首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
Difference schemes of required quality are often difficult to construct as applied to boundary value problems for parabolic equations with mixed derivatives. Specifically, difficulties arise in the design of monotone difference schemes and unconditionally stable locally one-dimensional splitting schemes. In parabolic problems, certain opportunities are offered by restating the problem in question so that the quantities to be determined are fluxes (directional derivatives). The original problem is then rewritten as a boundary value one for a system of equations in flux variables. Weighted schemes for parabolic equations in flux coordinates are examined. Unconditionally stable locally one-dimensional flux schemes that are first- and second-order accurate in time are constructed for a parabolic equation without mixed derivatives. A feature of systems in flux variables for equations with mixed derivatives is that the terms with time derivatives are coupled with each other.  相似文献   

2.
l)ThisworkwassupportedbyNWOthroughgrantIBo7-3Go12.BOUNDAarv^LUEPRoBLEMFORELLIPTICEQUMIONwiTHMIXEDBOUNDAavCONDITION1.IntroductionInthispedwesketchavarietyofspecialmethodswhichareusedforconstructinge-unifornilyconvergelltschemes-WeshaJldemonstrateamethodwhichachieveshaprovedaccuracyforsolvingsingularlyperturbedb0undaryvalueproblemforeiliPicequatiouswithparabolicboundarylayers-InSecti0n4weshallintroduceanaturalclass,B,oftritefferenceschemes,inwhich(bytheabovementi0nedaP…  相似文献   

3.
1.IntroductionThesolution0fpartialdifferentiaJequationsthataresingularlyperturbedand/orhavediscontinu0usboundaryconditionsgenerallyhave0nlylimitedsmoothness.DuetothisfaCtdndcultiesaPpearwhenwesolvethesepr0blemsbynumericalmethods.Forexampleforregularparab0licequationswithdiscontinuousboundaryconditions,classicalmethods(FDMorFEM)onregularrectangulargridsd0n0tconvergeintheIoo-normonadomainthatincludesaneighbourhood0fthediscontinulty[8,9,4].Iftheparametermultiplyingthehighest-orderderivativeva…  相似文献   

4.
In this series of three papers we study singularly perturbed (SP) boundary value problems for equations of elliptic and parabolic type. For small values of the perturbation parameter parabolic boundary and interior layers appear in these problems. If classical discretisation methods are used, the solution of the finite difference scheme and the approximation of the diffusive flux do not converge uniformly with respect to this parameter. Using the method of special, adapted grids, we can construct difference schemes that allow approximation of the solution and the normalised diffusive flux uniformly with respect to the small parameter. We also consider singularly perturbed boundary value problems for convection-diffusion equations. Also for these problems we construct special finite difference schemes, the solution of which converges $ε$-uniformly. We study what problems appear, when classical schemes are used for the approximation of the spatial derivatives. We compare the results with those obtained by the adapted approach. Results of numerical experiments are discussed. In the three papers we first give an introduction on the general problem, and then we consider respectively (i) Problems for SP parabolic equations, for which the solution and the normalised diffusive fluxes are required; (ii) Problems for SP elliptic equations with boundary conditions of Dirichlet, Neumann and Robin type; (iii) Problems for SP parabolic equation with discontinuous boundary conditions.  相似文献   

5.
Locally one-dimensional difference schemes for partial differential equations with fractional order derivatives with respect to time and space in multidimensional domains are considered. Stability and convergence of locally one-dimensional schemes for this equation are proved.  相似文献   

6.
High-order accurate explicit and implicit conservative predictor-corrector schemes are presented for the radiative transfer and energy equations in the multigroup kinetic approximation solved together by applying the splitting method with respect to physical processes and spatial variables. The original system of integrodifferential equations is split into two subsystems: one of partial differential equations without sources and one of ordinary differential equations (ODE) with sources. The general solution of the ODE system and the energy equation is written in quadratures based on total energy conservation in a cell. A feature of the schemes is that a new approximation is used for the numerical fluxes through the cell interfaces. The fluxes are found along characteristics with the interaction between radiation and matter taken into account. For smooth solutions, the schemes approximating the transfer equations on spatially uniform grids are second-order accurate in time and space. As an example, numerical results for Fleck’s test problems are presented that confirm the increased accuracy and efficiency of the method.  相似文献   

7.
Rapid processes of heat transfer are not described by the standard heat conduction equation. To take into account a finite velocity of heat transfer, we use the hyperbolic model of heat conduction, which is connected with the relaxation of heat fluxes. In this case, the mathematical model is based on a hyperbolic equation of second order or a system of equations for the temperature and heat fluxes. In this paper we construct for the hyperbolic heat conduction equation the additive schemes of splitting with respect to directions. Unconditional stability of locally one-dimensional splitting schemes is established. New splitting schemes are proposed and studied for a system of equations written in terms of the temperature and heat fluxes.  相似文献   

8.
This study was suggested by previous work on the simulation of evolution equations with scale-dependent processes,e.g.,wave-propagation or heat-transfer,that are modeled by wave equations or heat equations.Here,we study both parabolic and hyperbolic equations.We focus on ADI (alternating direction implicit) methods and LOD (locally one-dimensional) methods,which are standard splitting methods of lower order,e.g.second-order.Our aim is to develop higher-order ADI methods,which are performed by Richardson extrapolation,Crank-Nicolson methods and higher-order LOD methods,based on locally higher-order methods.We discuss the new theoretical results of the stability and consistency of the ADI methods.The main idea is to apply a higher- order time discretization and combine it with the ADI methods.We also discuss the dis- cretization and splitting methods for first-order and second-order evolution equations. The stability analysis is given for the ADI method for first-order time derivatives and for the LOD (locally one-dimensional) methods for second-order time derivatives.The higher-order methods are unconditionally stable.Some numerical experiments verify our results.  相似文献   

9.
We study a forward-backward system of stochastic differential equations in an infinite-dimensional framework and its relationships with a semilinear parabolic differential equation on a Hilbert space, in the spirit of the approach of Pardoux-Peng. We prove that the stochastic system allows us to construct a unique solution of the parabolic equation in a suitable class of locally Lipschitz real functions. The parabolic equation is understood in a mild sense which requires the notion of a generalized directional gradient, that we introduce by a probabilistic approach and prove to exist for locally Lipschitz functions. The use of the generalized directional gradient allows us to cover various applications to option pricing problems and to optimal stochastic control problems (including control of delay equations and reaction--diffusion equations), where the lack of differentiability of the coefficients precludes differentiability of solutions to the associated parabolic equations of Black--Scholes or Hamilton-Jacobi-Bellman type.  相似文献   

10.
We consider conservation laws for second-order parabolic partial differential equations for one function of three independent variables. An explicit normal form is given for such equations having a nontrivial conservation law. It is shown that any such equation whose space of conservation laws has dimension at least four is locally contact equivalent to a quasi-linear equation. Examples are given of nonlinear equations that have an infinite-dimensional space of conservation laws parameterized (in the sense of Cartan-K?hler) by two arbitrary functions of one variable. Furthermore, it is shown that any equation whose space of conservation laws is larger than this is locally contact equivalent to a linear equation.  相似文献   

11.
We consider the first boundary value problem and the oblique derivative problem for a linear second-order parabolic equation in noncylindrical not necessarily bounded domains with nonsmooth (with respect to t) and noncompact lateral boundary under the assumption that the right-hand side and the lower-order coefficients of the equation may have certain growth when approaching the parabolic boundary of the domain and all coefficients are locally Hölder with given characteristics of the Hölder property. We construct a smoothness scale of solutions of these boundary value problems in Hölder spaces of functions that admit growth of higher derivatives near the parabolic boundary of the domain.  相似文献   

12.
We propose a high order locally one-dimensional scheme for solving parabolic problems. The method is fourth-order in space and second-order in time, and provides a computationally efficient implicit scheme. It is shown through a discrete Fourier analysis that the method is unconditionally stable. Numerical experiments are conducted to test its high accuracy and to compare it with other schemes.  相似文献   

13.
Development and Comparison of Numerical Fluxes for LWDG Methods   总被引:1,自引:0,他引:1  
The discontinuous Galerkin (DO) or local discontinuous Galerkin (LDG) method is a spatial discretization procedure for convection-diffusion equations, which employs useful features from high resolution finite volume schemes, such as the exact or approximate Riemann solvers serving as numerical fluxes and limiters. The Lax- Wendroff time discretization procedure is an altemative method for time discretization to the popular total variation diminishing (TVD) Runge-Kutta time discretizations. In this paper, we develop fluxes for the method of DG with Lax-Wendroff time discretization procedure (LWDG) based on different numerical fluxes for finite volume or finite difference schemes, including the first-order monotone fluxes such as the Lax-Friedfichs flux, Godunov flux, the Engquist-Osher flux etc. and the second-order TVD fluxes. We systematically investigate the performance of the LWDG methods based on these different numerical fluxes for convection terms with the objective of obtaining better performance by choosing suitable numerical fluxes. The detailed numerical study is mainly performed for the one-dimensional system case, addressing the issues of CPU cost, accuracy, non-oscillatory property, and resolution of discontinuities. Numerical tests are also performed for two dimensional systems.  相似文献   

14.
In this paper, the unconditional stability and mass‐preserving splitting domain decomposition method (S‐DDM) for solving three‐dimensional parabolic equations is analyzed. At each time step level, three steps (x‐direction, y‐direction, and z‐direction) are proposed to compute the solutions on each sub‐domains. The interface fluxes are first predicted by the semi‐implicit flux schemes. Second, the interior solutions and fluxes are computed by the splitting implicit solution and flux coupled schemes. Last, we recompute the interface fluxes by the explicit schemes. Due to the introduced z‐directional splitting and domain decomposition, the analysis of stability and convergence is scarcely evident and quite difficult. By some mathematical technique and auxiliary lemmas, we prove strictly our scheme meet unconditional stability and give the error estimates in L2‐norm. Numerical experiments are presented to illustrate the theoretical analysis.  相似文献   

15.
A modification of a well-known locally one-dimensional method for a parabolic equation is proposed. The method remains economic even if the equation involves a mixed derivative with respect to spatial variables. A model case study of the method is presented. Numerical results are given that demonstrate the efficiency of the method.  相似文献   

16.
We show that for any uniformly parabolic fully nonlinear second-order equation with bounded measurable “coefficients” and bounded “free” term in any cylindrical smooth domain with smooth boundary data one can find an approximating equation which has a unique continuous solution with the first derivatives bounded and the second spacial derivatives locally bounded. The approximating equation is constructed in such a way that it modifies the original one only for large values of the unknown function and its spacial derivatives.  相似文献   

17.
A new class of domain decomposition schemes for finding approximate solutions of timedependent problems for partial differential equations is proposed and studied. A boundary value problem for a second-order parabolic equation is used as a model problem. The general approach to the construction of domain decomposition schemes is based on partition of unity. Specifically, a vector problem is set up for solving problems in individual subdomains. Stability conditions for vector regionally additive schemes of first- and second-order accuracy are obtained.  相似文献   

18.
The alternating-direction collocation (ADC) method combines the attractive computational features of a collocation spatial approximation and an alternating-direction time marching algorithm. The result is a very efficient solution procedure for parabolic partial differential equations. To date, the methodology has been formulated and demonstrated for second-order parabolic equations with insignificant first-order derivatives. However, when solving transport equations, significant first-order advection components are likely to be present. Therefore, in this paper, the ADC method is formulated and analyzed for the transport equation. The presence of first-order spatial derivatives leads to restrictions that are not present when only second-order derivatives appear in the governing equation. However, the method still appears to be applicable to a wide variety of transport systems. A formulation of the ADC algorithm for the nonlinear system of equations that describes density-dependent fluid flow and solute transport in porous media demonstrates this point. An example of seawater intrusion into coastal aquifers is solved to illustrate the applicability of the method. An alternating-direction collocation solution algorithm has been developed for the general transport equation. The procedure is analogous to that for the model parabolic equations considered by Celia and Pinder [2]. However, the presence of first-order spatial derivatives requires special attention in the ADC formulation and application. With proper implementation, the ADC procedure effectively combines the efficient equation formulation inherent in the collocation method with the efficient equation solving characteristics of alternating-direction time marching algorithms. To demonstrate the viability of the method for problems with complex velocity fields, the procedure was applied to the problem of density-dependent flow and contaminant transport in groundwaters. A standard example of seawater intrusion into coastal aquifers was solved to illustrate the applicability of the method and to demonstrate its potential use in practical problems.  相似文献   

19.
We give well-posed statements of the main initial–boundary value problems in a rectangular domain and in a half-strip for a second-order parabolic equation that contains partial Riemann–Liouville fractional derivatives with respect to one of the two independent variables. We construct Green functions and representations of solutions of these problems. We prove existence and uniqueness theorems for the first boundary value problem and the problem in the half-strip with the boundary condition of the first kind.  相似文献   

20.
A multiparameter family of fifth-order three-level schemes in time based on compact approximations is presented for solving evolution problems. The schemes are adapted to hyperbolic and parabolic equations and to stiff systems of ordinary differential equations. In the case of hyperbolic equations, a fifth-order accurate scheme in all variables with compact approximations of spatial derivatives is analyzed. Stability estimates are presented, and the dispersive and dissipative properties are examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号