首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Modulation thresholds were measured in three subjects for a sinusoidally amplitude-modulated (SAM) wideband noise (the signal) in the presence of a second amplitude-modulated wideband noise (the masker). In monaural conditions (Mm-Sm) masker and signal were presented to only one ear; in binaural conditions (M0-S pi) the masker was presented diotically while the phase of modulation of the SAM noise signal was inverted in one ear relative to the other. In experiment 1 masker modulation frequency (fm) was fixed at 16 Hz, and signal modulation frequency (fs) was varied from 2-512 Hz. For monaural presentation, masking generally decreased as fs diverged from fm, although there was a secondary increase in masking for very low signal modulation frequencies, as reported previously [Bacon and Grantham, J. Acoust. Soc. Am. 85, 2575-2580 (1989)]. The binaural masking patterns did not show this low-frequency upturn: binaural thresholds continued to improve as fs decreased from 16 to 2 Hz. Thus, comparing masked monaural and masked binaural thresholds, there was an average binaural advantage, or masking-level difference (MLD) of 9.4 dB at fs = 2 Hz and 5.3 dB at fs = 4 Hz. In addition, there were positive MLDs for the on-frequency condition (fm = fs = 16 Hz: average MLD = 4.4 dB) and for the highest signal frequency tested (fs = 512 Hz: average MLD = 7.3 dB). In experiment 2 the signal was a SAM noise (fs = 16 Hz), and the masker was a wideband noise, amplitude-modulated by a narrow band of noise centered at fs. There was no effect on monaural or binaural thresholds as masker modulator bandwidth was varied from 4 to 20 Hz (the average MLD remained constant at 8.0 dB), which suggests that the observed "tuning" for modulation may be based on temporal pattern discrimination and not on a critical-band-like filtering mechanism. In a final condition the masker modulator was a 10-Hz-wide band of noise centered at the 64-Hz signal modulation frequency. The average MLD in this case was 7.4 dB. The results are discussed in terms of various binaural capacities that probably play a role in binaural release from modulation masking, including detection of varying interaural intensity differences (IIDs) and discrimination of interaural correlation.  相似文献   

2.
Experiment 1 examined detection and discrimination of monaural four-tone sequences composed of 400-, 500-, and 625-Hz sinusoids. In the baseline conditions, the masker was monaural composed of 25-Hz-wide bands of random noise centered on 320, 400, 500, 625, and 781 Hz. In the binaural masking release conditions, the noise was presented diotically. In the monaural masking release conditions, the noise was presented to the same ear as the signal, but it was comodulated. Tones had half-amplitude durations of 30, 60, or 150 ms. There was no delay between successive tones, so the rate of frequency change depended on tone duration. Listeners discriminated between sequences composed of 500-400-625-500 Hz and 500-625-400-500 Hz. Discrimination results were poor for rapid sequences in both monaural and binaural masking release conditions relative to baseline conditions. Results from experiment 2 indicated that poor discrimination for rapid sequences could also occur in the baseline conditions, provided that the frequency separation among tonal components was small. Sluggish processing in the present paradigm was not restricted to conditions relying on binaural cues. It is argued that sluggishness may reflect a long temporal window in monaural and binaural masking release conditions or an interaction between poor cue quality and task difficulty.  相似文献   

3.
Experiment 1 examined comodulation masking release (CMR) for a 700-Hz tonal signal under conditions of N(o)S(o) (noise and signal interaurally in phase) and N(o)S(π) (noise in phase, signal out of phase) stimulation. The baseline stimulus for CMR was either a single 24-Hz wide narrowband noise centered on the signal frequency [on-signal band (OSB)] or the OSB plus, a set of flanking noise bands having random envelopes. Masking noise was either gated or continuous. The CMR, defined with respect to either the OSB or the random noise baseline, was smaller for N(o)S(π) than N(o)S(o) stimulation, particularly when the masker was continuous. Experiment 2 examined whether the same pattern of results would be obtained for a 2000-Hz signal frequency; the number of flanking bands was also manipulated (two versus eight). Results again showed smaller CMR for N(o)S(π) than N(o)S(o) stimulation for both continuous and gated masking noise. The CMR was larger with eight than with two flanking bands, and this difference was greater for N(o)S(o) than N(o)S(π). The results of this study are compatible with serial mechanisms of binaural and monaural masking release, but they indicate that the combined masking release (binaural masking-level difference and CMR) falls short of being additive.  相似文献   

4.
Temporal modulation transfer functions (TMTFs) were measured for detection of monaural sinusoidal amplitude modulation and dynamically varying interaural level differences for a single set of listeners. For the interaural TMTFs, thresholds are the modulation depths at which listeners can just discriminate interaural envelope-phase differences of 0 and 180 degrees. A 5-kHz pure tone and narrowband noises, 30- and 300-Hz wide centered at 5 kHz, were used as carriers. In the interaural conditions, the noise carriers were either diotic or interaurally uncorrelated. The interaural TMTFs with tonal and diotic noise carriers exhibited a low-pass characteristic but the cutoff frequencies changed nonmonotonically with increasing bandwidth. The interaural TMTFs for the tonal carrier began rolling off approximately a half-octave lower than the tonal monaural TMTF (approximately 80 Hz vs approximately 120 Hz). Monaural TMTFs obtained with noise carriers showed effects attributable to masking of the signal modulation by intrinsic fluctuations of the carrier. In the interaural task with dichotic noise carriers, similar masking due to the interaural carrier fluctuations was observed. Although the mechanisms responsible for differences between the monaural and interaural TMTFs are unknown, the lower binaural TMTF cutoff frequency suggests that binaural processing exhibits greater temporal limitation than monaural processing.  相似文献   

5.
The present study sought to clarify the role of non-simultaneous masking in the binaural masking level difference for maskers that fluctuate in level. In the first experiment the signal was a brief 500-Hz tone, and the masker was a bandpass noise (100-2000 Hz), with the initial and final 200-ms bursts presented at 40-dB spectrum level and the inter-burst gap presented at 20-dB spectrum level. Temporal windows were fitted to thresholds measured for a range of gap durations and signal positions within the gap. In the second experiment, individual differences in out of phase (NoSπ) thresholds were compared for a brief signal in a gapped bandpass masker, a brief signal in a steady bandpass masker, and a long signal in a narrowband (50-Hz-wide) noise masker. The third experiment measured brief tone detection thresholds in forward, simultaneous, and backward masking conditions for a 50- and for a 1900-Hz-wide noise masker centered on the 500-Hz signal frequency. Results are consistent with comparable temporal resolution in the in phase (NoSo) and NoSπ conditions and no effect of temporal resolution on individual observers' ability to utilize binaural cues in narrowband noise. The large masking release observed for a narrowband noise masker may be due to binaural masking release from non-simultaneous, informational masking.  相似文献   

6.
Binaural masking patterns show a steep decrease in the binaural masking-level difference (BMLD) when masker and signal have no frequency component in common. Experimental threshold data are presented together with model simulations for a diotic masker centered at 250 or 500 Hz and a bandwidth of 10 or 100 Hz masking a sinusoid interaurally in phase (S(0)) or in antiphase (S(π)). Simulations with a binaural model, including a modulation filterbank for the monaural analysis, indicate that a large portion of the decrease in the BMLD in remote-masking conditions may be due to an additional modulation cue available for monaural detection.  相似文献   

7.
A series of three experiments used the method of magnitude estimation to examine binaural summation of the loudness of a 1000-Hz tone heard in the quiet and against various backgrounds of masking noise. In the quiet, binaural loudness as measured in sones, is twice monaural loudness. Two conditions of noise masking acted to increase the ratio of binaural/monaural loudness in sones above 2:1--that is, to produce supersummation. (1) When tone was presented to both ears, but masking noise to just one ear (dichotic stimulation), the loudness of the binaural tone was 30%-35% greater than the sum of the loudness of the monaural components. This increase in summation provides a suprathreshold analog to increases in threshold sensitivity observed with dichotic stimulation (masking-level differences). (2) Supersummation was also evident when tone and noise alike were presented to both ears (diotic stimulation); here, the binaural tone's loudness was 10%-25% greater than the sum of the monaural components. The increase in summation with diotic stimulation may be related to the characteristics of binaural summation of the noise masker itself.  相似文献   

8.
This study investigates whether binaural signal detection is improved by the listener's previous knowledge about the interaural phase relations of masker and test signal. Binaural masked thresholds were measured for a 500-ms dichotic noise masker that had an interaural phase difference of 0 below 500 Hz and of pi above 500 Hz. The thresholds for two difference 20-ms test signals were determined within the same measurement using an interleaved adaptive 3-interval forced-choice (3IFC) procedure. In each 3IFC trial, both signals could occur with equal probability (uncertainty). The two signals differed in frequency and interaural phase in such a way that one signal always had a frequency above the masker edge frequency (500 Hz) and no interaural phase difference (So), whereas the other signal frequency was below 500 Hz and the interaural phase difference was pi (S pi). The frequencies of a signal pair remained fixed during the whole 3IFC track. These two signals thus lead to two different binaural conditions, i.e., NoS pi for the low-frequency signal and N pi So for the high-frequency signal. For comparison, binaural masked thresholds were measured with the same masker for fixed signal frequency and phase. The binaural masking level differences (BMLDs) resulting from the two experimental conditions show no significant difference. This indicates that the binaural system is able to apply different internal transformations or processing strategies simultaneously in different critical bands and even within the same critical band.  相似文献   

9.
The masking level difference (MLD) for a narrowband noise masker is associated with marked individual differences. This pair of studies examines factors that might account for these individual differences. Experiment 1 estimated the MLD for a 50 Hz wide band of masking noise centered at 500 or 2000 Hz, gated on for 400 ms. Tonal signals were either brief (15 ms) or long (200 ms), and brief signals were coincident with either a dip or peak in the masker envelope. Experiment 2 estimated the MLD for both signal and masker consisting of a 50 Hz wide bandpass noise centered on 500 Hz. Signals were generated to provide only interaural phase cues, only interaural level cues, or both. The pattern of individual differences was dominated by variability in NoSpi thresholds, and NoSpi thresholds were highly correlated across all conditions. Results suggest that the individual differences observed in Experiment 1 were not primarily driven by differences in the use of binaural fine structure cues or in binaural temporal resolution. The range of thresholds obtained for a brief NoSpi tonal signal at 500 Hz was consistent with a model based on normalized interaural correlation. This model was not consistent for analogous conditions at 2000 Hz.  相似文献   

10.
Auditory filter bandwidths and time constants were obtained with five normal-hearing subjects for different masker configurations both in the frequency and time domain for monaural and binaural listening conditions. Specifically, the masking level in the monaural condition and the interaural correlation in the binaural conditions, respectively, was changed in a sinusoidal, stepwise, and rectangular way in the frequency domain. In the corresponding experiments in the time domain, a sinusoidal and stepwise change of the masker was performed. From these results, a comparison was made across conditions to evaluate the influence of the factors "shape of transition," "monaural versus binaural," "frequency domain versus time domain," and "subject." Also, the respective data from the literature were considered using the same model assumptions and fitting strategy as used for the current data. The results indicate that the monaural auditory filter bandwidths and time constants fitted to the data are consistent across conditions both for the data included in this study and the data from the literature. No consistent relation between individual auditory filter bandwidths and time constants were found across subjects. For the binaural conditions, however, considerable differences were found in estimates of the bandwidths and time constants, respectively, across conditions. The reason for this mismatch seems to be the different detection strategies employed for the various tasks that are affected by the consistency of binaural information across frequency and time. While monaural detection performance appears to be modeled quite well with a linear filter or temporal integration window, this does not hold for the binaural conditions where both larger bandwidth and time constant estimates are found.  相似文献   

11.
This and two accompanying articles [Breebaart et al., J. Acoust. Soc. Am. 110, 1074-1088 (2001); 110, 1105-1117 (2001)] describe a computational model for the signal processing in the binaural auditory system. The model consists of several stages of monaural and binaural preprocessing combined with an optimal detector. In the present article the model is tested and validated by comparing its predictions with experimental data for binaural discrimination and masking conditions as a function of the spectral parameters of both masker and signal. For this purpose, the model is used as an artificial observer in a three-interval, forced-choice adaptive procedure. All model parameters were kept constant for all simulations described in this and the subsequent article. The effects of the following experimental parameters were investigated: center frequency of both masker and target, bandwidth of masker and target, the interaural phase relations of masker and target, and the level of the masker. Several phenomena that occur in binaural listening conditions can be accounted for. These include the wider effective binaural critical bandwidth observed in band-widening NoS(pi) conditions, the different masker-level dependence of binaural detection thresholds for narrow- and for wide-band maskers, the unification of IID and ITD sensitivity with binaural detection data, and the dependence of binaural thresholds on frequency.  相似文献   

12.
The threshold for a signal masked by a narrow band of noise centered at the signal frequency (the on-frequency band) may be reduced by adding to the masker a second band of noise (the flanking band) whose envelope is correlated with that of the first band. This effect is called comodulation masking release (CMR). These experiments examine two questions. (1) How does the CMR vary with the number and ear of presentation of the flanking band(s)? (2) Is it possible to obtain a CMR when a binaural masking level difference (BMLD) is already present, and vice versa? Thresholds were measured for a 400-ms signal in a continuous 25-Hz-wide noise centered at signal frequencies (fs) of 250, 1000, and 4000 Hz. This masker was presented either alone or with one or more continuous flanking bands whose envelopes were either correlated or uncorrelated with that of the on-frequency band; their frequencies ranged from 0.5fs to 1.5fs. CMRs were measured for six conditions in which the signal, the on-frequency band, and the flanking band(s) were presented in various monaural and binaural combinations. When a single flanking band was used, the CMR was typically around 2-3 dB. The CMR increased to 5-6 dB if an additional flanking band was added. The effect of the additional band was similar whether it was in the same ear as the original band or in the opposite ear. At the lowest signal frequency, a large CMR was observed in addition to a BMLD and vice versa. At the highest signal frequency, the extra release from masking was small. The results are interpreted in terms of the cues producing the CMR and the BMLD.  相似文献   

13.
Current understanding of the relation monaural estimates of the critical bandwidth for masking and those obtained in binaural listening situations is poor. The present study was designed to improve this situation by obtaining estimates of critical bandwich when the signal and masker were presented: (1) monaurally (NmSm), (2) binaurally with both signal and masker in phase at the ears (NoSo), (3) binaurally with masker in phase and signals 180 degrees out of phase (NoSpi). Threshold estimates were obtained in a two-interval forced-choice paradigm as a function of masker bandwidth for signal frequencies of 500 and 2000 Hz for the three conditions mentioned above. Maskers were computer-synthesized and had essentially infinite rejection slopes. For all conditions, as masker bandwidth was narrowed from wide band, threshold remained relatively constant until some critical bandwidth was reached. Further reductions in bandwidth were followed by progressive lowering of threshold, presumably due to removal of masker energy in the critical band. For both signal frequencies, the derived critical bandwidth estimates for the NmSm and NoSo conditions were similar and were smaller than the critical bandwidth estimates obtained in the NoSpi condition.  相似文献   

14.
The threshold of a short interaurally phase-inverted probe tone (20 ms, 500 Hz, S pi) was obtained in the presence of a 750-ms noise masker that was switched after 375 ms from interaurally phase-inverted (N pi) to interaurally in-phase (No). As the delay between probe-tone offset and noise phase transition is increased, the threshold decays from the N pi S pi threshold (masking level difference = 0 dB) to the No S pi threshold (masking level difference = 15 dB). The decay in this "binaural" situation is substantially slower than in a comparable "monaural" situation, where the interaural phase of the masker is held constant (N pi), but the level of the masker is reduced by 15 dB. The prolonged decay provides evidence for additional binaural sluggishness associated with "binaural forward masking." In a second experiment, "binaural backward masking" is studied by time reversing the maskers described above. Again, the situation where the phase is switched from No to N pi exhibits a slower transition than the situation with constant interaural phase (N pi) and a 15-dB increase in the level of the masker. The data for the binaural situations are compatible with the results of a related experiment, previously reported by Grantham and Wightman [J. Acoust. Soc. Am. 65, 1509-1517 (1979)] and are well fit by a model that incorporates a double-sided exponential temporal integration window.  相似文献   

15.
Temporal integration was measured at a relatively low and a relatively high signal frequency under conditions of off-frequency masking. The masker was typically gated for 300 ms, and the signal was presented 70 ms after masker onset. In experiment 1, the signal frequency was 500 or 2000 Hz. Temporal integration was measured in quiet and in the presence of a masker whose frequency was lower or higher than the signal frequency. In all listening situations, there was less integration at 2000 Hz than at 500 Hz. This effect of frequency was particularly dramatic in the presence of a lower frequency masker, where there was almost no integration at 2000 Hz. Experiment 2 showed that this dramatic effect of frequency cannot be understood in terms of the underlying psychometric functions. Experiment 3 measured temporal integration at 750 and 2000 Hz for a large number of masker-signal frequency separations for both a tonal and a noise masker, and in conditions where the masker was gated or continuous. The results with the gated tonal masker largely confirmed the results of experiment 1. The results with the continuous tonal masker and the gated or continuous noise masker, however, were quite different. In those cases, the amount of temporal integration at both signal frequencies was more or less independent of the masker-signal separation; the masked temporal integration was nearly equal to the integration in quiet. Thus based on the conditions evaluated here, off-frequency masked temporal integration differs substantially from integration in quiet only for gated tonal maskers located considerably lower in frequency than the signal. It is unclear how to account for this finding, although it may be related to attentional factors.  相似文献   

16.
The relation between the monaural critical band and binaural analysis was examined using an NoSm MLD paradigm, in order to resolve ambiguities about the width of the masking spectrum important for binaural detection. A 500-Hz pure-tone signal was presented with a 600-Hz-wide band of masking noise to the signal ear. Bands of noise ranging in width from 25 to 600 Hz, or noise notches (imposed on a 600-Hz-wide band centered on the signal frequency) ranging in width from 0 to 600 Hz were presented to the nonsignal ear. All noise bands and notches were centered on 500 Hz, the frequency of the signal. The effects of varying bandwidth were radically different from those of varying notchwidth: the MLD changed from zero to approximately 8 dB over a bandwidth range of 400 Hz; for notchwidths, however, the MLD changed 8 dB over a range of only 50 Hz. The results support an interpretation that the fine frequency selectivity of monaural analysis is preserved in peripheral binaural interaction, but that a relatively wide frequency range of critical bands is scanned at a later stage of binaural processing. It was suggested that the wide spectral range of binaural analysis may provide a background against which binaural differences due to the signal are detected.  相似文献   

17.
The present study was a follow-up to a pilot study in which it was found that a 500-Hz-wide narrow-band noise (NBN) masker produced more masking than a tonal (T) masker for signal frequencies both above and below the masker frequency. The aim of the present study was to determine to what extent these results were influenced by an interaction of the relatively rapid temporal envelope fluctuations of the NBN and the short (10-ms) duration of the signal. In the first experiment, the masking produced by a regular NBN, a low-noise noise (LNN), and a T was compared. The LNN produced less masking than the NBN, and about as much as the T, suggesting that the inherent amplitude fluctuations in the NBN were largely responsible for the greater masking produced by that masker. In the second experiment, the masking produced by a regular NBN was compared with that by a T for a signal duration of 10 or 200 ms. The difference in masking between the two maskers was reduced or eliminated when the signal duration was 200 ms, because the threshold in the presence of the NBN masker decreased more with increasing signal duration. This could reflect a decreased "confusion" between the signal and the inherent fluctuations of the NBN masker.  相似文献   

18.
Previous data on the masking level difference (MLD) have suggested that NoSpi detection for a long-duration signal is dominated by signal energy occurring in masker envelope minima. This finding was expanded upon using a brief 500-Hz tonal signal that coincided with either the envelope maximum or minimum of a narrow-band Gaussian noise masker centered at 500 Hz, and data were collected at a range of masker levels. Experiment 1 employed a typical MLD stimulus, consisting of a 30-ms signal and a 50-Hz-wide masker with abrupt spectral edges, and experiment 2 used stimuli generated to eliminate possible spectral cues. Results were quite similar for the two types of stimuli. At the highest masker level the MLD for signals coinciding with masker envelope minima was substantially larger than that for signals coinciding with envelope maxima, a result that was primarily due to decreased NoSpi thresholds in masker minima. For most observers this effect was greatly reduced or eliminated at the lowest masker level. These level effects are broadly consistent with the presence of physiological background noise and with a level-dependent binaural temporal window. Comparison of these results with predictions of a published model suggest that basilar-membrane compression alone does not account for this level effect.  相似文献   

19.
This study was designed to investigate the effects of masker level and frequency on binaural detection and interaural time discrimination. Detection and interaural time discrimination of a 700-Hz sinusoidal signal were measured as a function of the center frequency and level of a narrow-band masking noise. The masker was a continuous, diotic, 80-Hz-wide noise that varied in center frequency from 250 to 1370 Hz. In the detection experiment, the signal was presented either diotically (NoSo) or interaurally phase reversed (NoS pi). In the interaural time discrimination experiment, the signal level needed to discriminate a 30-microseconds interaural delay was measured. As would be expected, the presence of the masker has a greater effect on NoSo detection than NoS pi detection, and for masker frequencies at or near the signal frequency. In contrast, interaural time discrimination can be improved by the presence of a low-level masker. Also, performance improves more rapidly as the signal/masker frequency separation increases for NoSo detection than for interaural time discrimination and NoS pi detection. For all three tasks, significant upward spread of masking occurs only at the highest masker level; at low masker levels, there is a tendency toward downward spread of masking.  相似文献   

20.
The shape of the auditory filter was calculated from binaural masking experiments. Two different types of maskers were used in the study, a masker that was interaurally in phase at all frequencies (No), and a masker with an interaural phase difference of 0 below 500 Hz and of pi above 500 Hz. The test-signal frequency varied between 200 and 800 Hz, and the test signal was presented either monaurally (Sm) or binaurally in antiphase (S pi). By comparing the masked thresholds from the two experimental conditions, the following conclusion can be drawn: The threshold of the test signal is only affected by the masker phase within a narrow frequency range around the test frequency. Thus, for test-signal frequencies well above or below 500 Hz, no influence of the phase transition on the BMLD is observed, and normal masked thresholds for No and N pi maskers are obtained. For test frequencies around 500 Hz, the step in interaural phase difference leads to a decrease in the interaural correlation of the masker within the critical band around the test-signal frequency. This results in strong threshold changes for both monaural and binaural signals. A calculation of the auditory filter shape from the masked threshold values was performed under the assumption that the masked threshold is only dependent on the interaural cross correlation of the masker within the filter band. Using the formula of the EC theory for the relation between masker correlation and BMLD, the experimental data are well described by a trapezoidal filter with an equivalent rectangular bandwidth of 80 to 84 Hz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号