首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The powders of X20Cr13 steel were subjected to ball milling process in a planetary ball mill. X-ray diffraction and Mössbauer spectroscopy studies revealed the refinement of the structure of this steel down to a nanocrystalline range practically without any phase transformations. Both techniques allowed to detect the alloyed ferrite as well as residual content of iron containing M23C6-type carbide, which was dissolved into the ferrite during milling. Hyperfine magnetic fields in ball milled steel samples did not differ significantly from those for the bulk steel disc.  相似文献   

2.
Kinematic equations describing velocity and acceleration of a ball in a vial of a planetary ball-mill have been derived. The consequent energy transfer from the mill to the system constituted by the powder, the balls and the vials have been evaluated by theoretical-empirical approach. Mixtures of elemental iron and zirconium powders corresponding to the average Fe2Zr composition have been mechanically alloyed in different milling conditions. The end products strongly depend on the operative milling conditions and a clear correlation between them and the input energy has been found. The paper has been partly presented at the SSAR Int. Congress held in Grenoble, 20–23 February 1990 and to the ASM Int. Conference on Structural Applications of Mechanical Alloying Myrtle Beach, 27–29 March 1990.  相似文献   

3.
《Solid State Ionics》2006,177(19-25):1869-1873
Apatite-type lanthanum silicates have been successfully prepared at room temperature by dry milling hexagonal A−La2O3 and either amorphous or low cristobalite SiO2. Milling a stochiometric mixture of these chemicals in a planetary ball mill with a moderate rotating speed (350 rpm), allows preparing the target phase in only 6 h although longer milling times are needed to eliminate all SiO2 traces. The mechanically activated chemical reaction proceeds faster when using amorphous silica than low cristobalite as silicon source and pure phases are obtained after only 9 and 18 h respectively. As obtained powder phases are not amorphous and show an XRD pattern as well as IR and Raman bands characteristic of the lanthanum silicate.  相似文献   

4.
Nanocrystalline Mg–Zn-ferrite is prepared by ball milling the stoichiometric powder mixture of MgO, ZnO and α-Fe2O3. A non-stoichiometric ferrite phase is noticed to form after 3 h of milling when particles of starting materials became nano-sized. After 25 h of milling, stoichiometric ferrite phase is formed with 9 nm particle size. Post annealing study of ball-milled sample reveals that the nanocrystalline ferrite phase is stable up to 873 K and then starts to decompose into individual starting phases. However, heat treatment of unmilled stoichiometric powder mixture even at 1473 K for 1 h duration does not result in formation of stoichiometric Mg–Zn-ferrite phase.  相似文献   

5.
Elemental mixtures of Al, Cu, Fe powders with the nominal composition of Al70Cu20Fe10 were mechanically alloyed in a planetary ball mill for 80 h. Subsequent annealing of the as-milled powders were performed at 600–800°C temperature range for 4 h. Structural characteristics of the mechanically alloyed Al70Cu20Fe10 powders with the milling time and the heat treatment were investigated by X-ray diffraction (XRD), differential scanning calorimeter (DSC) and differential thermal analysis (DTA). Mechanical alloying of the Al70Cu20Fe10 did not result in the formation of icosahedral quasicrystalline phase (i-phase) and a long time milling resulted in the formation of β-Al(Cu,Fe) solid solution phase (β-phase). The i-phase was observed only for short-time milled powders after heat treatment above 600°C. The β-phase was one of the major phases in the Al70Cu20Fe10 alloy. The w-Al7Cu2Fe1 phase (w-phase) was obtained only after heat treatment of the short-time milled and unmilled samples. The present investigation indicated that a suitable technique to obtain a large amount of quasicrystalline powders is to use a combination of short-time milling and subsequent annealing.  相似文献   

6.
Ni and Fe powders in a 7525 atomic proportion were mechanically alloyed using a high-energy ball mill.57Fe Mössbauer measurements were made to determine the reaction mechanism for alloy formation by means of analysis of the evolution of the Fe hyperfine fields during milling. After a latent period of 2 hours, the spectral area of an Fe-like component decreased monotonically with milling time, disappearing after 8 hours. It was replaced by a well-resolved Zeeman pattern with hyperfine fieldH=29.1 T and outer lines of width 0.75 mm/s which is attributed to Fe in disordered Ni3Fe. The evolution of hyperfine fields rules out alloy formation by dissolution of Ni in the Fe matrix or of Fe in the Ni matrix, so that formation must occur by reaction of Ni and Fe at the interfaces between their grains.  相似文献   

7.
FeSi10Cr10 powder was mechanically alloyed by high energy planetary ball milling, starting from elemental powders. The microstructural and magnetic properties of the milled powders were characterized by scanning electron microscopy, X-ray diffraction, 57Fe Mössbauer spectrometry and a vibratory sample magnetometer.After 3 h of milling, the formation of two bcc solid solutions α-Fe1 (Si, Cr) and α-Fe2 (Si, Cr) is observed. Their grain sizes decrease with increase in milling time attaining, at 15 h of milling, 23 and 11 nm, respectively. Mössbauer spectra of the milled powder show the presence of two components. One is a ferromagnetic type with a broad sextuplet. Its distribution of hyperfine field is characterized by high and low hyperfine field’s peaks and a mean value of 26.5 T. The other is a single paramagnetic peak. Its low concentration increases to ∼4% at 15 h of milling. These results can be explained by different atomic environments affected by Si or/and Cr elements, as well as the increased disordered grain boundaries.Magnetic measurements of the milled FeSi10Cr10 alloy powder exhibit a soft ferromagnetic character with a decrease of both magnetization at saturation (Ms) and coercive force (Hc) with milling time attaining values of Ms=151 emu/g and Hc=2500 A/m at 30 h of milling time.  相似文献   

8.
Magnesium and its alloy currently are considered as the potential biodegradable implant materials, while the accelerated corrosion rate in intro environment leads to implant failure by losing the mechanical integrity before complete restoration. Dense oxide coatings formed in alkaline silicate electrolyte with and without titania sol addition were fabricated on magnesium alloy using microarc oxidation process. The microstructure, composition and degradation behavior in simulated body fluid (SBF) of the coated specimens were evaluated. It reveals that a small amount of TiO2 is introduced into the as-deposited coating mainly composed of MgO and Mg2SiO4 by the addition of titania sol into based alkaline silicate electrolytic bath. With increasing concentration of titania sol from 0 to 10 vol.%, the coating thickness decreases from 22 to 18 μm. Electrochemical tests show that the Ecorr of Mg substrate positively shifted about 300500 mV and icorr lowers more than 100 times after microarc oxidation. However, the TiO2 modified coatings formed in electrolyte containing 5 and 10 vol.% titania sol indicate an increasing worse corrosion resistance compared with that of the unmodified coating, which is possibly attributed to the increasing amorphous components caused by TiO2 involvement. The long term immersing test in SBF is consistent with the electrochemical test, with the coated Mg alloy obviously slowing down the biodegradation rate, meanwhile accompanied by the increasing damage trends in the coatings modified by 5 and 10 vol.% titania sol.  相似文献   

9.
High-purity Fe powder was mechanically milled under argon at ambient temperature using an SPEX 8000 mill. The local atomic and magnetic structure was studied using57Co/Fe Mössbauer and111In/Cd perturbed angular correlations (PAC) spectroscopies. After 32 hours of milling, X-ray diffraction revealed effective grain diameters of 18 nm and energy-dispersive X-ray analysis indicated a Cr impurity concentration of 5%, presumably introduced by mechanical attrition of steel ball bearings used for milling. In addition to a spectral component very similar to bulk iron metal, the Mössbauer spectra exhibited hyperfine field shifts attributed to the Cr impurities. PAC spectra on Fe milled for 5 h, with no contamination, exhibited two components: (1) A slightly broadened magnetic interaction attributed to interior, defect-free sites of In/Cd probes with a mean hyperfine field slightly greater than in macroscopic grains. The defect-free site fraction grew appreciably during milling, even though In is essentially insoluble in Fe. (2) An indistinct signal due to mixed magnetic and quadrupole interactions attributed to probes at surface or other defect sites.  相似文献   

10.
In this work we report a comparative study of the magnetic and structural properties of Fe50Al50 alloys produced by mechanical alloying using two different planetary ball mills with the same ball mass to powder mass relation. The Fe50Al50 sample milled during 48 h using the Fritsch planetary ball mill pulverisette 5 and balls of 20 mm, presents only a bcc alloy phase with a majority of paramagnetic sites, whereas that sample milled during the same time using the Fritsch planetary ball mill pulverisette 7 with balls of 15 mm, presents a bcc alloy phase with paramagnetic site (doublet) and a majority of ferromagnetic sites which include pure Fe. However for 72 h of milling this sample presents a bcc paramagnetic phase, very similar to that prepared with the first system during 48 h. These results show that the conditions used in the first ball mill equipment make more efficient the milling process.  相似文献   

11.
This research investigates the synthesis and size-dependent melting point depression of complex metallic alloy (CMA) nanoparticles. Al12Mg17 which belongs to this new category of intermetallic materials was initially produced as pre-alloyed ingot, then homogenized to achieve single phase compound and crushed into small size powder and finally, mechanically milled in a planetary ball mill to synthesize nanoparticles. Phase and microstructural characterizations of the as-crushed and milled powders were performed using X-ray diffractometry (XRD), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). Effects of the mechanical milling on thermal behavior of the Al12Mg17 nanoparticles in comparison with as-cast Al12Mg17 ingot has been investigated by differential scanning calorimetry (DSC) measurement. It was found that an average particle size of 24 nm with crystallite size of 16 nm was achieved after 20 h of ball milling process. The size- dependent melting point depression of the Al12Mg17 nanoparticles has been experimentally observed and also comparison of the obtained results with theoretical models was carried out.  相似文献   

12.
K. R. Nagde  S. S. Bhoga 《Ionics》2010,16(4):361-370
The nanocrystalline La0.8Sr0.2MnO3 (LSM) is prepared by varying the revolutions per minute and milling time of planetary monomill during the mechanochemical method. The LSM forms in a relatively shorter milling time with an increase in the milling speed from 250 to 600 rpm. The structural phase transition from orthorhombic to rhombohedral phase in the LSM prepared by ball milling at the speed 250 rpm for 36 h is seen due to sintering it at 700 °C for 4 h. The crystallite size reduces with the increase in both the milling speed and the milling time individually or combined. The microhardness (HV) and sintered density increase with the reduction in the crystallite size. The temperature-activated transition temperature is suppressed by reducing the grain size in the nanometer range. The electrical dc conductivity increases with the reduction in the grain/crystallite size.  相似文献   

13.
Fe–10 wt% Ni and Fe–20 wt% Ni nanostructured alloys were prepared using a planetary ball mill P 4 vario mill from Fritsch. The Fe (Ni) BCC solid solution was identified by X-ray diffraction, allowing also to follow the size and shape of crystalline grains. The higher the shock power, the smaller the grain size. The Mössbauer spectra of the nanostructured powders recorded at 77 and 300 K differ according to the shock power and the friction energy component while the hyperfine structure gives relevant information on the local structure environment of Fe atoms in relation with the milling mode process (shock or friction mode).  相似文献   

14.
Raman scattering spectroscopy has been used for the characterization of zinc oxide nanoparticles obtained by mechanical activation in a high‐energy vibro‐mill and planetary ball mill. Raman modes observed in spectra of nonactivated sample are assigned to Raman spectra of the ZnO monocrystal, while the spectra of mechanically activated samples point out to the structural and stoichiometric changes, depending on the milling time and the choice of equipment. Observed redshift and peak broadening of the E2high and E1 (LO) first‐order Raman modes are attributed to increased disorder induced by mechanical milling, followed by the effects of phonon confinement due to correlation length decrease. The additional modes identified in Raman spectra of activated ZnO samples are related to the surface optical phonon modes, due to the intrinsic surface defects and presence of ZrO2as extrinsic defects introduced by milling in zirconia vials. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Mössbauer spectroscopy and X-ray diffractometry were used to study the effect of the cooling rate as well as of the milling time on the structure of rapidly quenched Al-6.8% Fe, Al-0.5% Fe and mechanically alloyed Al-8% Fe alloys. The main phase of the rapidly quenched alloys was identified as Al m Fe besides Al6Fe andAlFe solid solutions. In the mechanically alloyed samples (with milling time between 1.5–43 hours), we have found -Fe, AlFe solid solution and a third phase characterized by a doublet with Mössbauer parameters which are not so far from those of clusters inAlFe alloys. We have observed a continuous increase of the quantity ofAlFe solid solution, together with a significantly less increase of the third phase as a function of the milling time. Simultaneously, the quantity of alpha-iron has gradually decreased.  相似文献   

16.
Scanning tunneling microscopy (STM) experiments reveal that Co growth on Ag(1 1 0), at coverages of Co < 1 ML and low substrate temperatures (150 K), involves a concomitant insertion of Co into the top Ag layer and exchange of Ag out onto the surface. At 300 K, coverages of Co > 1 ML gives rise to a 3D nanocluster growth on the surface, with the clusters covered by Ag. Depending slightly on coverage, the clusters have a typical diameter of 3 nm and a height of 0.4 nm. Upon annealing to 500 K, major changes are observed in the morphology of the surface. STM and AES show that there is a reduction of the number of Co islands on the surface, partly due to subsurface Co cluster migration and partly due to sintering into larger clusters.  相似文献   

17.
Bragg gratings are written with ultrafast 800 nm radiation and a phase mask through the polyimide polymer coatings of commercially available high NA fibres that are both unloaded and loaded with high pressure hydrogen gas. For polyimide coated fibres with very high germanium core concentrations, index modulations greater than 1 × 10−4 are induced. Stable core index modulations 60% of their original value were present after 115 h at 500 °C.  相似文献   

18.
The crystalline intermetallic compounds Co2Zr and Fe2Zr were produced in the stoichiometric composition and milled in a planetary ball mill for different milling periods. The samples were investigated in respect to the question if a crystal-to-glass transition occurs due to the milling process. Three different experimental methods were used for this study: X-ray diffraction, Mößbauer spectroscopy, and measurements of the specific heat capacityc p . The intermetallic compound Fe2Zr is very suitable for this study since it is ferromagnetic at room temperature. Thus it shows characteristic features in the Mößbauer spectrum and in the measurement of the specific heat capacityc p . The investigation shows that the intermetallic compounds Co2Zr and Fe2Zr undergo a crystal-to-glass transition under mechanical grinding but the X-ray diffraction patterns show that the transformation is not complete. Even after long milling periods always an amount of a crystalline phase is present in the milled samples. In comparison the mechanically ground samples show the same properties as mechanically alloyed powder mixtures of the two elements of the same chemical composition. A probable explanation for the development of an amorphous phase by mechanical grinding of the crystalline compounds Co2Zr and Fe2Zr is the accumulation of internal strain in the crystalline grains. Another possible explanation, the addition of iron impurities to the crystalline compounds due to the wear debris of the milling equipment, seems to be improbable since the intermetallic phases Co2Zr and Fe2Zr show extended existance ranges in the equilibrium phase diagrams and hence are stable in respect to a variation in the composition.  相似文献   

19.
Mechanically alloyed (Fe80Al20)100???x Si x alloys (with x?=?0, 10, 15 and 20) were prepared by using a high energy planetary ball mill, with milling times of 12, 24 and 36 h. The structural and magnetic study was conducted by X-rays diffraction and Mössbauer spectrometry. The system is nanostructured and presents only the BCC disordered phase, whose lattice parameter remains constant with milling time, and decreases when the Si content increases. We found that lattice contraction is influenced 39% by the iron substitution and 61% by the aluminum substitution, by silicon atoms. The Mössbauer spectra and their respective hyperfine magnetic field distributions show that for every milling time used here, the ferromagnetism decreases when x increases. For samples with x?≥?15 a paramagnetic component appears. From the shape of the magnetic field distributions we stated that the larger ferromagnetic phase observed in the samples alloyed during 24 and 36 h is a consequence of the structural disorder induced by mechanical alloying.  相似文献   

20.
Synchrotron surface X-ray diffraction has been used to investigate in situ the morphology and epitaxy of monolayer amounts of copper electrodeposited from aqueous electrolyte onto ultra-high vacuum prepared, smooth, Ga- or As-terminated GaAs(0 0 1) surfaces. The fcc lattice of the epitaxial Cu islands is rotated by 5° and tilted by about 9° with respect to the GaAs substrate lattice, leading to eight symmetry equivalent domains of Cu islands terminated by {1 1 1} facets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号