首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new chemiluminescence (CL) method combined with flow injection technique is described for the determination of Cr(III) and total Cr. It is found that a strong CL signal is generated from the reaction of Cr(III), lucigenin and KIO4 in alkaline condition. The determination of total Cr is performed by pre-reduction of Cr(VI) to Cr(III) by using H2SO3. The CL intensity is linearly related to the concentration of Cr in the range 4.0 × 10−10–1.0 × 10−6 g mL−1. The detection limit (3s b) is 1 × 10−10 g mL−1 Cr and the relative standard deviation is 1.9% (5.0 × 10−8 g mL−1 of Cr(III) solution, n = 11). The method was applied to the determination of Cr(III) and total Cr in water samples and compared satisfactorily with the official method.  相似文献   

2.
 A simple, rapid, selective, sensitive and economical method has been developed for the simultaneous determination of trace amounts of palladium and nickel in aqueous methanolic medium using 2-(2-thiazolylazo)-5-dimethylam inobenzoic acid as an analytical reagent by first derivative spectrophotometr y. Palladium is determined by measuring base to peak distance at λ=695.0 nm while nickel is estimated by zero crossing method in the mixture. The linearity is maintained between 0.12–1.75 μg mL−1 for palladium and 0.07–1.60 μg mL−1 for nickel in the pH range 2.8–7.2 and 3.4–8.8 respectively. Seven replicate determinations of 1.0 μ g mL−1 of palladium and 0.8 μg mL−1 of nickel in a mixture give a mean signal height of 0.391 for Pd and 0.541 for Ni with relative standard deviations of 0.9% and 1.2%, respectively. The sensitivity of the proposed method is 0.391 (dA/dλ)/(μg mL−1) for palladium and 0.685 (dA/dλ)/(μg mL−1) for nickel. Various parameters have been optimised for the simultaneous determination of palladium and nickel in various complex samples. Received March 30, 1999. Revision November 25, 1999.  相似文献   

3.
A simple, inexpensive method based on solid-phase extraction (SPE) on sawdust from Cedrus deodera has been developed for speciation of Cr(III) and Cr(VI) in environmental water samples. Because different exchange capacities were observed for the two forms of chromium at different pH—Cr(III) was selectively retained at pH 3 to 4 whereas Cr(VI) was retained at pH 1—complete separation of the two forms of chromium is possible. Retained species were eluted with 2.5 mL 0.1 mol L−1 HCl and 0.1 mol L−1 NaOH. Detection limits of 0.05 and 0.04 μg mL−1 were achieved for Cr(III) and Cr(VI), respectively, with enrichment factors of 100 and 80. Recovery was quantitative using 250 mL sample volume for Cr(III) and 200 mL for Cr(VI). Different kinetic and thermodynamic properties that affect sorption of the chromium species on the sawdust were also determined. Metal ion concentration was measured as the Cr(VI)–diphenylcarbazide complex by UV–visible spectroscopy. The method was successfully applied for speciation of chromium in environmental and industrial water samples.  相似文献   

4.
 A simple, rapid, accurate and sensitive spectrophotometric method for the determination of norfloxacin (NRF), ofloxacin (OFL) and ciprofloxacin (CPF) is described. This method is based on the formation of an ion pair with sudan III in aqueous-acetone medium [40% (v/v) acetone]. The coloured products are measured at 567, 565 and 566 nm for NRF, OFL and CPF, respectively. The optimization of various experimental conditions is described. Beer’s law is obeyed in the range 0.4–12.0, 0.4–8.8 and 0.4–10.4  ;μg mL−1 of NRF, OFL and CPF, respectively. For more accurate results, Ringbom optimum concentration ranges were 0.8–11.2, 0.6–8.5 and 0.8–10.0 μg mL−1, respectively. The results obtained showed good recoveries of ±1.2, ±1.5 and ±1.7% with relative standard deviations of 0.67, 0.83 and 1.08% for NRF, OFL, and CPF, respectively. The molar absorptivity and Sandell sensitivity were also calculated. Applications of the proposed method to representative pharmaceutical formulations are successfully presented. Received April 30, 1999. Revision November 25, 1999.  相似文献   

5.
 Two simple, fast, accurate and precise methods for the determination of six phenothiazines and a number of their pharmaceutical formulations are described. The titrimetric method involves the oxidation of the drugs by metavanadate in sulphuric acid medium and titration of vanadium(IV) formed, with cerium(IV) using ferroin indicator and acetone as catalyst. In spectrophotometry, vanadium(IV) formed was reacted with ferriin and the resulting ferroin measured at 510 nm. Phenothiazines in the ranges 5–100 mg and 2.5–25.0 μg mL−1 can be determined by titrimetry and spectrophotometry, respectively, with detection limits of 0.96–2.05 mg and 0.0359–0.0565 μg mL−1, respectively. Both methods were applied successfully to the determination of the studied drugs in pharmaceutical preparations. The reliability of the assays was established by parallel determination by the official methods of British Pharmacopoeia and the results being statistically evaluated. Received September 26, 2000. Revision March 25, 2001.  相似文献   

6.
A flow injection chemiluminescence method is proposed for the determination of cobalt, based on the strong catalytic effect of Cobalt(II) (1,10-phenanthroline)3 complex on the lucigenin-periodate reaction in alkaline medium. Under the optimum experimental conditions, the chemiluminescence signal responded linearly to the concentration of cobalt(II) in the 1.0 × 10−9–3.0 × 10−7 g mL−1 range with a detection limit of 4.4 × 10−10 g mL−1 cobalt(II). The relative standard deviation for the determination of 5.0 × 10−8 g mL−1 of cobalt was 2.3% in eleven replicated measurements. The method was successfully applied to the determination of cobalt(II) in pharmaceutical preparations.  相似文献   

7.
A simple and fast catalytic adsorptive stripping voltammetric procedure for trace determination of Cr(VI) in natural samples containing high concentrations of humic substances has been developed. The procedure for chromium determination in the presence of DTPA and nitrates was employed as the initial method. In order to enhance the selectivity vs. Cr(III) the measurements were performed at 40°C. Interference from dissolved organic matter such as humic and fulvic acids was drastically decreased by adding Amberlite XAD-7 resin to the voltammetric cell before the deaeration step. The whole procedure was applied to a single cell, which allowed monitoring of the voltammetric scan. Optimum conditions for removing humic and fulvic acids due to their adsorption on XAD-7 resin were evaluated. The use of XAD-7 resin also minimize interferences from various cationic, anionic, and nonionic surfactants. The calibration graph for Cr(VI) for an accumulation time of 30 s was linear in the range 5 × 10−10 to 5 × 10−8 mol L−1. The relative standard deviation for determination of Cr(VI) at a concentration of 1 × 10−8 mol L−1 was 3.5% (n = 5). The detection limit estimated from 3 times the standard deviation for low Cr(VI) concentrations and an accumulation time of 30 s was about 1.3 × 10−10 mol L−1. The proposed method was successfully applied to Cr(VI) determination at trace levels in soil samples.  相似文献   

8.
Olive cake as low-cost abundantly available sorbent has been characterized by N2 at 77 K adsorption, porosity analysis, elemental analysis and IR spectra and has been used for preconcentrating of uranium(VI) and thorium(IV) ions prior to their determination spectrophotometrically. The optimum pH values for quantitative sorption of U(VI) and Th(IV) are 4–7 and 3–7, respectively. The enrichment factor for the preconcentration of U(VI) and Th(IV) were found to be 125 and 75 in the given order. The sorption capacity of olive cake is in the range of 2,260–15,000 μg g−1 for Th(IV) and in the range of 1,090–17,000 μg g−1 for U(VI) at pH 3–7. The sorbent exhibits good reusability and the uptake and stripping of the studied ions were fairly rapid. The elution of U(VI) and Th(IV) was performed with 0.3–1 M HCl/1–2 M HNO3 and 0.3–0.8 M HCl/1 M HNO3, respectively. The precision of the method was 1.8 RSD% for U(VI) and 2.5 RSD% for Th(IV) in a concentration of 1.00 μg mL−1 for 10 replicate analysis. The influence of some electrolytes and cations as interferents was discussed. Separation of U(VI) and Th(IV) from other metal ions in synthetic solution was achieved.  相似文献   

9.
An “off–on” rhodamine-based fluorescence probe for the selective signaling of Cr(III) has been designed by exploiting the guest-induced structure transform mechanism. This system shows a sharp Cr(III)-selective fluorescence enhancement response in 100% aqueous system under physiological pH value and possesses high selectivity against the background of environmentally and biologically relevant metal ions including Cr(VI), Al(III), Fe(III), Cd(II), Co(II), Cu(II), Ni(II), Zn(II), Mg(II), Ba(II), Pb(II), Na(I), and K(I). Under optimum conditions, the fluorescence intensity enhancement of this system is linearly proportional to Cr(III) concentration from 5.0 × 10−8 to 7.0 × 10−6 mol L−1 with a detection limit of 1.6 × 10−8 mol L−1.  相似文献   

10.
The purpose of this study was the development and validation of an LC–MS–MS method for simultaneous analysis of ibuprofen (IBP), 2-hydroxyibuprofen (2-OH-IBP) enantiomers, and carboxyibuprofen (COOH-IBP) stereoisomers in fungi culture medium, to investigate the ability of some endophytic fungi to biotransform the chiral drug IBP into its metabolites. Resolution of IBP and the stereoisomers of its main metabolites was achieved by use of a Chiralpak AS-H column (150 × 4.6 mm, 5 μm particle size), column temperature 8 °C, and the mobile phase hexane–isopropanol–trifluoroacetic acid (95: 5: 0.1, v/v) at a flow rate of 1.2 mL min−1. Post-column infusion with 10 mmol L−1 ammonium acetate in methanol at a flow rate of 0.3 mL min−1 was performed to enhance MS detection (positive electrospray ionization). Liquid–liquid extraction was used for sample preparation with hexane–ethyl acetate (1:1, v/v) as extraction solvent. Linearity was obtained in the range 0.1–20 μg mL−1 for IBP, 0.05–7.5 μg mL−1 for each 2-OH-IBP enantiomer, and 0.025–5.0 μg mL−1 for each COOH-IBP stereoisomer (r ≥ 0.99). The coefficients of variation and relative errors obtained in precision and accuracy studies (within-day and between-day) were below 15%. The stability studies showed that the samples were stable (p > 0.05) during freeze and thaw cycles, short-term exposure to room temperature, storage at −20 °C, and biotransformation conditions. Among the six fungi studied, only the strains Nigrospora sphaerica (SS67) and Chaetomium globosum (VR10) biotransformed IBP enantioselectively, with greater formation of the metabolite (+)-(S)-2-OH-IBP. Formation of the COOH-IBP stereoisomers, which involves hydroxylation at C3 and further oxidation to form the carboxyl group, was not observed.  相似文献   

11.
Summary.  A new simple, rapid, sensitive, and selective method is proposed for the microdetermination of mercury. Mercury(II) forms insoluble complexes with 2,3-dichloro-6-(2-hydroxy-3,5-dinitrophenylazo)-quinoxaline (1), 2,3-dichloro-6-(5-amino-3-carboxy-2-hydroxy-phenylazo)-quinoxaline (2), 2,3-dichloro-6-(2,7-dihydroxynaphth-1-ylazo)-quinoxaline (3), and 2,3-dichloro-6-(3-carboxy-2-hydroxy-naphth-1-ylazo)-quinoxaline (4) in aqueous acidic medium; the complexes can be made soluble by the action of an anionic surfactant. The solution of the pink coloured compounds is stable for at least 24 h. Beer’s law is obeyed over the concentration range from 0.1 to 2.8 μg · cm−3 of mercury. For a more accurate analysis, Ringbom optimum concentration ranges were found to be 0.25–2.5 μg · cm−3. The molar absorpitivity, Sandell sensitivity, and relative standard deviations were also calculated. A slight interference from Pd2+ and Cd2+ is exhibited by the first three ligands, whereas the last one is only negligibly affected by these metal ions. Strong interference from Ag(I) is evident for all ligands, whereas alkali, alkaline earth, and other transition metals tested posed negligible interference. 15 μg · cm−3 of Cd2+ and Pd2+ or 10 μg · cm−3 of Ag+ can be tolerated if 1.0 mg of potassium bromide and 2.0 mg of citrate as masking agents are added for the determination of 1.5 μg · cm−3 of mercury(II). The method was applied to the determination of methyl- and ethylmercury chloride and the analysis of environmental water samples. Received August 7, 2000. Accepted (revised) October 18, 2000  相似文献   

12.
 A sensitive catalytic method is developed for the spectrophotometric determination of oxalic acid. It is based on the catalytic action of oxalic acid on a new indicator reaction – the oxidation of Bromophenol Blue by dichromate in dilute sulfuric acid medium. The reaction rate is monitored spectrophotometrically by measuring the absorbance at 600 nm after quenching the reaction with sodium hydroxide. A calibration graph from 0.1 to 8.0 μg mL−1 of oxalic acid and a detection limit of 0.04 μg mL−1 was obtained. The applicability of this method was demonstrated by the determination of oxalic acid in water extracts from vegetables such as spinach, mushrooms and fresh kidney beans. Received October 18, 1999. Revision June 14, 2000.  相似文献   

13.
This work reported for the first time the use of flow injection electrochemiluminescence (FI-ECL) sensor for the determination of durabolin in an aqueous system based on CdTe quantum dot (QD) films. Aqueous CdTe colloidal solutions were prepared using thioglycolic acid as a capping agent. Zetasizer Nano ZS (Malvern, UK) was employed to characterize the size of CdTe QDs. The UV–vis and photoluminescence spectra of samples were systematically characterized. Indium tin oxide (ITO) slide glass was modified with CdTe QDs by layer-by-layer self-assembly. CdTe QD films were packed into a homemade cell and used as a recognizer of the FI-ECL sensor to determine durabolin. The intensive anodic ECL emission was obtained at a starting potential of +1.3 V (vs. Ag/AgCl) in a carbonate bicarbonate buffer solution with a pH of 9.93 at an ITO electrode. The ECL intensity was correlated linearly with the concentration of durabolin over the range of 1.0 × 10−8–1.0 × 10−5 g mL−1, and the detection limit was 2.5 × 10−9 g mL−1. The relative standard deviation for the determination of 1.0 × 10−6 g mL−1 durabolin was 1.04% (n = 11). This simple and sensitive sensor revealed good reproducibility for ECL analysis. As a result, the new FI-ECL sensor had been successfully applied to the determination of durabolin in food samples. This strategy could be easily realized and opened new avenues for the applications of QDs in ECL biosensing.  相似文献   

14.
The suitability of a 2.45-GHz atmospheric pressure, low-power microwave microstrip plasma (MSP) operated with Ar and He for the determination of Hg by continuous-flow cold vapor (CV) generation, using SnCl2/HCl as the reducing agent, and optical emission spectrometry (OES) using a small CCD spectrometer was studied. The areas of stability for a discharge in the Ar and in the He MSP enclosed in a cylindrical channel in a quartz wafer were investigated. The excitation temperatures as measured for discharge gas atoms (Ar I, He I), and the electron number densities at 35–40 W and 15–400 mL min−1 were found to be at the order of 3,200–5,500 K and 0.8 × 1014–1.6 × 1014 cm−3, respectively. The relative intensity of the Hg I 253.6-nm line and the signal-to-background ratio as a function of the forward power (35–40 W) as well as of the flow rate of the working gas (15–400 mL min−1) were evaluated and discussed. For the selected measurement conditions, the Ar MSP was established to have the lower detection limit for Hg (0.6 ng mL−1) compared with the He MSP. The linearity range is up to 300 ng mL−1 and the precision is on the order of 1–3%. With the optimized CV Ar MSP-OES method a determination of Hg in spiked domestic and natural waters at concentration levels of 20–100 μg L−1 and an accuracy of 1–4% could be performed. In an NIST domestic sludge standard reference material, Hg (3.64 μg g−1) could be determined with a relative standard deviation of 4% and an agreement better than 4%.  相似文献   

15.
A novel molecularly imprinted polymer solid-phase extraction (MISPE) with flow-injection chemiluminescence (CL) was developed for the determination of pazufloxacin mesilate (PZFX). The molecularly imprinted polymer (MIP) was synthesized by using PZFX as the imprinting molecule. A glass tube packed the particles of the MIP was employed as MISPE micro-column, which was connected into the sampling loop of the eight-way injection valve for on-line selective preconcentration and extraction of PZFX. The eluent of acetonitrile:acetic acid (9:1, v:v) was used as carrier for eluting the adsorbed PZFX to react with the mixture of cerium(IV) and sodium sulfite in the flow cell to produce strong CL. The relative intensity of CL was linear to PZFX concentration in the range from 2.5 × 10−9 to 2.5 × 10−7 g mL−1. The limit of detection was 7 × 10−10 g mL−1 (3 σ) and the relative standard deviation for 5 × 10−8 g mL−1of PZFX solution was 3.7% (n = 7). This method has been applied to the determination of PZFX in human urine.  相似文献   

16.
A simple flow injection chemiluminescence (CL) method was developed for the determination of atenolol using Eu3+ as the probe. It was found that the weak CL generated by the KMnO4-Na2SO3 reaction can be significantly enhanced by the atenolol-Eu3+ complex. The experimental conditions were optimized. The CL intensity was linearly related to atenolol concentration in the range from 8.0 × 10−9 to 1.0 × 10−5 g mL−1. The detection limit (3s b) was 3 × 10−9 g mL−1 and the relative standard deviation for 1.0 × 10−7 g mL−1 atenolol solution was 2.4% (n = 11). The method has high sensitivity, wide linear range, inexpensive instrumentation, and has been applied to the determination of atenolol in spiked human urine and plasma samples with recoveries within the range 95.5–104.0%. Supplementary material to this paper is available in electronic form at Electronic supplementary material: Discussion of the reaction mechanism and additional figures are available online as electronic supplementary material (ESM) at . Correspondence: Jianxiu Du, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Materials Science, Shaanxi Normal University, Xi’an 710062, P.R. China  相似文献   

17.
Summary.  A highly selective, sensitive, and simple catalytic method for the determination of molybdenum in natural and waste waters was developed. It is based on the catalytic effect of Mo(VI) on the oxidation of 2-aminophenol with H2O2. The reaction is monitored spectrophotometrically by tracing the oxidation product at 430 nm after 10 min of mixing the reagents. Addition of 800 μg · cm−3 EDTA conferred high selectivity; however, interfering effects of Au(III), Cr(III), Cr(VI), and Fe(III) had to be eliminated by a reduction and co-precipitation procedure with SnCl2 and Al(OH)3. Mo(VI) shows a linear calibration graph up to 11.0 ng · cm−3; the detection limit, based on the 3S b-criterion, is 0.10 ng · cm−3. The unique selectivity and sensitivity of the new method allowed its direct application to the determination of Mo(VI) in natural and waste waters. Received April 11, 2001. Accepted (revised) June 18, 2001  相似文献   

18.
A fast and sensitive liquid chromatography–mass spectrometry method was developed for the determination of ursolic acid (UA) in rat plasma and tissues. Glycyrrhetinic acid was used as the internal standard (IS). Chromatographic separation was performed on a 3.5 μm Zorbax SB-C18 column (30 mm × 2.1 mm) with a mobile phase consisting of methanol and aqueous 10 mM ammonium acetate using gradient elution. Quantification was performed by selected ion monitoring with (m/z) 455 for UA and (m/z) 469 for the IS. The method was validated in the concentration range of 2.5 − 1470 ng mL−1 for plasma samples and 20 − 11760 ng g−1 for tissue homogenates. The intra- and inter-day assay of precision in plasma and tissues ranged from 1.6% to 7.1% and 3.7% to 9.0%, respectively, and the intra- and inter-day assay accuracy was 84.2 − 106.9% and 82.1 − 108.1%, respectively. Recoveries in plasma and tissues ranged from 83.2% to 106.2%. The limits of detections were 0.5 ng mL−1 or 4.0 ng g−1. The recoveries for all samples were >90%, except for liver, which indicated that ursolic acid may metabolize in liver. The main pharmacokinetic parameters obtained were T max = 0.42 ± 0.11 h, C max = 1.10 ± 0.31 μg mL−1, AUC = 1.45 ± 0.21 μg h mL−1 and K a = 5.64 ± 1.89 h−1. The concentrations of UA in rat lung, spleen, liver, heart, and cerebellum were studied for the first time. This method is validated and could be applicable to the investigation of the pharmacokinetics and tissue distribution of UA in rats.  相似文献   

19.
A piezoelectric quartz crystal (PQC) sensor based on a molecularly imprinted polymer (MIP) has been developed for enantioselective and quantitative analysis of d-(+)-methamphetamine (d(+)-MA). The sensor was produced by bulk polymerization and the resulting MIP was then coated on the gold electrode of an AT-cut quartz crystal. Conditions such as volume of polymer coating, curing time, type of PQC, baseline solvent, pH, and buffer type were found to affect the sensor response and were therefore optimized. The PQC-MIP gave a stable response to different concentrations of d(+)-MA standard solutions (response time = 10 to 100 s) with good repeatability (RSD = 0.03 to 3.09%; n = 3), good reproducibility (RSD = 3.55%; n = 5), and good reversibility (RSD = 0.36%; n = 3). The linear range of the sensor covered five orders of magnitude of analyte concentration, ranging from 10−5 to 10−1 μg mL−1, and the limit of detection was calculated as 11.9 pg d(+)-MA mL−1 . The sensor had a highly enantioselective response to d(+)-MA compared with its response to l(−)-MA, racemic MA, and phentermine. The developed sensor was validated by applying it to human urine samples from drug-free individuals spiked with standard d(+)-MA and from a confirmed MA user. Use of the standard addition method (SAM) and samples spiked with d(+)-MA at levels ranging from 1 × 10−3 to 1 × 10−2 μg mL−1 showed recovery was good (95.3 to 110.9%).  相似文献   

20.
A new Schiff-base ligand [N, N′, N″-Tri- (2,4-dihydroxyacetophenone) – triaminotriethylamine (TDATA)] with a tripodal structure was synthesized. Its fluorescence intensity with the europium(III) complex was increased about 178-fold in the presence of sodium acetate (NaAc) and about 126-fold in the presence of sodium phosphate (Na3PO4) solution. After adding the organic solvent dimethylsulfoxide (DMSO) to the above system, which leads to Eu3+ the fluorescence was further enhanced about 12-fold. Spectrofluorimetric determination of trace amounts of Eu3+ based on the phenomenon was performed. The excitation and emission wavelength is 365 nm and 615 nm, respectively. Under optimum conditions, the fluorescence intensities vary linearly with the concentration of Eu3+ in the range of 4.9 × 10−12–3.2 × 10−6 mol · L−1 with a detection limit of 4.5 × 10−12 mol · L−1 (for the TDATA-NaAc-DMSO system) or 6.2 × 10−11–8.6 × 10−6 mol · L−1 with a detection limit of 6.0 × 10−11 mol · L−1 (for the TDATA-Na3PO4-DMSO system). Interferences of some rare earth metals and other inorganic ions are described. The method is a selective, sensitive, rapid and simple analytical procedure for the determination of europium(III) in a high purity yttrium oxide and synthetic sample. The mechanism for the fluorescence enhancement is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号