首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The preparation, characterization, release, and in vitro cytotoxicity of a biodegradable polymeric micellar formulation of paclictaxel (PTX) were investigated. The micelles based on thermosensitive and degradable amphiphilic polyaspartamide derivatives containing pendant aromatic structures (phe‐g‐PHPA‐g‐mPEG) were prepared by a quick heating method without using toxic organic solvent. Dynamic light‐scattering results show that the micelles are stable upon dilution under physiological conditions and the destabilization of the micelles is pH‐dependent and the phe‐g‐PHPA‐g‐mPEG polymers are biodegradable. PTX was loaded into the phe‐g‐PHPAs‐g‐mPEG micelles with encapsulation efficiency of >90%, resulting in a high drug loading content (up to 29%). PTX‐loaded micelles had a mean size around 70 nm with narrow size distribution (polydispersity index, <0.1). The PTX‐loaded micelles showed sustained drug release and obvious anticancer activity similar to Taxol against HepG2 cells, whereas blank micelles were nontoxic. The present results suggest that the thermosensitive and biodegradable phe‐g‐PHPA‐g‐mPEG micelles are a promising delivery system for the hydrophobic drugs. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3917–3924  相似文献   

2.
Analyses of antioxidant and in vitro antimicrobial and anti-proliferative activities of anthocyanin-rich extracts from purple potatoes, Solanum tuberosum L. cv Vitelotte noire (Solanaceae), were performed by simulating both a domestic cooking process and human digestion. Extracts of crude and cooked purple potato did not exhibit antimicrobial activity against the tester strains: Bacillus cereus, Escherichia coli and Pseudomonas aeruginosa. The behaviour changed after the simulated gastrointestinal transit, when an inhibition halo was observed against all tester strains used, ranging from 0.53 cm against B. cereus to 0.82 cm against E. coli. In addition antioxidant activity exhibited, before and after the simulated gastrointestinal digestion (5.96 mg/mL ± 0.92; 28 mg/mL ± 0 .13, respectively) and the persistence of anti-proliferative activity against the colon cancer cells Caco-2, SW48 and MCF7, MDA-MB-231 breast cancer cells, after the simulated digestion, (EC50 = 0.21; 1.13 μg/mL), suggest that vitelotte consumption might bring tangible benefits for human health.  相似文献   

3.
顾忠伟 《高分子科学》2012,30(3):387-396
An anti-tumor drug doxorubicin was encapsulated in micelles of poly(ethylene glycol)-b-poly(2,2-dihydroxyl-methyl propylene carbonate)(PEG-b-PDHPC) diblock copolymers.The morphology of both blank micelles and drug loaded micelles was characterized by TEM.The in vitro drug release profiles of micelles were investigated.The cytotoxicity of the micelles was evaluated by incubating with Hela tumor cells and 3T3 fibroblasts.The drug loaded micelles were co-cultured with HepG2 cells to evaluate the in vitro anti-tumor efficacies.The results showed that the mean sizes of both micelles with different copolymer compositions increased after being loaded with drugs.The drug release rate of PEG45-b-PDHPC34 micelles was faster than that of mPEG114-b-PDHPC26,micelles.Both of the two block copolymers were non-toxic.The confocal laser scanning microscopy and flow cytometry results showed that both the drug loaded micelles could be internalized efficiently in HepG2 cells.The PEG45-b-PDHPC34 micelles exhibited higher anti-tumor activity comparing to mPEG114-b-PDHPC26 micelles.  相似文献   

4.
pH敏感型mPEG-Hz-PLA聚合物纳米载药胶束的制备   总被引:1,自引:0,他引:1  
以合成的含有腙键的聚乙二醇大分子(mPEG-Hz-OH)为引发剂,以丙交酯为单体引发开环聚合反应,并通过调整投料比,制备出3种不同分子量的含腙键的生物可降解嵌段聚合物(mPEG-Hz-PLA).将腙键引入到聚合物的骨架中,以此构建聚合物胶束并作为pH敏感型纳米药物载体.制备的pH敏感型胶束的CMC值等于或低于5.46×10-4 mg/m L,DLS和TEM显示粒径均小于100 nm,且粒径分布均匀.非pH敏感型胶束在不同pH下的粒径变化不明显,而pH敏感型胶束在酸性环境下(pH=4.0和pH=5.0)胶束粒径出现了明显变化.以阿霉素为模型药物制备了pH敏感型载药胶束,其粒径比空白胶束大(100~200 nm),且粒径分布均匀.药物释放实验表明pH敏感型载药胶束随着释放介质pH降低累积释药量增高.MTT实验表明空白胶束对HeLa细胞和RAW264.7细胞几乎没有抑制作用,而载阿霉素的胶束对2种细胞的抑制作用都随着剂量的增大和时间的延长而增强.  相似文献   

5.
Redox‐responsive core cross‐linked (CCL) micelles of poly(ethylene oxide)‐b‐poly(furfuryl methacrylate) (PEO‐b‐PFMA) block copolymers were prepared by the Diels‐Alder click‐type reaction. First, the PEO‐b‐PFMA amphiphilic block copolymer was synthesized by the reversible addition‐fragmentation chain transfer polymerization. The hydrophobic blocks of PFMA were employed to encapsulate the doxorubicin (DOX) drug, and they were cross‐linked using dithiobismaleimidoethane at 60 °C without any catalyst. Under physiological circumstance, the CCL micelles demonstrated the enhanced structural stability of the micelles, whereas dissociation of the micelles took place rapidly through the breaking of disulfide bonds in the cross‐linking linkages under reduction environment. The core‐cross‐linked micelles showed fine spherical distribution with hydrodynamic diameter of 68 ± 2.9  nm. The in vitro drug release profiles presented a slight release of DOX at pH 7.4, while a significant release of DOX was observed at pH 5.0 in the presence of 1,4‐dithiothreitol. MTT assays demonstrated that the block copolymer did not have any practically cytotoxicity against the normal HEK293 cell line while DOX‐loaded CCL micelles exhibited a high antitumor activity towards HepG2 cells. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3741–3750  相似文献   

6.
The linoleic acid (LA)-grafted chitosan oligosaccharide (CSO) (CSO-LA) was synthesized in the presence of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC), and the effects of molecular weight of CSO and the charged amount of LA on the physicochemical properties of CSO-LA were investigated, such as CMC, graft ratio, size, zeta potential. The results showed that these chitosan derivatives were able to self-assemble and form spherical shape polymeric micelles with the size range of 150.7–213.9 nm and the zeta potential range of 57.9–79.9 mV, depending on molecular weight of CSO and the charged amount of LA. Using doxorubicin (DOX) as a model drug, the DOX-loaded CSO-LA micelles were prepared by dialysis method. The drug encapsulation efficiencies (EE) of DOX-loaded CSO-LA micelles were as high as about 75%. The sizes of DOX-loaded CSO-LA micelles with 20% charged DOX (relating the mass of CSO-LA) were near 200 nm, and the drug loading (DL) capacity could reach up to 15%. The in vitro release studies indicated that the drug release from the DOX-loaded CSO-LA micelles was reduced with increasing the graft ratio of CSO-LA, due to the enhanced hydrophobic interaction between hydrophobic drug and hydrophobic segments of CSO-LA. Moreover, the drug release rate from CSO-LA micelles was faster with the drug loading. These data suggested the possible utilization of the amphiphilic micellar chitosan derivatives as carriers for hydrophobic drugs for improving their delivery and release properties.  相似文献   

7.
Abstract

A series of tertiary amine containing PHMEMA-PEG-PHMEMA ABA triblock copolymers were synthesized by atom transfer radical polymerization (ATRP) using bromine-capped poly(ethylene glycol) (Br-PEG-Br) and 2-(hexamethyleneimino)ethyl methacrylate (HMEMA) as macro-initiator and monomers, respectively. The chemical structures and molecular weights of triblock copolymers were characterized by 1H NMR and gel permeation chromatography (GPC). The self-assembly behaviors of copolymers in different pH conditions were studied by dynamic light scattering (DLS) and transmission electron microscopy (TEM). Triblock copolymers self-assembled into micelles in water (pH 7.4) and the micelles disassembled at acidic pH (pH 5.0). Anticancer drug doxorubicin (DOX) was used as a drug model and physically encapsulated into polymeric micelles. The drug release of DOX-loaded polymeric micelles was pH-responsive; the drug-loaded micelles that had higher contents of tertiary amine in polymer pendant groups showed faster release speed. In addition, the drug-loaded micelles showed excellent inhibition efficacy against HeLa cells in vitro.  相似文献   

8.
Magnetically polymeric nanocarriers, Cur‐FA‐SAMN, were designed and synthesized for targeting, therapeutic treatments to cancer cells. Amine‐group immobilized iron oxides, Fe3O4‐NH2, were attached on the surface of self‐assembled tri‐block copolymer, poly[(acrylic acid)‐block‐(N‐isopropylacrylamide)‐block‐(acrylic acid)] synthesized via reversible addition‐fragmentation chain‐transfer polymerization. For the purpose of targeting effect, folic acid was grafted on the surface of Fe3O4‐NH2 attached nanoparticles. The nanocarriers were characterized by transmission electron microscopy, Fourier transform infrared spectroscopy, vibrating sample magnetometer, and UV‐Vis spectral analysis. Therefore, a hydrophobic anti‐cancer drug, curcumin, gained water dispersity, and stable storage via encapsulating into and on the magnetically polymeric nanocarriers, and the release behaviors were studied in vitro, with and without high frequency magnetic field. Biocompatibility and cytotoxicity of inherent and curcumin‐loaded nanocarriers were investigated by MTT assay. Results displayed that our nanocarriers have no cytotoxicity while curcumin‐loaded nanocarriers offered significant death to MCF‐7, human breast camcer cells. Intracellular‐uptake experiments demonstrated tremendous uptake and the destroying effect to MCF‐7 cells, most of the cancer cells were killed and the surviving ones were surrounded by the curcumin‐loaded nanocarriers. According to the aforementioned characteristics, these magnetically polymeric nanocarriers will be able to apply as a potential device for practical therapy. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2706–2713  相似文献   

9.
A novel amphiphilic copolymer N-phthaloylchitosan graft poly(N-isopropylacrylamide) and poly(acrylic acid-co-tert-butyl acrylate) (PHCS-g-PNIPAAm&P(AA-co-tBA)) was synthesized. The graft copolymer could form micelles in aqueous medium, and the critical micelle concentration (CMC) of the copolymer was 7.5 × 10? 3mg/mL. The lower critical solution temperature (LCST) of the micelles was measured to be 30°C. Transmission electron microscopy (TEM) image showed that the micelles exhibited a regular spherical shape, and the mean diameter of the micelles was 94.1 ± 0.8 nm as determined by dynamic light scattering (DLS). The potential usefulness of the micelles as drug delivery systems was investigated using anti-inflammation drug prednisone acetate as the model. The drug loading capacity of the micelles was measured to be 22.86 wt%, and the DLS results showed that the mean diameter of the drug-loaded micelles was 133.3 ± 2.4 nm. In vitro drug release studies indicated that the micelles exhibited thermo and pH dual-responsive release profiles.  相似文献   

10.
Folate-targeted cyclodextrin/retinoic acid (CD/RA) conjugate was synthesized using carbonyldiimidazole (CDI) and dimethylaminopyridine (DMAP). The structure of the produced macromolecule was studied by FTIR and 1HNMR. The developed macromolecule could self-aggregate to form micelles. Critical micelle concentration (CMC) of the macromolecule was determined by pyrene as a fluorescent probe. Doxorubicin (DOX)-loaded micelles were prepared by direct dissolution method. To optimize the effect of cyclodextrin type (α or β), the molar ratio of RA to CD and the drug content, a full factorial design was used and their effects on particle size, polydispersity index, zeta potential, loading efficiency (LE%), and release efficiency (RE24%) in 24 h were studied. Orientation of folate ligand on the surface of the micelles was studied by X-ray photoelectron spectroscopy (XPS) technique. The cytotoxicity of DOX-loaded micelles was studied on KG-1 cells which overexpressed folate receptor (FR) and FR-negative HepG2 cells using MTT assay. FTIR and 1HNMR spectra confirmed successful production of the micelles and XPS spectra showed surface orientation of folate. The best results obtained from β-cyclodextrin with molar ratio of 4 to RA and 15 % drug content. The optimized micelles showed the particle size of 103?±?4 nm, zeta potential of ?36 mV, polydispersity index of 0.28?±?0.05, LE% of 100 %, and RE24% of 69.88?±?1.6 %. The IC50 of targeted micelles was half of non-targeted micelles and free DOX.  相似文献   

11.
For efficient treatment of multidrug‐resistance (MDR) breast cancer cells, design of biocompatible mixed micelles with diverse functional moieties and superior stability is needed for targeted delivery of chemical drugs. In this study, polypropylene glycol (PPG)‐grafted hyaluronic acid (HA) copolymers (PPG‐g‐HA) are used to make mixed micelles with different amounts of pluronic L61, named PPG‐g‐HA/L61 micelles. Optimized PPG‐g‐HA/L61 micelles with 3% pluronic L61 exhibit great stability in aqueous solution, superior biocompatibility, and significantly increased uptake into MCF‐7 MDR cells via HA–CD44‐specific interactions when compared to free doxorubicin (DOX) and other types of micelles. In addition, DOX in PPG‐g‐HA/L61 micelles with 3% pluronic L61 have toxicity in MCF‐7 MDR cells but significantly lower toxicity in fibroblast L929 cells compared to free DOX. Thus, PPG‐g‐HA/L61 micelles with 3% pluronic L61 content can be a promising nanocarrier to overcome MDR and release DOX in a hyaluronidase‐sensitive manner without any toxicity to normal cells.

  相似文献   


12.
Fluorescent gold nanoclusters (AuNCs) capped with lysozymes are used to deliver the anticancer drug doxorubicin to cancer and noncancer cells. Doxorubicin‐loaded AuNCs cause the highly selective and efficient killing (90 %) of breast cancer cells (MCF7) (IC50=155 nm ). In contrast, the killing of the noncancer breast cells (MCF10A) by doxorubicin‐loaded AuNCs is only 40 % (IC50=4500 nm ). By using a confocal microscope, the fluorescence spectrum and decay of the AuNCs were recorded inside the cell. The fluorescence maxima (at ≈490–515 nm) and lifetime (≈2 ns), of the AuNCs inside the cells correspond to Au10–13. The intracellular release of doxorubicin from AuNCs is monitored by Förster resonance energy transfer (FRET) imaging.  相似文献   

13.
The instability and premature charge reversal at pH 7.4 have become the major limitations of charge‐reversal delivery systems. To address this problem, graft copolymer of poly(butylene succinate)‐g‐cysteamine‐bi‐poly(ethylene glycol) (PBS‐g‐CS‐bi‐PEG, bi = benzoic imine bond) was designed and synthesized through facile thiol‐ene click reaction and subsequent Schiff's base reaction. Then, PBS‐g‐CS‐bi‐PEG and carboxyl‐functionalized polyester of poly(butylene succinate)‐g‐3‐mercaptopropionic acid (PBS‐g‐MPA) co‐assemble in aqueous solution to give PEG shell‐sheddable charge‐reversal micelles with sizes of 85–103 nm and low polydispersity of 0.11–0.12. Interestingly, the PBS‐g‐MPA/CS‐bi‐PEG micelles could sensitively and arbitrarily switch their surface charges between negative and positive status in response to pH fluctuation via reversible protonation and deprotonation of carboxyl and amino groups, which endows the desired stability of co‐assembly micelles either during long‐term storage or under physiological conditions. Doxorubicin (DOX) was loaded into PBS‐g‐MPA/CS‐bi‐PEG micelles with a high drug‐loading content of 10.2% and entrapment efficiency of 68% as a result of electrostatic attraction. In vitro release studies revealed that less than 25% of DOX was released within 24 h in the environment mimicking the physiological condition, whereas up to 81% of DOX was released in 24 h under weak‐acid condition resembling microenvironment in endosome/lysosome. In vitro cytotoxicity study suggested that blank PBS‐g‐MPA/CS‐bi‐PEG micelles possessed excellent biocompatibility, while DOX‐loaded PBS‐g‐MPA/CS‐bi‐PEG micelles showed significant cytotoxicity with half‐maximal inhibitory concentration (IC50) of 1.55–1.67 μg DOX equiv/mL. This study provides a facile and effective approach for the preparation of novel charge‐reversal micelles with switchable charges and excellent biocompatibility, which are highly promising to be used as safe nanocarriers for efficient intracellular drug delivery. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2036–2046  相似文献   

14.
Novel pH and reduction dual‐sensitive biodegradable polymeric micelles for efficient intracellular delivery of anticancer drugs were prepared based on a block copolymer of methyloxy‐poly(ethylene glycol)‐b‐poly[(benzyl‐l ‐aspartate)‐co‐(N‐(3‐aminopropyl) imidazole‐l ‐aspartamide)] [mPEG‐SS‐P(BLA‐co‐APILA), MPBA] synthesized by a combination of ring‐opening polymerization and side‐chain reaction. The pH/reduction‐responsive behavior of MPBA was observed by both dynamic light scattering and UV–vis experiments. The polymeric micelles and DOX‐loaded micelles could be prepared simply by adjusting the pH of the polymer solution without the use of any organic solvents. The drug release study indicated that the DOX‐loaded micelles showed retarded drug release in phosphate‐buffered saline at pH 7.4 and a rapid release after exposure to weakly acidic or reductive environment. The empty micelles were nontoxic and the DOX‐loaded micelles displayed obvious anticancer activity similar to free DOX against HeLa cells. Confocal microscopy observation demonstrated that the DOX‐loaded MPBA micelles can be quickly internalized into the cells, and effectively deliver the drugs into nuclei. Thus, the pH and reduction dual‐responsive MPBA polymeric micelles are an attractive platform to achieve the fast intracellular release of anticancer drugs. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1771–1780  相似文献   

15.
In this study, novel liver targeted doxorubicin (DOX) loaded alginate (ALG) nanoparticles were prepared by CaCl2 crosslinking method. Glycyrrhetinic acid (GA, a liver targeted molecule) modified alginate (GA-ALG) was synthesized in a heterogeneous system, and the structure of GA-ALG and the substitution degree of GA were analyzed by 1H NMR, FT-IR and elemental analysis. The drug release profile under the simulated physiological condition and cytotoxicity experiments of drug-loaded GA-ALG nanoparticles were carried out in vitro. Transmission electron micrographs (TEM) and dynamic light scattering (DLS) analysis showed that drug-loaded GA-ALG nanoparticles have spherical shape structure with the mean hydrodynamic diameter around 214 ± 11 nm. The drug release was shown to last 20 days, and the MTT assay suggested that drug-loaded GA-ALG nanoparticles had a distinct killing effect on 7703 hepatocellular carcinoma cells.  相似文献   

16.
A novel mesoporous silica tubes (MMT) which possessed pH-sensitive controlled release ability had been fabricated and synthesized by using carbon nanotubes (CNTs) as template. The sample replicated the morphologies of the CNTs successfully. The Brunauer–Emmett–Teller surface area of the materials can reach 1,017 m2 g?1 with the pore size of 3.8 nm. As a model drug, metformin HCl was applied to study the drug loading and control release ability of the materials. MMT possesses higher drug loading ratio (36 %) than that of MCM-41 (27.5 %). The release kinetics were studied in simulated gastric fluid (pH = 1.2) and in simulated proximal intestine fluid (pH = 7. 4), respectively. The result shows that the delivery systems exhibit well pH-sensitive control release ability and the as-synthesized materials have potential application in biomedical field.  相似文献   

17.
Ethanol extracts of Stachys glutinosa L. (Lamiaceae) were investigated for antioxidative properties, as well as antiproliferative action on various cell lines. The antioxidant activities were investigated by ABTS (2,2′-azinobis-3-ethylbenzothiazoline-6-sulphonic acid) assay, DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging, β-carotene/linoleic acid assay, scavenging of hydrogen peroxide (horseradish peroxidase test), superoxide anion scavenging, and hypochlorous acid scavenging (taurine test). The antioxidant activity was reported as IC50 and reveals antioxidant effects. Antiproliferative effects were measured in vitro on three cell lines: HepG2 (human hepatocarcinoma), MCF7 (breast human adenocarcinoma) and C2C12 (mouse myoblast) cell lines by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. The ethanol extract induced variations in cell viability on all cell lines tested. At 200 μg/mL, the effects on cell viability were ? 23%, ? 27% and ? 37%, respectively, for C2C12, MCF7 and HepG2.  相似文献   

18.
A novel thermo-responsive diblock copolymer of poly(N-vinyl-2-pyrrolidinone)-block-poly(N-isopropylacrylamide) (PNVP-b-PNIPAM) was synthesized. FT-IR, 1H-NMR and SEC results confirmed the successful synthesis of PNVP-b-PNIPAM diblock copolymer via anionic polymerization. The polymeric micelles formed from PNVP-b-PNIPAM copolymer in aqueous solution were developed and characterized as a potential thermo-responsive and biocompatible drug delivery system. Micellization of the diblock copolymer in aqueous solution was characterized by dynamic laser scattering (DLS), turbidity measurement, tension measurement and transmission electron microscopy (TEM). The thermo-responsive polymeric micelles with the size ranges of 200 to 260 nm and thickness of 30 nm are localized, selected and targeted for drug release, having a great potential in response to external-stimulus such as temperatures from 35 to 39°C. The critical micellization concentration (cmc) of PNVP-b-PNIPAM in aqueous solution is 0.0026 wt% determined by turbidity measurement. The size of micelles determined by DLS increased from 163 to 329 nm with increasing concentration of PNVP-b-PNIPAM from 0.25 to 0.5 wt% in aqueous solution at 40°C, which is determined by DLS.  相似文献   

19.
Using various chromatographic separations, sixteen compounds, including one new triterpene saponin named aegicoroside A (1), were isolated from the leaves of the Vietnamese mangrove Aegiceras corniculatum. Their structures were determined by spectroscopic methods such as 1D and 2D NMR and HR-ESI-MS. The cytotoxic activities of the isolated compounds against MCF7 (breast), HCT116 (colon), B16F10 (melanoma), and A549 (adenocarcinoma) cancer cell lines were also evaluated. Strong cytotoxicity was observed for sakurasosaponin (2) against all four cancer cell lines and for sakurasosaponin methyl ester (3) against MCF7, A549, and HCT116 cell lines with IC50 values ranging from 2.89 ± 0.02 to 9.86 ± 0.21 μM.  相似文献   

20.
Thermo-responsive polymeric micelles of poly (ethylene glycol)-b-poly(2-hydroxyethyl methacrylate-g-lactide)-b-poly(N-isopropylacrylamide) (PEG-P(HEMA-PLA)-PNIPAM) with core–shell–corona structure were fabricated for applications in controlled drug release. The graft copolymer of PEG-P(HEMA-PLA)-PNIPAM was self-assembled into core–shell micelles with a densely PLA core and mixed PEG/PNIPAM shells at 25 °C in aqueous media. By increasing the temperature above the lower critical solution temperature of PNIPAM, these core–shell micelles could be converted into core–shell–corona micelles because of the collapse of PNIPAM block on the PLA core as the inner shell and the soluble PEG block stretching outside as the outer corona. Anticancer drug doxorubicin (DOX) was loaded in the polymeric micelles as a model drug. Compared with polymeric micelles formed by liner PEG-b-PLA-b-PNIPAM triblock copolymer, these polymeric micelles exhibited higher loading capacity, and release of DOX from the polymeric micelles with core–shell–corona structure was well-controlled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号