首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
We revisit in this paper the strongly nonlinear long wave model for large amplitude internal waves in two‐layer flows with a free surface proposed by Choi and Camassa [1] and Barros et al. [2]. Its solitary‐wave solutions were the object of the work by Barros and Gavrilyuk [3], who proved that such solutions are governed by a Hamiltonian system with two degrees of freedom. A detailed analysis of the critical points of the system is presented here, leading to some new results. It is shown that conjugate states for the long wave model are the same as those predicted by the fully nonlinear Euler equations. Some emphasis will be given to the baroclinic mode, where interfacial waves are known to change polarity according to different values of density and depth ratios. A critical depth ratio separates these two regimes and its analytical expression is derived directly from the model. In addition, we prove that such waves cannot exist throughout the whole range of speeds.  相似文献   

2.
We describe a pseudo-spectral numerical method to solve the systems of one-dimensional evolution equations for free surface waves in a homogeneous layer of an ideal fluid. We use the method to solve a system of one-dimensional integro-differential equations, first proposed by Ovsjannikov and later derived by Dyachenko, Zakharov, and Kuznetsov, to simulate the exact evolution of nonlinear free surface waves governed by the two-dimensional Euler equations. These equations are written in the transformed plane where the free surface is mapped onto a flat surface and do not require the common assumption that the waves have small amplitude used in deriving the weakly nonlinear Korteweg–de Vries and Boussinesq long-wave equations. We compare the solution of the exact reduced equations with these weakly nonlinear long-wave models and with the nonlinear long-wave equations of Su and Gardner that do not assume the waves have small amplitude. The Su and Gardner solutions are in remarkably close agreement with the exact Euler solutions for large amplitude solitary wave interactions while the interactions of low-amplitude solitary waves of all four models agree. The simulations demonstrate that our method is an efficient and accurate approach to integrate all of these equations and conserves the mass, momentum, and energy of the Euler equations over very long simulations.  相似文献   

3.
Many models of shallow water waves, such as the famous Camassa–Holm equation, admit peaked solitary waves. However, it is an open question whether or not the widely accepted peaked solitary waves can be derived from the fully nonlinear wave equations. In this paper, a unified wave model (UWM) based on the symmetry and the fully nonlinear wave equations is put forward for progressive waves with permanent form in finite water depth. Different from traditional wave models, the flows described by the UWM are not necessarily irrotational at crest, so that it is more general. The unified wave model admits not only the traditional progressive waves with smooth crest, but also a new kind of solitary waves with peaked crest that include the famous peaked solitary waves given by the Camassa–Holm equation. Besides, it is proved that Kelvin’s theorem still holds everywhere for the newly found peaked solitary waves. Thus, the UWM unifies, for the first time, both of the traditional smooth waves and the peaked solitary waves. In other words, the peaked solitary waves are consistent with the traditional smooth ones. So, in the frame of inviscid fluid, the peaked solitary waves are as acceptable and reasonable as the traditional smooth ones. It is found that the peaked solitary waves have some unusual and unique characteristics. First of all, they have a peaked crest with a discontinuous vertical velocity at crest. Especially, unlike the traditional smooth waves that are dispersive with wave height, the phase speed of the peaked solitary waves has nothing to do with wave height, but depends (for a fixed wave height) on its decay length, i.e., the actual wavelength: in fact, the peaked solitary waves are dispersive with the actual wavelength when wave height is fixed. In addition, unlike traditional smooth waves whose kinetic energy decays exponentially from free surface to bottom, the kinetic energy of the peaked solitary waves either increases or almost keeps the same. All of these unusual properties show the novelty of the peaked solitary waves, although it is still an open question whether or not they are reasonable in physics if the viscosity of fluid and surface tension are considered.  相似文献   

4.
5.
In this paper, the effects of quadratic singular curves in integrable wave equations are studied by using the bifurcation theory of dynamical system. Some new singular solitary waves (pseudo‐cuspons) and periodic waves are found more weak than regular singular traveling waves such as peaked soliton (peakon), cusp soliton (cuspon), cusp periodic wave, etc. We show that while the first‐order derivatives of the new singular solitary wave and periodic waves exist, their second‐order derivatives are discontinuous at finite number of points for the solitary waves or at infinitely countable points for the periodic wave. Moreover, an intrinsic connection is constructed between the singular traveling waves and quadratic singular curves in the phase plane of traveling wave system. The new singular periodic waves, pseudo‐cuspons, and compactons emerge if corresponding periodic orbits or homoclinic orbits are tangent to a hyperbola, ellipse, and parabola. In particular, pseudo‐cuspon is proposed for the first time. Finally, we study the qualitative behavior of the new singular solitary wave and periodic wave solutions through theoretical analysis and numerical simulation.  相似文献   

6.
We study nonlinear free‐surface rotational waves generated through the interaction of a vertically sheared current with a topography. Equivalently, the waves may be generated by a pressure distribution along the free surface. A forced Korteweg–de Vries equation (fKdV) is deduced incorporating these features. The weakly nonlinear, weakly dispersive reduced model is valid for small amplitude topographies. To study the effect of gradually increasing the topography amplitude, the free surface Euler equations are formulated in the presence of a variable depth and a sheared current of constant vorticity. Under constant vorticity, the harmonic velocity component is formulated in a simplified canonical domain, through the use of a conformal mapping which flattens both the free surface as well as the bottom topography. Critical, supercritical, and subcritical Froude number regimes are considered, while the bottom amplitude is gradually increased in both the irrotational and rotational wave regimes. Solutions to the fKdV model are compared to those from the Euler equations. We show that for rotational waves the critical Froude number is shifted away from 1. New stationary solutions are found and their stability tested numerically.  相似文献   

7.
8.
A model equation governing the primitive dynamics of wave packets near an extremum of the linear dispersion relation at finite wavenumber is derived. In two spatial dimensions, we include the effects of weak variation of the wave in the direction transverse to the direction of propagation. The resulting equation is contrasted with the Kadomtsev–Petviashvilli and Nonlinear Schrödinger (NLS) equations. The model is derived as an approximation to the equations for deep water gravity-capillary waves, but has wider applications. Both line solitary waves and solitary waves which decay in both the transverse and propagating directions—lump solitary waves—are computed. The stability of these waves is investigated and their dynamics are studied via numerical time evolution of the equation.  相似文献   

9.
Summary. We use a spectral method to solve numerically two nonlocal, nonlinear, dispersive, integrable wave equations, the Benjamin-Ono and the Intermediate Long Wave equations. The proposed numerical method is able to capture well the dynamics of the solutions; we use it to investigate the behaviour of solitary wave solutions of the equations with special attention to those, among the properties usually connected with integrability, for which there is at present no analytic proof. Thus we study in particular the resolution property of arbitrary initial profiles into sequences of solitary waves for both equations and clean interaction of Benjamin-Ono solitary waves. We also verify numerically that the behaviour of the solution of the Intermediate Long Wave equation as the model parameter tends to the infinite depth limit is the one predicted by the theory. Received October 28, 1997; revised February 11, 1999; accepted April 7, 1999  相似文献   

10.
11.
Generalized solitary waves with exponentially small nondecaying far field oscillations have been studied in a range of singularly perturbed differential equations, including higher order Korteweg‐de Vries (KdV) equations. Many of these studies used exponential asymptotics to compute the behavior of the oscillations, revealing that they appear in the solution as special curves known as Stokes lines are crossed. Recent studies have identified similar behavior in solutions to difference equations. Motivated by these studies, the seventh‐order KdV and a hierarchy of higher order KdV equations are investigated, identifying conditions which produce generalized solitary wave solutions. These results form a foundation for the study of infinite‐order differential equations, which are used as a model for studying lattice equations. Finally, a lattice KdV equation is generated using finite‐difference discretization, in which a lattice generalized solitary wave solution is found.  相似文献   

12.
We consider several different bidirectional Whitham equations that have recently appeared in the literature. Each of these models combines the full two‐way dispersion relation from the incompressible Euler equations with a canonical shallow water nonlinearity, providing nonlocal model equations that may be expected to exhibit some of the interesting high‐frequency phenomena present in the Euler equations that standard “long‐wave” theories fail to capture. Of particular interest here is the existence and stability of periodic traveling wave solutions in such models. Using numerical bifurcation techniques, we construct global bifurcation diagrams for each system and compare the global structure of branches, together with the possibility of bifurcation branches terminating in a “highest” singular (peaked/cusped) wave. We also numerically approximate the stability spectrum along these bifurcation branches and compare the stability predictions of these models. Our results confirm a number of analytical results concerning the stability of asymptotically small waves in these models and provide new insights into the existence and stability of large amplitude waves.  相似文献   

13.
Traveling wave solutions have played a vital role in demonstrating the wave character of nonlinear problems emerging in the field of mathematical sciences and engineering. To depict the nature of propagation of the nonlinear waves in nature, a range of nonlinear evolution equations has been proposed and investigated in the existing literature. In this article, solitary and traveling periodic wave solutions for the (2 + 1)-dimensional modified KdV-KP equation are derived by employing an ansatz method, named the enhanced (G′/G)-expansion method. For this continued equation, abundant solitary wave solutions and nonlinear periodic wave solutions, along with some free parameters, are obtained. We have derived the exact expressions for the solitary waves that arise in the continuum-modified KdV-KP model. We study the significance of parameters numerically that arise in the obtained solutions. These parameters play an important role in the physical structure and propagation directions of the wave that characterizes the wave pattern. We discuss the relation between velocity and parameters and illustrate them graphically. Our numerical analysis suggests that the taller solitons are narrower than shorter waves and can travel faster. In addition, graphical representations of some obtained solutions along with their contour plot and wave train profiles are presented. The speed, as well as the profile of these solitary waves, is highly sensitive to the free parameters. Our results establish that the continuum-modified KdV-KP system supports solitary waves having different shapes and speeds for different values of the parameters.  相似文献   

14.
We consider the Isobe-Kakinuma model for two-dimensional water waves in the case of a flat bottom. The Isobe-Kakinuma model is a system of Euler-Lagrange equations for a Lagrangian approximating Luke's Lagrangian for water waves. We show theoretically the existence of a family of small amplitude solitary wave solutions to the Isobe-Kakinuma model in the long wave regime. Numerical analysis for large amplitude solitary wave solutions is also provided and suggests the existence of a solitary wave of extreme form with a sharp crest.  相似文献   

15.
Simplified asymptotic equations describing the resonant nonlinear interaction of equatorial Rossby waves with barotropic Rossby waves with significant midlatitude projection in the presence of arbitrary vertically and meridionally sheared zonal mean winds are developed. The three mode equations presented here are an extension of the two mode equations derived by Majda and Biello [ 1 ] and arise in the physically relevant regime produced by seasonal heating when the vertical (baroclinic) mean shear has both symmetric and antisymmetric components; the dynamics of the equatorial baroclinic and both symmetric and antisymmetric barotropic waves is developed. The equations described here are novel in several respects and involve a linear dispersive wave system coupled through quadratic nonlinearities. Numerical simulations are used to explore the effect of antisymmetric baroclinic shear on the exchange of energy between equatorial baroclinic and barotropic waves; the main effect of moderate antisymmetric winds is to shift the barotropic waves meridionally. A purely meridionally antisymmetric mean shear yields highly asymmetric waves which often propagate across the equator. The two mode equations appropriate to Ref. [ 1 ] are shown to have analytic solitary wave solutions and some representative examples with their velocity fields are presented.  相似文献   

16.
This article deals with the envelope solitary waves and periodic waves in the AB equations that serve as model equations describing marginally unstable baroclinic wave packets in geophysical fluids and also ultra‐short pulses in nonlinear optics. An envelope solitary wave has a width proportional to its velocity and inversely proportional to its amplitude. The velocity of the envelope solitary wave is partially dependent on its amplitude in the sense that the amplitude determines the upper or lower limit of the velocity. When two envelope solitary waves collide, they survive the collision and retain their identities except for a shift in the positions of both the envelopes and the carrier waves. The periodic wave solutions in sine wave form may be stable or unstable depending upon the wave parameters. When the sine wave is destabilized by small perturbations, its long‐time evolution shows a Fermi–Pasta–Ulam‐type oscillation.  相似文献   

17.
We study here the propagation of long waves in the presence of vorticity. In the irrotational framework, the Green–Naghdi equations (also called Serre or fully nonlinear Boussinesq equations) are the standard model for the propagation of such waves. These equations couple the surface elevation to the vertically averaged horizontal velocity and are therefore independent of the vertical variable. In the presence of vorticity, the dependence on the vertical variable cannot be removed from the vorticity equation but it was however shown in 1 that the motion of the waves could be described using an extended Green–Naghdi system. In this paper, we propose an analysis of these equations, and show that they can be used to get some new insight into wave–current interactions. We show in particular that solitary waves may have a drastically different behavior in the presence of vorticity and show the existence of solitary waves of maximal amplitude with a peak at their crest, whose angle depends on the vorticity. We also show some simple numerical validations. Finally, we give some examples of wave–current interactions with a nontrivial vorticity field and topography effects.  相似文献   

18.
The regularised long wave equation is solved by Galerkin's method using linear space finite elements. In the simulations of the migration of a single solitary wave, this algorithm is shown to have good accuracy for small amplitude waves. Moreover, for very small amplitude waves (⩽0.09) it has higher accuracy than an approach using quadratic B-spline finite elements within Galerkin's method. The interaction of two solitary waves is modelled for small amplitude waves.  相似文献   

19.
20.
Solitary Wave Transformation Due to a Change in Polarity   总被引:1,自引:0,他引:1  
Solitary wave transformation in a zone with sign-variable coefficient for the quadratic nonlinear term is studied for the variable-coefficient Korteweg–de Vries equation. Such a change of sign implies a change in polarity for the solitary wave solutions of this equation. This situation can be realized for internal waves in a stratified ocean, when the pycnocline lies halfway between the seabed and the sea surface. The width of the transition zone of the variable nonlinear coefficient is allowed to vary over a wide range. In the case of a short transition zone it is shown using asymptotic theory that there is no solitary wave generation after passage through the turning point, where the coefficient of the quadratic nonlinear term goes to zero. In the case of a very wide transition zone it is shown that one or more solitary waves of the opposite polarity are generated after passage through the turning point. Here, asymptotic methods are effective only for the first (adiabatic) stage when the solitary wave is approaching the turning point. The results from the asymptotic theories are confirmed by direct numerical simulation. The hypothesis that the pedestal behind the solitary wave approaching the turning point has a significant role on the generation of the terminal solitary wave after the transition zone is examined. It is shown that the pedestal is not the sole contributor to the amplitude of the terminal solitary wave. A negative disturbance at the turning point due to the transformation in the zone of the variable nonlinear coefficient contributes as much to the process of the generation of the terminal solitary waves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号