identified from isotopic frequencies and relativistic DFT calculations. The higher-energy vinylidine isomer was not observed. These actinide metallacyclopropenes exhibit substantially stronger bonding interactions than found recently for the Pd and Pt metals. In the case of Th(C(2)H(2)) the argon matrix interaction is strong enough to reverse the computed order of states (MR-CISD) in favor of a triplet ground state for the (Ar)(n)(Th(C(2)H(2))) complex. The nature of the electronic interactions between various metal atoms and acetylene is compared and the origin of the particularly strong interaction for U and Th is traced to the higher energy of their 6d orbitals. The ThCCH and UCCH actinide ethynyl products are also observed and characterized by C[triple bond]C stretching modes 38+/-2 cm(-1) lower than acetylene itself.  相似文献   

11.
Reaction of two equivalents of [(C(5)Me(4)Et)(2)U(CH(3))(Cl)] (6) or [(C(5)Me(5))(2)Th(CH(3))(Br)] (7) with 1,4-dicyanobenzene leads to the formation of the novel 1,4-phenylenediketimide-bridged bimetallic organoactinide complexes [{(C(5)Me(4)Et)(2)(Cl)U}(2)(mu-{N==C(CH(3))-C(6)H(4)-(CH(3))C==N})] (8) and [{(C(5)Me(5))(2)(Br)Th}(2)(mu-{N==C(CH(3))-C(6)H(4)- (CH(3))C==N})] (9), respectively. These complexes were structurally characterized by single-crystal X-ray diffraction and NMR spectroscopy. Metal-metal interactions in these isovalent bimetallic systems were assessed by means of cyclic voltammetry, UV-visible/NIR absorption spectroscopy, and variable-temperature magnetic susceptibility. Although evidence for magnetic coupling between metal centers in the bimetallic U(IV)/U(IV) (5f(2)-5f(2)) complex is ambiguous, the complex displays appreciable electronic communication between the metal centers through the pi system of the dianionic diketimide bridging ligand, as judged by voltammetry. The transition intensities of the f-f bands for the bimetallic U(IV)/U(IV) system decrease substantially compared to the related monometallic ketimide chloride complex, [(C(5)Me(5))(2)U(Cl){-N==C(CH(3))-(3,4,5-F(3)-C(6)H(2))}] (11). Also reported herein are new synthetic routes to the actinide starting materials [(C(5)Me(4)Et)(2)U(CH(3))(Cl)] (6) and [(C(5)Me(5))(2)Th(CH(3))(Br)] (7) in addition to the syntheses and structures of the monometallic uranium complexes [(C(5)Me(4)Et)(2)UCl(2)] (3), [(C(5)Me(4)Et)(2)U(CH(3))(2)] (4), [(C(5)Me(4)Et)(2)U{-N==C(CH(3))-C(6)H(4)-C==N}(2)] (10), and 11.  相似文献   

12.
Treatment of the tetranuclear gold cluster [Au4((PPh2)2C2B9H10)2(AsPh3)2] (1), which contains the nido-carborane-diphosphine [7,8-(PPh2)2C2B9H10]-, with various tertiary phosphines leads to derivatives [Au4((PPh2)2C2B9H10)2-(PR3)2] (PR3 = PPh3 (2), P(4-MeC6H4)3 (3), P(4-OMeC6H4)3 (4)). The X-ray crystal structure of complex 4 shows a tetrahedral framework of gold atoms, two of which are chelated by the diphosphine, and two are coordinated to one monophosphine ligand each. These compounds are very stable and are obtained in high yield. MP2 calculations suggest that the two types of chemically nonequivalent gold atoms can be formally assigned as Au(I) (those attached to the arsines or phosphines) and Au(0) (those bonded to the anionic diphosphine) and emphasize the role of correlation in the gold-gold interactions. The compounds are luminescent. The emission is assigned to a gold-centered spin-forbidden transition; the assignment of the oxidation state of the gold centers on this basis leads to results coincident with those obtained by theoretical calculations.  相似文献   

13.
The syntheses, structures, and magnetic properties are reported of the mixed-metal complexes [Ce4Mn10O10(OMe)6(O2CPh)16(NO3)2(MeOH)2(H2O)2] (1) and [Th6Mn10O22(OH)2(O2CPh)16-(NO3)2(H2O)8] (2), which were both prepared by the reaction of (NBun4)[Mn4O2(O2CPh)9(H2O)] (3) with a source of the heterometal in MeCN/MeOH. Complexes 1 and 2 crystallize in the monoclinic space group C2/c and the triclinic space group P, respectively. Complex 1 consists of 10 MnIII, 2 CeIII, and 2 CeIV atoms and possesses a very unusual tubular [Ce4Mn10O10(OMe)6]18+ core. Complex 2 consists of 10 MnIV and 6 ThIV atoms and possesses a [Th6Mn10O22(OH)2]18+ core with the metal atoms arranged in layers with a 2:3:6:3:2 pattern. Peripheral ligation around the cores is provided by 16 bridging benzoates, 2 chelating nitrates, and either (i) 2 each of terminal H2O and MeOH groups in 1 or (ii) 8 terminal H2O groups in 2. Complex 1 is the largest mixed-metal Ce/Mn cluster and the first 3d/4f cluster with mixed-valency in its lanthanide component, while complex 2 is the first Th/Mn cluster and the largest mixed transition metal/actinide cluster to date. Solid-state dc and ac magnetic susceptibility measurements on 1 and 2 establish that they possess S = 4 and 3 ground states, respectively. Ac susceptibility studies on 1 revealed nonzero frequency-dependent out-of-phase (chiM' ') signals at temperatures below 3 K; complex 2 displays no chiM' ' signals. However, single-crystal magnetization vs dc field scans at variable temperatures and variable sweep-rates down to 0.04 K on 1 revealed no noticeable hysteresis loops, except very minor ones at 0.04 K assignable to weak intermolecular interactions propagated by hydrogen bonds involving CeIII-bound ligands. Complex 1 is thus concluded not to be a single-molecule magnet (SMM), and the combined results thus represent a caveat against taking such ac signals as sufficient proof of a SMM.  相似文献   

14.
This report describes routes to iron dithiolato carbonyls that do not require preformed iron carbonyls. The reaction of FeCl 2, Zn, and Q 2S 2C n H 2 n (Q (+) = Na (+), Et 3NH (+)) under an atmosphere of CO affords Fe 2(S 2C n H 2 n )(CO) 6 ( n = 2, 3) in yields >70%. The method was employed to prepare Fe 2(S 2C 2H 4)( (13)CO) 6. Treatment of these carbonylated mixtures with tertiary phosphines, instead of Zn, gave the ferrous species Fe 3(S 2C 3H 6) 3(CO) 4(PR 3) 2, for R = Et, Bu, and Ph. Like the related complex Fe 3(SPh) 6(CO) 6, these compounds consist of a linear arrangement of three conjoined face-shared octahedral centers. Omitting the phosphine but with an excess of dithiolate, we obtained the related mixed-valence triiron species [Fe 3(S 2C n H 2 n ) 4(CO) 4] (-). The highly reducing all-ferrous species [Fe 3(S 2C n H 2 n ) 4(CO) 4] (2-) is implicated as an intermediate in this transformation. Reactive forms of iron, prepared by the method of Rieke, also combined with dithiols under a CO atmosphere to give Fe 2(S 2C n H 2 n )(CO) 6 in modest yields under mild conditions. Studies on the order of addition indicate that ferrous thiolates are formed prior to the onset of carbonylation. Crystallographic characterization demonstrated that the complexes Fe 3(S 2C 3H 6) 3(CO) 4(PEt 3) 2 and PBnPh 3[Fe 3(S 2C 3H 6) 4(CO) 4] feature high-spin ferrous and low-spin ferric as the central metal, respectively.  相似文献   

15.
The wavenumbers of the ν(3) metal-hydrogen stretching mode (T(1u)) in the IR spectra of both ternary and quaternary hexahydrido salts of transition metals from groups 7 to 10 ([Mn(I)H(6)](5-), [Fe(II)H(6)](4-), [Ru(II)H(6)](4-), [Os(II)H(6)](4-), [Ir(III)H(6)](3-), and [Pt(IV)H(6)](2-)) depend linearly upon the ionization energies of the counterions (alkali metal, alkaline earth, and lanthanide) with a separate line for each metal. This relationship provides quantitative support for the charge-transfer mechanism for explaining the stabilities of these compounds.  相似文献   

16.
A substituted 2,6-bis(pyrazol-3-yl)pyridine (3-bpp) ligand, H(4) L, created to facilitate intermolecular interactions in the solid, has been used to obtain four novel Fe(II) complexes: [Fe(H(4) L)(2) ](ClO(4) )(2) ?2?CH(3) NO(2) ?2?H(2) O, [Fe(H(4) L)(H(2) LBF(2) )](BF(4) )?5?C(3) H(6) O (H(2) LBF(2) is an in situ modified version of H(4) L), [Fe(H(4) L)(2) ](ClO(4) )(2) ?2?C(3) H(7) OH and [Fe(H(4) L)(2) ](ClO(4) )(2) ?4?C(2) H(5) OH. Changing of spin-inactive components (solvents, anions or distant ligand substituents) causes differences to the coordination geometry of the metal that are key to the magnetic proper- ties. Magnetic measurements show that, contrary to the previously published complex [Fe(H(4) L)(2) ](ClO(4) )(2) ?H(2) O?2?CH(3) COCH(3) , the newly synthesised compounds remain in the high-spin (HS) state at all temperatures (5-300?K). A member of the known family of Fe(II) /3-bpp complexes, [Fe(3-bpp)(2) ](ClO(4) )(2) ?1.75?CH(3) COCH(3) ?1.5?Et(2) O, has also been prepared and characterised structurally. In the bulk, this compound exhibits a gradual and incomplete spin transition near 205?K. The single-crystal structure is consistent with it being HS at 250?K and partially low spin at 90?K. Structural analysis of all these compounds reveals that the exact configuration of intermolecular interactions affects dramatically the local geometry at the metal, which ultimately has a strong influence on the magnetic properties. Along this line, the geometry of Fe(II) in all published 3-bpp compounds of known structure has been examined, both by calculating various distortion indices (Σ, Θ, θ and Φ) and by continuous shape measures (CShMs). The results reveal correlations between some of these parameters and indicate that the distortions from octahedral geometry observed on HS systems are mainly due to strains arising from intermolecular interactions. As previously suggested with other related compounds, we observe here that strongly HS-distorted systems have a larger tendency to remain in that state.  相似文献   

17.
The geometric and electronic structures of the title complexes have been studied using scalar relativistic, gradient-corrected density functional theory. Extension of our previous work on six-coordinate M[N(EPH 2) 2] 3 (M = La, Ce, U, Pu; E = O, S, Se, Te), models for the experimentally characterized M[N(EP (i)Pr 2) 2] 3, yields converged geometries for all of the other 4f and 5f metals studied and for all four group 16 elements. By contrast, converged geometries for nine-coordinate M[N(EPPh 2) 2] 3 are obtained only for E = S and Se. Comparison of the electronic structures of six- and nine-coordinate M[N(EPH 2) 2] 3 suggests that coordination of the N atoms produces only minor changes in the metal-chalcogen interactions. Six-coordinate Eu[N(EPH 2) 2] 3 and Am[N(EPH 2) 2] 3 with the heavier group 16 donors display geometric and electronic properties rather different from those of the other members of the 4f and 5f series, in particular, longer than expected Eu-E and Am-E bond lengths, smaller reductions in charge difference between M and E down group 16, and larger f populations. The latter are interpreted not as evidence of f-based metal-ligand covalency but rather as being indicative of ionic metal centers closer to M (II) than M (III). The Cm complexes are found to be very ionic, with very metal-localized f orbitals and Cm (III) centers. The implications of the results for the separation of the minor actinides from nuclear wastes are discussed, as is the validity of using La (III)/U (III) comparisons as models for minor actinide/Eu systems.  相似文献   

18.
In this and a previous article (J. Phys. Chem. A 2000, 104, 8244), the range of application for relativistic density functional theory (DFT) is extended to the calculation of nuclear magnetic resonance (NMR) shieldings and chemical shifts in diamagnetic actinide compounds. Two relativistic DFT methods are used, ZORA ("zeroth-order regular approximation") and the quasirelativistic (QR) method. In the given second paper, NMR shieldings and chemical shifts are calculated and discussed for a wide range of compounds. The molecules studied comprise uranyl complexes, [UO(2)L(n)](+/-)(q); UF(6); inorganic UF(6) derivatives, UF(6-n)Cl(n), n = 0-6; and organometallic UF(6) derivatives, UF(6-n)(OCH(3))(n), n = 0-5. Uranyl complexes include [UO(2)F(4)](2-), [UO(2)Cl(4)](2-), [UO(2)(OH)(4)](2-), [UO(2)(CO(3))(3)](4-), and [UO(2)(H(2)O)(5)](2+). For the ligand NMR, moderate (e.g., (19)F NMR chemical shifts in UF(6-n)Cl(n)) to excellent agreement [e.g., (19)F chemical shift tensor in UF(6) or (1)H NMR in UF(6-n)(OCH(3))(n)] has been found between theory and experiment. The methods have been used to calculate the experimentally unknown (235)U NMR chemical shifts. A large chemical shift range of at least 21,000 ppm has been predicted for the (235)U nucleus. ZORA spin-orbit appears to be the most accurate method for predicting actinide metal chemical shifts. Trends in the (235)U NMR chemical shifts of UF(6-n)L(n) molecules are analyzed and explained in terms of the calculated electronic structure. It is argued that the energy separation and interaction between occupied and virtual orbitals with f-character are the determining factors.  相似文献   

19.
Reaction of (C5Me5)2U(=N-2,4,6-(t)Bu3-C6H2) or (C5Me5)2U(=N-2,6-(i)Pr2-C6H3)(THF) with 5 equiv of CuX(n) (n = 1, X = Cl, Br, I; n = 2, X = F) affords the corresponding uranium(V)-imido halide complexes, (C5Me5)2U(=N-Ar)(X) (where Ar = 2,4,6-(t)Bu3-C6H2 and X = F (3), Cl (4), Br (5), I (6); Ar = 2,6-(i)Pr2-C6H3 and X = F (7), Cl (8), Br (9), I (10)), in good isolated yields of 75-89%. These compounds have been characterized by a combination of single-crystal X-ray diffraction, (1)H NMR spectroscopy, elemental analysis, mass spectrometry, cyclic voltammetry, UV-visible-NIR absorption spectroscopy, and variable-temperature magnetic susceptibility. The uranium L(III)-edge X-ray absorption spectrum of (C5Me5)2U(=N-2,4,6-(t)Bu3-C6H2)(Cl) (4) was analyzed to obtain structural information, and the U=N imido (1.97(1) A), U-Cl (2.60(2) A), and U-C5Me5 (2.84(1) A) distances were consistent with those observed for compounds 3, 5, 6, 8-10, which were all characterized by single-crystal X-ray diffraction studies. All (C5Me5)2U(=N-Ar)(X) complexes exhibit U(V)/U(IV) and U(VI)/U(V) redox couples by voltammetry, with the potential separation between these metal-based couples remaining essentially constant at approximately 1.50 V. The electronic spectra are comprised of pi-->pi* and pi-->nb(5f) transitions involving electrons in the metal-imido bond, and metal-centered f-f bands illustrative of spin-orbit and crystal-field influences on the 5f(1) valence electron configuration. Two distinct sets of bands are attributed to transitions derived from this 5f(1) configuration, and the intensities in these bands increase dramatically over those found in spectra of classical 5f(1) actinide coordination complexes. Temperature-dependent magnetic susceptibilities are reported for all complexes with mu(eff) values ranging from 2.22 to 2.53 mu(B). The onset of quenching of orbital angular momentum by ligand fields is observed to occur at approximately 40 K in all cases. Density functional theory results for the model complexes (C5Me5)2U(=N-C6H5)(F) (11) and (C5Me5)2U(=N-C6H5)(I) (12) show good agreement with experimental structural and electrochemical data and provide a basis for assignment of spectroscopic bands. The bonding analysis describes multiple bonding between the uranium metal center and imido nitrogen which is comprised of one sigma and two pi interactions with variable participation of 5f and 6d orbitals from the uranium center.  相似文献   

20.
The preparation and characterization of the compounds trans-M(2)(T(i)PB)(2)(O(2)C-CH=CH-2-C(4)H(3)S)(2) where M = Mo or W and T(i)PB = 2,4,6-triisopropylbenzoate are reported. The optical spectra of the new compounds are compared with those of related trans-M(2)(T(i)PB)(2)L(2) compounds where L = O(2)C-C(6)H(4)-4-CN, O(2)C-α,α'-terthienyl (TTh), and O(2)C-4-C(6)H(4)N-B(C(6)F(5))(3), that show strong metal-to-ligand charge transfer bands because of M(2)δ to Lπ conjugation, and are notably temperature dependant due to the various conformations of the two trans-L groups. Upon cooling the spectral features sharpen as the planar geometry that optimizes M(2)δ-Lπ conjugation is favored. As the electronic coupling of the two trans-Lπ systems increases the (0,0) electronic transition gains intensity indicating a greater nesting of the ground state (S(0)) and excited state (S(1)) potential energy surfaces. These features are discussed in terms of the related electronic coupling of [M(2)]-[M(2)] complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号