首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The objective of this study was to report the stability profile of novel muscle relaxant drug idrocilamide (Idr) based on information obtained from forced degradation studies. The drug was subjected to acidic (1 M HCl) and alkaline (1 M NaOH) hydrolysis and oxidative decomposition (50% H2O2). The products formed under different stress conditions were investigated by LC. The LC method was fine tuned using the samples generated from forced degradation studies. Satisfactory resolution between peaks with the shortest possible analysis time was achieved on C18 5 μm column (Luna, Phenomenex, USA), with mobile phase methanol-acetonitrile-water-glacial acetic acid (25: 30: 44: 1, v: v: v: v), pumped at 1 mL/min flow rate. Quantification was achieved at 280 nm based on peak area, using DAD detector. The proposed LC method was utilized to investigate the accelerated oxidative degradation of Idr. Besides, Idr’s degradants were identified using IR and MS, and the possible degradation pathway was outlined. The proposed method was validated, and the forced degradation studies proved the stability indicating power of the method. The method was also applied to analyze commercial samples.  相似文献   

2.
Two sensitive and selective chromatographic methods were developed and validated for determination of veralipride in presence of its degradation products. Forced degradation studies were performed, using HCl, NaOH and 3% H2O2. The first method is based on thin-layer chromatographic separation of the intact drug spot from its degradation, followed by densitometric measurements. The second method is based on isocratic liquid chromatographic separation of the studied drug from its degradation on a reversed phase C18 column. The proposed LC method was utilized to investigate the kinetics of alkaline degradation process of the selected drug at different temperatures.  相似文献   

3.
Chlorine gas has been shown by previous investigators to initiate the polymerization of solid N-vinylcarbazole at room temperature, giving a maximum yield of 66% polymer after 18 hr. This initiation of polymerization of N-vinylcarbazole without the application of heat, by a gas, is the only solid-state initiation other than those that are radiation-induced known to us. This study was undertaken in order to determine both the scope and the mechanism of the room-temperature solid-state initiation of vinyl polymerization of N-vinylcarbazole by gases. The gases (HCl, Cl2, and N2O4) were absorbed by solid N-vinylcarbazole, giving very rapid exothermic polymerization: HCl, 37% polymer yield, M?n 2500; Cl2, 50% polymer yield, M?n 4703; N2O4, 91% polymer yield, M?n 7073. The gases NOCl, BF3, and HBr were not absorbed by N-vinylcarbazole and did not initiate polymerization. The N2O4-initiated polymerization, which gave a high yield of polymer, was complete within 5 min. after introduction of gas. This polymerization method and the resulting polymer compared favorably with conventional peroxide-initiated melt polymerization and the polymer obtained thereform. The mechanism of gas-initiated polymerization, which was studied with introduction of inhibitors, appears to be classically cationic in nature.  相似文献   

4.
The aim of this study was to study the stress degradation of granisetron and analysis of the drug in the presence of its degradation products. Forced degradation studies were conducted on bulk sample using acidic, alkaline, oxidative, heat and photolytic conditions. Granisetron was relatively unstable under acidic, alkaline and oxidative conditions. Separation of granisetron and degradation products was achieved using a Nova‐Pak C8 column and acetonitrile‐KH2PO4 25 mM (75:25, v/v) as mobile phase with UV detection at 305 nm. The method was linear over the range of 0.2‐15 μg/mL granisetron (r2 > 0.999). The within‐day and between‐day precision values were also in the range of 0.5‐4%. The proposed method was successfully applied for quantitative determination of granisetron in tablets and in vitro dissolution studies.  相似文献   

5.
Summary A method has been developed for analyzing pyrite quantitatively in the sediments of Erhai Lake in southwest China using 57Fe M?ssbauer spectroscopy combined with a series of acidic pre-treatments. Following a washing with an alkaline solution (0.1N NaOH), the sediment samples were successively treated using HCl, HF, and then HCl (65 °C). The residues thus prepared were analyzed for pyrite using 57Fe M?ssbauer spectrometry. The presence of pyrite was also confirmed in the acidic residues of the sediments using sulfur K-edge X-ray absorption near edge structure. This method can be used to measure pyrite in aquatic sediments, especially when the concentration of pyrite is very low and the particles of pyrite are small or the crystallinity is low, and even in amorphous status. In addition, vertical variations of pyrite contents are positively correlated with organic matter and negatively correlated with hematite, superfine paramagnetic ferric iron and sedimentation rate in the cored sediment from the Erhai Lake. All these geochemical indicators may also reflect environmental changes in sedimentation conditions and diagenesis.  相似文献   

6.
A validated stability-indicating HPLC method was developed for the analysis of azithromycin (AZ) and its related compounds in raw materials, capsule, and suspension using an Xterra RP C18 column at 50 degrees C with UV detection at 215 nm. Isocratic elution was employed using the mobile phase 14 mM disodium hydrogen phosphate (pH 10.5, adjusted by 1 M NaOH)-methanol-acetonitrile-tetrahydrofuran (40.0 + 30.0 + 30.0 + 0.1, v/v/v/v). AZ and 14 of its related compounds were separated and quantified. The described method was linear over the range of 2-1800 microg/mL AZ with (r = 0.9999). The stability of AZ was studied under accelerated acidic, alkaline, and oxidative conditions. The proposed method was used to investigate the kinetics of acidic and alkaline hydrolysis process of AZ at different temperatures, and the apparent pseudo first-order rate constant, half-life, and activation energy were calculated. The major peak detected from the degradation of AZ in alkaline and acidic conditions was decladinosylazithromycine, while azithromycin N-oxide was detected from the oxidative degradation. Long-term stability studies for capsule and oral suspension were carried out. The proposed stability-indicating method was completely validated according to the U.S. Food and Drug Administration requirements.  相似文献   

7.
The wet dechlorination treatment of poly(vinylidene chloride) (PVDC) was evaluated at atmospheric pressure in a solution of NaOH in ethylene glycol (EG), as a function of NaOH concentration, temperature, and solvent. Hydroxide ion from NaOH was required for dechlorination with EG acting solely as a solvent. The wet treatment exhibited significantly enhanced dechlorination efficiency over traditional thermal techniques, with a reaction efficiency as high as 92.8% in 1.0 M NaOH at 190 °C. Dechlorination reactions of PVDC in both NaOH/EG and NaOH/H2O were expressed by an apparent first-order reaction. At 190 °C, the apparent rate constant in 1.0 M NaOH/EG was approximately 1.4 times larger than in 1.0 M NaOH/H2O, with an apparent activation energy of 82.8 kJ mol−1, indicating that the reaction proceeded under chemical control. The degree of dechlorination increased with increasing reaction temperature, favouring the elimination of HCl over the hydroxyl substitution of chloride.  相似文献   

8.
《印度化学会志》2021,98(11):100215
We report herein an accurate, precise, and economical stability indicating high performance thin layer chromatographic (HPTLC) method developed to assess the safety of olanzapine in pharmaceutical formulations. Olanzapine was subjected to forced degradation studies to assess the effect of environmental conditions on its stability. Stress conditions such as hydrolysis under acidic and alkaline environment, degradation and oxidation by heat, light and air were used to study the stability of olanzapine. Mobile phase comprising of toluene: methanol (5:5 v/v) and aluminum plate pre-coated with silica gel 60 F254 as a stationary phase were used for the development of chromatogram by HPTLC technique. Densitometric analysis of olanzapine carried out at 297 ​nm gave sharp symmetrical peak with Rf value of 0.50 and a satisfactory baseline resolution for all components. The drug was found to undergo degradation under acidic, alkaline and oxidative conditions. A single distinct peak in acidic and alkaline media while two peaks obtained as a result of oxidative degradation were well resolved along with the parent drug. The degradation products and parent drug showed significantly different Rf values. The developed HPTLC method gave quick and reproducible results for the olanzapine content in the tablets. The mean recoveries were 100.75% which confirms accuracy of the proposed method. The method was further validated for specificity, ruggedness and robustness. Based on the results, it can be suggested that the developed HPTLC method is quite efficient in separating the olanzapine from its degradation products; hence it can be used by pharmaceutical industries and regulatory bodies for the routine analysis of olanzapine in various pharmaceutical dosage forms.  相似文献   

9.
The paper deals with the study of electrochemical properties of blast furnace sludge after acid leaching (BFSL) using modified carbon paste electrodes (CPEs) in acidic (1 M HCl) and alkaline (1 M NaOH) electrolyte. A polyamide holder with exchangeable tips was developed. The effect of their geometric parameters on the electrochemical response was monitored. The electrochemical characterization was performed by cyclic voltammetry (CV) at different scan rates. The hematite and magnetite served as comparative model modifiers. The identification of reaction products was performed using the RTG diffraction and SEM/EDX analyses. It was found that reduction reactions are suppressed at acidic pH. On the contrary, in an alkaline media, a significant peak corresponding to the electrode reduction of iron oxides based on the scheme Fe3+?→?Fe2+?→?Fe0 was identified in the BFSL reduction region. XRD and SEM analyses of the active surface of modified CPE showed the formation of nanostructured Fe. The results provide direction for the further use of BFSL.  相似文献   

10.
The dioxygenyl salts O2MF6 or O2M2F11 where M = As, Sb, Bi, Nb, Ta, Ru, Au, and Pt, were hydrolysed aqueous base (40% NaOH) to evaluate their purity and to gain further information about their thermal instability. Compounds containing As, Sb, Bi, Nb and Ta yielded 1.25 moles O2 per mole of starting material whereas for compounds containing Ru, Au and Pt, 1.5 moles of O2 per mole of salt was produced. The difference is a consequence of the greater oxidizing power of the RuF-6, AuF-6 and PtF-6 anions. All of the dioxygenyl salts are intrinsically unstable at room temperature in vacuum.  相似文献   

11.
The electrochemistry of , and cobalt-containing cordierites (Co2Al4Si5O18) attached to paraffin-impregnated graphite electrodes has been studied by linear scan and cyclic voltammetries in HCl+NaCl and NaOH electrolytes. This electrochemistry is compared with that of vitreous cobalt cordierite, cobalt(II) oxide and cobalt spinel aluminate (CoAl2O4), the two last taken as reference materials. Electrochemical processes involve the site-characteristic reduction of Co(II) species to cobalt metal near to –0.5 V vs. SCE and their oxidative dissolution near +0.3 V, accompanied by solid state interconversion between Co(II) and Co(III) at potentials above +0.45 V. Cordierite-modified electrodes display a significant site-dependent catalytic effect on the electrochemical oxidation of mannitol in 0.10 M NaOH.  相似文献   

12.
Lu Lu  Xirong Huang 《Mikrochimica acta》2011,175(1-2):151-157
We describe a facile electrochemical route for the synthesis of CuO flower-like microspheres (CuO FMs) by anodic dissolution of bulk Cu in sodium hydroxide solution at room temperature and without heating. Scanning electron microscopy and X-ray diffraction revealed that the CuO FMs are phase-pure monoclinic crystallites and comprised of CuO nanoflakes. The concentration of NaOH has a large effect on the size of the CuO FMs. The possible formation mechanism is discussed. The CuO FMs are electrocatalytically active towards the oxidation of H2O2, and this has resulted in a sensor for H2O2. To our knowledge, this is the simplest way to obtain clean CuO FMs.
Figure
A facile electrochemical route, which is carried out at room temperature (25?°C), is introduced for the fast fabrication of CuO flower-like microspheres (CuO FMs). The CuO FMs modified glassy carbon electrode exhibits good electrocatalytic activity towards the oxidation of H2O2.  相似文献   

13.
The present work demonstrates the utility of polymer embedded nanocrystalline titania (TiP) as a new, accessible and viable solid sorbent for the chromatographic separation of high specific activity 77As from neutron irradiated natural GeO2. Experimental parameters such as distribution ratios (K d), equilibrium sorption capacity, breakthrough capacity and separation yields were determined. A two-step ion-exchange procedure was developed to avail 77As, from irradiated Ge in alkaline medium. The first step involved removal of the bulk Ge from 77As by selective sorption of Ge ions on a TiP column at pH 13. Subsequently, the effluent solution containing 77As was further purified and concentrated by sorption on a small TiP column at pH 10. 77As could be eluted from the second column in 2?C3?mL of 0.1?M NaOH solution with >80% radiochemical yield. The 77As obtained by this method was found to have insignificantly small level of radiocontaminants.  相似文献   

14.
In this study, energetic interactions between activated carbon monoliths and various liquids were evaluated by determining immersion enthalpies in C6H6, H2O and aqueous solutions of NaOH and HCl. Immersion enthalpies depend on both the surface chemistry and the interactions between specific groups, and were compared with results from volumetric titrations. Immersion enthalpies of activated carbon monoliths were between ?95.85 and ?176.5 J g?1 for C6H6 and between ?11.19 and ?68.31 J g?1 for H2O; whereas immersion enthalpies in NaOH and HCl solutions were between ?20.36 and ?82.25 J g?1 and ?18.81 and ?96.16 J g?1, respectively. In support of these results, a high level of acidic groups was found on the surface of the activated carbon monoliths by Boehm volumetric titrations, with values between 719 and 1,290 g mol?1, in agreement with the higher immersion enthalpies observed in NaOH. Correlations were established between immersion enthalpies in the liquids and the surface chemistry properties of the activated carbon monoliths determined by volumetric titrations, demonstrating that immersion enthalpy is a useful parameter for characterisation of these materials in specific liquids.  相似文献   

15.
Inorganic additives, viz. Na2CO3, NaOH, HCl, ZnC2, NaH2PO4, Na2HPO4, NaCl. MgSO4 and sea salt, to the pyrolysis matrix change the pyrolysis-mass spectrum of amylose significantly. Carbonyl compounds, acids and their lactones, furans, pyranones anhydrosugars and aromatic substances are found in different ratios under the various conditions, as determined by pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS).Carbonyl compounds, acids and lactones are released from alkaline and neutral matrices. Furans and anhydrohexoses are particularly formed under neutral and acidic conditions. Pyranones are specific for phosphate matrices. Unsaturated hydrocarbons and aromatic substances arise from strongly alkaline or dehydrating matrices. Degradation pathways are proposed for various compound categories.The results of pyrolysis-mass spectrometry and Py-GC-MS are highly compatible.  相似文献   

16.
Biomass valorization to building block chemicals in food and pharmaceutical industries has tremendously gained attention. To produce monophenolic compounds from palm empty fruit bunch (EFB), EFB was subjected to alkaline hydrothermal extraction using NaOH or K2CO3 as a promotor. Subsequently, EFB-derived lignin was subjected to an oxidative depolymerization using Cu(II) and Fe(III) mixed metal oxides catalyst supported on γ-Al2O3 or SiO2 as the catalyst in the presence of hydrogen peroxide. The highest percentage of total phenolic compounds of 63.87 wt% was obtained from microwave-induced oxidative degradation of K2CO3 extracted lignin catalyzed by Cu-Fe/SiO2 catalyst. Main products from the aforementioned condition included 27.29 wt% of 2,4-di-tert-butylphenol, 19.21 wt% of syringol, 9.36 wt% of acetosyringone, 3.69 wt% of acetovanillone, 2.16 wt% of syringaldehyde, and 2.16 wt% of vanillin. Although the total phenolic compound from Cu-Fe/Al2O3 catalyst was lower (49.52 wt%) compared with that from Cu-Fe/SiO2 catalyst (63.87 wt%), Cu-Fe/Al2O3 catalyst provided the greater selectivity of main two value-added products, syringol and acetosyrigone, at 54.64% and 23.65%, respectively (78.29% total selectivity of two products) from the NaOH extracted lignin. The findings suggested a promising method for syringol and acetosyringone production from the oxidative heterogeneous lignin depolymerization under low power intensity microwave heating within a short reaction time of 30 min.  相似文献   

17.
《合成通讯》2013,43(13):1803-1808
Abstract

Water‐soluble fullerenol was conveniently synthesized via the direct solvent‐free reaction of fullerene with a mixture of H2O2 and NaOH under grinding conditions in air at room temperature. This practical method provides a novel and efficient access to water‐soluble fullerenol in excellent yield.  相似文献   

18.
A fast, rigorous method was developed to maximize the extraction efficacy for ten perfluorocarboxylic acids and perfluorooctanesulfonate from waste-water-treatment sludge and to quantitate using liquid chromatography, tandem-mass spectrometry (LC/MS/MS). First, organic solvents were tested for extraction efficiency, including acetonitrile (ACN), methanol (MeOH), isopropanol (IPA), tetrahydrofuran (THF), and 50/50 ACN/MeOH (v/v). Among the extractants tested, 50/50 ACN/MeOH yielded the best results for our combined criteria of extraction efficacy and solvent-handling convenience. Second, chemical pretreatment prior to solvent extraction was tested with sodium hydroxide (NaOH), potassium hydroxide (KOH), hydrochloric acid (HCl), and potassium persulfate (K2S2O8). Pretreatment with NaOH and HCl effectively recovered additional PFCs from the sludge, but KOH and K2S2O8 digestion were less effective than no pretreatment. Third, cleanup methods were investigated with solid-phase extraction using HLB (hydrophilic–lipophilic balanced) and WAX (weak-anion exchange) stationary phases, and with ion-pairing. The HLB stationary phase yielded a slight edge over the other two cleanup strategies in terms of recoverable PFCs and chromatographic separation. Finally, the appropriateness of isotopically labeled PFCs for quantitating unlabeled PFCs using isotopic dilution in complex sludge extracts was evaluated by comparison to results obtained with the standard-addition method. A National Institute of Standards and Technology (NIST) domestic sludge (CRM 2781) was analyzed using our finalized method and compared with previously reported results.  相似文献   

19.
The oxidation of lomefloxacin (LOM) and balofloxacin (BAL) under the influence of azo initiator of radical reactions of 4,4′-azobis(4-cyanopentanoic acid) (ACVA) and H2O2 was examined. Oxidation using H2O2 was performed at room temperature while using ACVA at temperatures: 40, 50, 60 °C. Additionally, the oxidation process of BAL under the influence of KMnO4 in an acidic medium was investigated. New stability-indicating HPLC methods were developed in order to evaluate the oxidation process. Chromatographic analysis was carried out using the Kinetex 5u XB—C18 100A column, Phenomenex (Torrance, CA, USA) (250 × 4.6 mm, 5 μm particle size, core shell type). The chromatographic separation was achieved while using isocratic elution and a mobile phase with the composition of 0.05 M phosphate buffer (pH = 3.20 adjusted with o-phosphoric acid) and acetonitrile (87:13 v/v for LOM; 80:20 v/v for BAL). The column was maintained at 30 °C. The methods were validated according to the ICH guidelines, and it was found that they met the acceptance criteria. An oxidation process followed kinetics of the second order reaction. The most probable structures of LOM and BAL degradation products formed were assigned by the UHPLC/MS/MS method.  相似文献   

20.
An electrochemical sensor is developed in this work based on the new perovskite-type nanomaterial LaNiTiO3–Fe3O4 for sensitive determination of o-phenylenediamine (OPD). As-synthesized materials and the surface of as-fabricated electrochemical sensor are characterized by X-ray diffraction, atomic force microscope, and electrochemical impedance spectroscopy, respectively. The results of characterizations depict that the sample is of nanoscaled complex oxides consisting of perovskite structure and spinel structure, and has good conductive properties. The construction and experimental conditions of the electrochemical sensor are also optimized. The electrochemical properties of OPD at glassy carbon electrode modified with LaNiTiO3–Fe3O4 are investigated in alkaline solution (NaOH). The new electrochemical sensor exhibits high electrocatalytic activity and stability in NaOH, and a promotion of electrochemical oxidation of OPD at low potentials can be obviously observed. A wide linear range is obtained from 1.0?×?10?6 to 7.0?×?10?3 M with a relative low detection limit of 0.15 μM (S/N?=?3) under optimal conditions. Furthermore, the sensor exhibits reliable results for the determination of OPD in commercial samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号